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Phylogenetic research is often stymied by selection of a marker that leads to poor phylogenetic resolution despite considerable
cost and effort. Profiles of phylogenetic informativeness provide a quantitative measure for prioritizing gene sampling to resolve
branching order in a particular epoch. To evaluate the utility of these profiles, we analyzed phylogenomic data sets frommetazoans,
fungi, and mammals, thus encompassing diverse time scales and taxonomic groups. We also evaluated the utility of profiles created
based on simulated data sets.We found that genes selected via their informativeness dramatically outperformedhaphazard sampling
of markers. Furthermore, our analyses demonstrate that the original phylogenetic informativeness method can be extended to trees
with more than four taxa.Thus, although the method currently predicts phylogenetic signal without specifically accounting for the
misleading effects of stochastic noise, it is robust to the effects of homoplasy. The phylogenetic informativeness rankings obtained
will allow other researchers to select advantageous genes for future studies within these clades, maximizing return on effort and
investment. Genes identified might also yield efficient experimental designs for phylogenetic inference for many sister clades and
outgroup taxa that are closely related to the diverse groups of organisms analyzed.

1. Introduction

The genomes of nearly 400 eukaryotes and nearly 3000
prokaryotes are now or are in the process of being sequenced.
Most of these organisms have thousands of genes, yet only
a few of those have been commonly used as markers for
phylogenetic studies [1]. In cases where choice has been
exercised, genes have been selected for sequencing based on
rough impressions of the genes’ utilities in previous studies
of taxa that are to varying degrees divergent from the taxa
of interest. Recent sequencing of multiple genomes within
major branches of the tree of life provides a much greater
selection ofmarkers and excites hope that more accurate pro-
cedures for experimental design may be adopted. However,
despite the phenomenal growth in sequence information
available, the optimal way to employ genome-wide data

sets to inform more clade-specific molecular phylogenetic
studies remains elusive [2, 3] due to a lack of methods that
quantitatively assess the power of genes to resolve particular
nodes in a phylogeny.

Although a few rules of thumb for selecting genes for phy-
logenetic studies have been advocated (e.g., percent sequence
divergence; 4, 5; or proportion of parsimony-informative
sites; 6), their successful use is highly context dependent.
Conventional wisdomdictates selection of a gene that evolves
at an appropriate pace for the phylogenetic question of
interest, but this axiom often fails to illuminate the correct
decision. Fairly complex distributions of rates across char-
acters can yield information regarding some periods of the
history encompassed by the phylogeny but not others [4–6].

In response to the crucial role of gene selection in experi-
mental design [4, 7–11], Townsend [5] proposed a metric that
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predicts utility across historical time for known genes. Based
on the estimated full distribution of rates across characters,
the Townsend [5] informativeness yields a graphical appraisal
of a gene’s signal for any historical epoch. To estimate
informativeness, prior data on the molecular evolutionary
rates for each site of a locus is required.This prior information
may be derived from three potential sources: (1) preliminary
data on the candidate loci from a well-studied subset of
the taxa of interest; (2) data on the candidate loci from a
well-studied sister clade; or (3) comparative genomic data
from sequenced genomes within and/or outside the clade of
interest. Thus, Townsend [5] informativeness metrics can be
obtained without reference to sequence data from the taxa of
interest.

To evaluate phylogenetic informativeness as a procedure
for selecting loci to sequence for phylogenetic studies that
incorporate broad taxon sampling, we utilized empirical
data sets for which the process of evolution may only be
approximated, as well as simulated data for which we could
specify the process and the true tree. In each case, we
tested the performance of the Townsend [5] phylogenetic
informativeness with trees with more than four taxa and its
robustness to the effects of homoplasy. We analyzed data sets
encompassing different time scales and taxonomic groups: (i)
mammal data sets [12] consisting of 50 genes each (∼33,440 aa
and ∼100,649 bp) sequenced in 20 species; (ii) a fungal data
set [13] consisting of 46 genes (∼13,082 aa) sequenced in 28
species; (iii) an animal/fungal data set [14, 15] consisting of
50 genes (∼12,089 aa) sequenced in 25 species. In parallel, we
simulated 50 amino acid and 50 DNA sequence alignments
of 300 sites each. Genes for empirical and simulated data sets
were ranked by phylogenetic informativeness and analyzed
for their ability to recapitulate known node identity and
robustness using measures of branch support associated with
maximum likelihood and maximum parsimony optimality
criteria. Genes from the empirical data sets examined here
that were identified as performing well could be especially
useful for phylogenetic inference in organisms related to the
clades analyzed. Our results represent the first phylogenomic
test of the phylogenetic informativenessmethod presented by
Townsend [5], supporting it as a metric of potential phyloge-
netic signal in both nucleotide and amino acid data sets.

2. Materials and Methods

2.1. Sequence Data Composition. We obtained four amino
acid and two DNA sequence data sets for analysis. In all
cases, species were selected whose phylogeny has been well
established. Data sets encompassed different time scales and
taxonomic levels, and were extracted from four different
sources (Table 1). From the OrthoMaM database [12] of
orthologous genomic markers for placental mammals, we
obtained a data set of amino acid and a data set of nucleotide
sequences. We selected 50 single-copy orthologous genes
that were present in 20 species (Figure 1(a)) and that had
lengths of ∼2000 bp and ∼666 aa (see Supplementary Tables
1 and 2 in Supplementary Material available online at
http://dx.doi.org/10.1155/2013/621604). The large number of
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Figure 1: Phylogenetic informativeness profiles for the OrthoMaM
data set. (a) Chronogram and the calibration points used to calculate
site rates. Phylogenetic informativeness profiles over a 190 Myr
period for (b) four amino acid sequence alignments and (c) four
DNA sequence alignments, on the same time scale as in panel (a).
Integration of the area below the profiles can provide a ranking
of the predicted utility of genes for that epoch (here, the epoch
encompassing the branch leading to primates). Integration results
will be the largest for the genes that have the highest probability
of exhibiting mutations during the given epoch that will not be
obscured in subsequent branches. To quantitatively establish genes
that will be most informative for the entire phylogeny, integrals over
the whole time scale were calculated.

genes in OrthoMaM facilitated a gene size constraint to
minimize the influence of sequence length in the phyloge-
netic inference. Forty genes were in common between the
amino acid and DNA data sets. Northern tree shrew, cow,
horse, little brown bat, and nine-banded armadillo species
were also present in OrthoMaM database but were excluded
from the analyses to ensure a comparison of outcomes
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Figure 2: Phylogenetic informativeness profiles for the FUNYBASE data set. (a) Chronogram and the calibration points used to calculate
site rates. (b) Phylogenetic informativeness profiles over a 973Myr period for four amino acid sequence alignments, on the same time scale
as in panel (a).

against awell-resolved and uncontroversial phylogenetic tree.
From the FUNYBASE database [13] of fungal orthologous
sequences, we obtained amino acid sequences for 46 genes
(Supplementary Table 3) in 28 fungal species (Figure 2(a)).
Stagonospora nodorum and Aspergillus oryzae were also
present in FUNYBASE but they were excluded due to their
weakly supported phylogenetic placement [16]. The third
source was Taylor and Berbee [15], modified from Rokas et
al. [14]—abbreviated as the TBR data set—from which we
obtained an alignment of 50 amino acid sequence regions

(Supplementary Table 4) from 8 animal, 15 fungal, and 2 plant
species (Figure 3(a)).

The two sets of simulated alignments, amino acid and
nucleotide, were generated with Seq-Gen v1.3.2 software
[17]. Simulated alignments allowed us to fix the alignment
length, the evolutionarymodel, and its parameters. To ensure
that the simulations encompassed a realistic instance, the
parameter values for mean site rate, proportion of invariant
sites, and sequence length approximated the values found in
the FUNYBASE data set. Also, both amino acid and DNA
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Table 1: Data sets used in the study.

Data set Source Gene
number

Mean length
± SD

OrthoMaM
(AA)

Ranwez et al.
(2007) [12] 50 668.8 ± 13.3

OrthoMaM
(DNA)

Ranwez et al.
(2007) [12] 50 2013.0 ± 43.5

FUNYBASE
(AA)

Marthey et al.
(2008) [13] 46 284.4 ± 130.0

TBR (AA) Taylor and Berbee
(2006) [15] 50 241.3 ± 106.3

Simulations
(AA) Seq-Gen 50 300 ± 0

Simulations
(DNA) Seq-Gen 50 300 ± 0

sequences were simulated on the FUNYBASE chronogram
(see below).The gamma rate heterogeneity values were varied
to explore a wide range. JTT and K2P (with 𝜅 = 2)
models were used for amino acid and nucleotide alignments,
respectively. For both amino acid and DNA, 50 different
data sets were simulated, each based on one of 10 different
mean rates ranging from 0.0001 to 0.001 substitutions per site
per Myr and ranging across five gamma rate heterogeneity
values, including no rate heterogeneity and 𝛼 = 0.5, 1, 2,
and 3. In all cases, the gamma distribution was discretized
into 10 rate categories. For every alignment, 20% of sites
were set to be invariant. For each of these 50 alignments, we
generated 10 replicates. The Seq-Gen program assigns each
site to either the invariant category or one of the gamma
categories stochastically within each simulation. As a result,
the number of invariant sites and the number of sites in each
category vary from simulation to simulation. However, this
fact would not guarantee that each rate category has the same
number of sites. To ensure that each replicated alignment
had the same exact rate distribution but not the same amino
acid or DNA sequence, replicates were created such that each
replicate contained 60 invariant sites and 24 sites for each of
the 10 rate categories if rate heterogeneity was specified.

The sequences downloaded from OrthoMaM and FUN-
YBASE were aligned using MUSCLE v3.6 [18] with default
settings. Gblocks v0.91b [19] was used to remove ambiguously
aligned positions from the alignments. In Gblocks, the
minimum number of sequences for a flank position was
set to 16. Only sites with more than half of sequences with
gaps were treated as a gap position and eliminated from the
final alignment. Default settings were applied for the rest of
options.

2.2. Divergence Times and Chronogram. To compute the
rates of evolution of amino acid and nucleotide sites for
all nonsimulated data sets, we specified an ultrametric
evolutionary tree. The concatenated amino acid sequences
were used in each case to estimate the phylogeny with
the parallel version of MrBayes v3.1.2 [20, 21]. The length
of the concatenated sequences totaled 16,802, 13,082, and
12,089 aa for OrthoMaM, FUNYBASE, and TBR alignments,

respectively. We allowed mixed models with invariant sites
and gamma-shaped rate variation with four rate categories.
All parameters were unlinked; thus, the models and param-
eters were estimated during the analysis separately for each
locus. Ten independent runs were conducted using 4MCMC
chains and random starting trees of 500,000 generations
each, sampling trees every 100 generations. We discarded the
first 100,000 generations as burn-in after visualization in the
programTracer v1.4 [22], long after the log likelihood reached
apparent stationarity.

For convenience, we used a time-calibrated phylogeny
(chronogram). While absolute dates of internal nodes were
not relevant to any inferences herein, their relative depths
were aligned with the ultrametric profiles for predictive
purposes. We obtained the chronogram for each data set (see
Figures 1(a)–3(a)) by passing the phylogenetic tree with the
highest likelihood to r8s software v1.71 [23]. This software
allows incorporation of multiple calibration points, fixing or
constraining minimal or maximal ages to the nodes. For the
OrthoMaM chronogram (Figure 1(a)), we used diverse cali-
bration points from [24]. For the FUNYBASE chronogram
(Figure 2(a)), the tree was calibrated by fixing the split of D.
hansenii and C. albicans from the other yeasts at 272Myr
[25]. For the TBR chronogram (Figure 3(a)), three calibration
points were used as in the intermediate solution in [15].
Divergence times were estimated by the penalized likelihood
method with a truncated Newton algorithm in r8s, setting
the smoothing parameter to 0.06 for OrthoMaM and 0.01
for FUNYBASE trees. The optimization of the smoothing
parameter was obtained using the cross-validation feature
in r8s following the instructions of the program manual
(available at http://loco.biosci.arizona.edu/r8s/). As indicated
in [15], there was an absence of predictable lineage-specific
rate correlations in the TBR tree. Thus, these data were
processed following the recommendation of the r8s program
documentation, with the Langley-Fitch method that assumes
a global substitution rate instead of the penalized likelihood
method.

2.3. Evolutionary Rates and Phylogenetic Informativeness.
Using the alignment data and its corresponding chronogram,
molecular evolutionary rates were estimated for each gene
at each alignment position. We used Rate4site [26] and
DNArates (Olsen, unpublished) programs to obtain the sub-
stitution rates at amino acid and nucleotide sites, respectively.
These programs were chosen because they provide ML
approach to estimate the rates for each site independently
and a simple model to avoid overparameterization. In the
Rate4site program, rates were inferred assuming a JTTmodel
for the topology and branch lengths of the input phylogenetic
tree without any optimization. In the DNArates program,
rates were inferred assuming K2P (with 𝜅 = 2) model.

For each gene, the phylogenetic informativeness profile 𝜌
as a function of time, 𝑇, was calculated as

𝜌 (𝑇; 𝜆
1
, . . . , 𝜆

2
) =

𝑛

∑
𝑖=1

16𝜆
2

𝑖
𝑇𝑒
−4𝑇𝜆𝑖 , (1)

http://loco.biosci.arizona.edu/r8s/
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Figure 3: Phylogenetic informativeness profiles for the TBR data set. (a) Chronogram and the calibration points used to calculate site rates.
(b) Phylogenetic informativeness profiles over a 1193Myr period for four amino acid sequence alignments, on the same time scale as in panel
(a).

substituting the estimated rates 𝜆
𝑖
of evolution of each site

[5]. This formula provides the probability that character 𝑖
would provide an unambiguous synapomorphy lying within
an asymptotically short internode between two pairs of
sister taxa whose common ancestor is at time 𝑇. To convey

the informativeness of a particular data set, the equation
was plotted at a continuum of depths, from time 0 to the
root of the phylogenetic trees (Figures 1–4). The differen-
tial phylogenetic informativeness (DPI) of each gene was
evaluated quantitatively by integrating over the phylogenetic
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amino acid and DNA alignments, on the same time scale as in
Figure 1 (973Myr period). Each of the 10 different colors represents
a differentmean rate, from 0.0001 (slowest, bottom) to 0.001 (fastest,
top) substitutions per site permillion years. Dashed lines are profiles
from alignments simulated with gamma rate heterogeneity (𝛼 =
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informativeness profile from the origin (ℎ
1
) to the terminus

(ℎ) of the epochs of interest, ∫ℎ2
ℎ1
𝜌(𝑇; 𝜆)𝑇. Assigning ℎ

1
and

ℎ
2
so as to encompass all branching points of a phylogeny

provided a summary of the relative informativeness of each
gene to resolve all nodes in the phylogeny. Using DPI, we
ranked the genes for each data set.

Both the calculations of the molecular evolutionary rate
and of the phylogenetic informativeness profiles were per-
formed using the PhyDesign web application [27].

2.4. Phylogenetic Analysis. To evaluate the performance of
each locus, we analyzed the accuracy and robustness with
which each locus recovered the well-established topology.
In each case, the phylogeny resulting from our analysis of
the concatenated amino acid alignments exactly matched
established topology as described in the literature [12, 16, 28,
29]. To assess the fidelity with which individual genes recov-
ered the reference tree on a holistic scale, we calculated the
topological distance between each individual gene tree and
the concatenated tree using the Symmetric Difference [30]
computed by the TreeDist program included in the Phylip
v3.68 package [31]. To measure the robustness with which
each gene recovered the correct topology on a node-by-node
basis, we applied fourmetrics of branch support based on two
different optimization criteria, maximum likelihood (ML)
and maximum parsimony (MP). The ML support metrics
were nonparametric bootstrap (ML-BP) and the approximate
Likelihood-Ratio Test statistic (aLRT statistic; [32]). The MP
support metrics were nonparametric bootstrap (MP-BP) and
Decay Index (DI) [33].

For all individual aligned orthologous markers, we deter-
mined the amino acid and nucleotide substitution models

that best fit the data using the command-line mode of
ProtTest v1.4 [34] and ModelGenerator v0.85 [35], respec-
tively. In both programs, the models for each gene were
selected to minimize the BIC criterion.

We inferred ML gene trees with PHYML v2.4.4 [36]
using bootstrap proportions (BP) based on 100 bootstrap
replicates, with themodel and parameters as described above.
For empirical data sets, we discretized the gamma site-
rate distribution into four rate categories. For simulated
sequences, we discretized the gamma site-rate distribution
into 10 categories, both for inference and for simulation. Ten
instead of four rate categories were used in the simulated
data to obtain more diverse sequences and substitution rates
during the simulation process. We used PAUP∗ v4.0b10 [37]
for MP-BP analyses based on 1000 BP replicates. A heuristic
search with TBR branch-swapping on 20 random sequence
addition replicate starting trees was employed.

Although BP values are probably the most frequently
used type of support values, they scale nonlinearly with
the number of synapomorphies, conveying little information
when they are low and reaching an asymptote of 100 rapidly
when they are high. In contrast, aLRT and DI are not
constrained by an upper limit. The aLRT is based on the
conventional LRT under the null hypothesis that the inferred
branch has length 0 [32]. Our analysis, applied the aLRT
statistic value—that is, two times the difference between the
maximum log-likelihood values of the best and the second
best alternative arrangements around the branch of interest—
with the modified version of PHYML v2.4.5 [32]. The last
support measure, DI, also known as Bremer support, is the
number of parsimony steps from the best tree to the next
best tree without the branch of interest. DIs were calculated
with the help of AutoDecay v5.04 for PERL using reverse
constraints in PAUP∗.

2.5. Statistical Analysis. We used three different statistical
approaches to evaluate the performance of phylogenetic
informativeness. First, we correlated the DPI gene ranking
with the tree distance from the gene tree to the well-
established tree topology. We expected that the genes ranked
highest would show a low tree distance—that is, recovering
a topology closest to the reference tree. Second, we mea-
sured howwell phylogenetic informativeness predicts branch
support on a node-by-node basis. To do so, genes were
compared in pairs based on their predicted performance
(DPI), comparing the predicted best with the predictedworst,
the predicted second best with the predicted second worst,
and so on. Then, we correlated their predicted proportionate
performance:

PPP = DPI
1

DPI
1
+ DPI

2

, (2)

where DPI
𝑖
> DPI

𝑗
and 0.5 ≤ PPP ≤ 1. With 𝑛

𝑖
denoting

the number of nodes with higher support using gene 𝑖, and
𝑛
𝑗
denoting the number of nodes with higher support using
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gene 𝑗, the empirical proportionate performance of each gene
pair in terms of nodes better supported was calculated as

EPP = 𝑛1
𝑛1 + 𝑛2
, (3)

where 0 ≤ EPP ≤ 1. To measure the strength of linear
relationship between predicted and empirical performances,
we calculated Pearson’s correlation coefficient (𝑟).

Third, we examined the cumulative global support for the
well-established phylogeny as each gene was added according
to several sampling schemes. To do so, we first calculated
the proportionate likelihood-ratio support (PLRS) and the
proportionate decay index support (PIDS) provided by each
gene for each node in the well-established phylogeny. For
each node, we divided the aLRT statistic and DI by the
number of genes. Then, we calculated the average PLRS
and PIDS across nodes for each gene. This average value
can be interpreted as the relative contribution or global
support of each gene for the well-established phylogeny. We
plotted the cumulative path of the global support for each
data set according to several sampling schemes. In an ideal
experiment, this cumulative support would dramatically rise
with the top-ranked prioritized loci and increase little as less
informative markers were used.

Sampling the genes from the highest to the lowest pro-
portionate support would represent the ideal situation when
deciding about sampling genes for sequencing. Logically, the
other way around represents the worst-case scenario. We
also plotted the hypothetical average path between these two
extremes. Finally, we compared these paths with the plot
when prioritizing sampling with DPI values.

All alignment operations, data parsing, and communi-
cation of data to and from software were performed with
Perl programming including Bioperl modules [38]. We also
manipulated trees using Phyutility v2.2 [39]. All software
used for the analyses mentioned corresponded to the Linux
version. Only results from the ML analyses (i.e., ML-BP and
aLRT) are shown. Relevant differences between ML and MP
results are discussed in the text.

3. Results

3.1. Phylogenetic Informativeness Profiles. Graphical profiles
of the phylogenetic informativeness for four loci scaled to
match with the ultrametric trees (Figures 1–3) illustrated the
great diversity of levels of informativeness among genes in
all data sets. Plotted genes were chosen to provide extremal
exemplars with different performances: the best and worst
genes across the whole time scale and two other genes which
showedmost variation in recent comparedwith ancient times
and vice versa. The phylogenetic informativeness profiles
for the rest of the genes lie approximately within the range
of the extremal profiles. The OrthoMaM data set illustrates
this variation in informativeness well. Although the genes
TP63 and LCA5 shared approximately the same number
of sites (680 and 682 aa, resp.), LCA5 exhibited greater
informativeness over the whole tree (Figure 1(b)).

Compared to SYTL4 (2046 bp; Figure 1(c)), GFPT2
exhibited higher informativeness in recent times but

lower informativeness for more ancient times and yet was
composed of about the same number of sites (∼2000 bp).
The effects of variation of rates across sites on phylogenetic
informativeness profiles were also observed in the simulated
sequences (Figure 4). At the same global rate, the higher
the gamma-shape parameter (alpha), the closer the profiles
to a singular rate distribution. When alpha was low,
corresponding to higher rate heterogeneity, the profiles
peaked closer to recent times due to the presence of a set of
faster evolving sites.

Direct comparison between amino acid and DNA infor-
mativeness profiles for 40 genes for which amino acid
and DNA were both extracted from OrthoMaM data sets
demonstrated correlated patterns of informativeness, with
two significant differences. First, amino acid profiles showed
more variation from low to high informativeness potential.
Second,DNAalignments had higher profiles than amino acid
sequences (e.g., see SYTL4 Figures 1(b) and 1(c)), mainly
due to their threefold greater number of sites. However,
comparing per site profiles (data not shown), the differences
in informativeness disappeared or in some cases even became
inverted. Lower and flatter amino acid profiles were still
present, probably due to silent substitutions. Silent substitu-
tions, which mostly occur in the third position of a codon
and have no effect upon the amino acid sequence, can cause
a higher rate of evolution of nucleotide sites without affecting
the rate of evolution of amino acid sites.Thus, silent substitu-
tions in genes with flat amino acid profiles caused by the lack
of sequence variation can produce higher DNA profiles.

3.2. Phylogenetic Informativeness as Predictor of Node Identity
and Branch Support. AllDPI rankings significantly positively
correlated with the ability to recover the correct topology
(Figure 5). The OrthoMaM DNA data set exhibited the
weakest (𝑟 = .24) and simulated amino acid and DNA data
sets exhibited the strongest (𝑟 = .76 and 𝑟 = .82, resp.)
correlations. Other indices of informativeness such as gene
length, number of variable sites, and number of parsimony
informative sites were also tested for correlation with the
symmetric differences (data not shown). All these other
indices did not exhibit significant correlations except for the
FUNYBASE and for the amino acid and DNA simulated
data sets (all three correlations for these three data sets were
significant,𝑃 < .05).The analyses usingMPyielded strikingly
similar results (data not shown).

Phylogenetic informativeness as predictor of ML-BP
yielded significant correlations for all data sets (Figure 6).
The TBR data set exhibited the weakest (𝑟 = .34) and the
simulated amino acid alignments the strongest (𝑟 = .94) cor-
relation. Generally, stronger correlations with accuracy and
robustness (Figures 5 and 6) were revealed in the simulated
data sets than in the empirical data. Other summary statistics
for genes such as gene length, number of variable sites,
and number of parsimony informative sites also correlated
with performance. Locus length was significantly correlated
only with ML-BP in the FUNYBASE data set (𝑛 = 23,
𝑟 = .65, 𝑃 < .001). In addition, in all data sets with the
exception of the DNAOrthoMaM data set, ML-BP exhibited
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Figure 5: Phylogenetic accuracy. Symmetric-difference tree distance as a function of the gene ranking based on phylogenetic informativeness
for (a) OrthoMaM amino acid (dark green circles), OrthoMaM DNA (light green circles), FUNYBASE (blue squares), and TBR (black
crosses) data sets and (b) simulated amino acid (blue) and DNA (red) data. The symmetric difference was calculated comparing each gene
tree estimated by ML to the well-established tree as obtained from the concatenated amino acid sequences. The corresponding Pearson’s
correlation coefficient (𝑟) and 𝑃 value for each data set are indicated. For the simulated data, the mean and its standard error were plotted
using the replicates.

significant correlations (𝑃 < .05) with the number of variable
and parsimony informative sites. For the DNA OrthoMaM
data set, the only measure that was significantly correlated
with node identity and branch support was the phylogenetic
informativeness. To ensure that this result did not arise
as a peculiar consequence of our length-based selection of
genes, we evaluated these correlations with an additional,
nonoverlapping subset of OrthoMaM DNA sequences with
a lower mean number of sites (∼1000 bp). The phylogenetic
informativeness was again the only measure significantly
correlated to both node identity (𝑛 = 50, 𝑟 = .44, 𝑃 < .001)
and branch support (𝑛 = 25, 𝑟 = .59, 𝑃 < .001). MP
analyses yielded similar results. For MP, the DNA simulated
alignments exhibited the weakest (𝑛 = 25, 𝑟 = .44, 𝑃 = .013)
and the FUNYBASE the strongest (𝑛 = 25, 𝑟 = .79,𝑃 < .0001)
correlations.

DPI rankings provided close to the optimal experimental
design path (i.e., sampling the genes from the highest to the
lowest average PLRS, which would represent the ideal situa-
tion when deciding about sampling genes for sequencing) for
all amino acid data sets (Figure 7), outperforming haphazard
sampling, especially for FUNYBASE and simulated amino
acid data. DPI rankings for the TBR data set showed more
deviation from the ideal sampling. Prioritizing with DPI
rankings for both OrthoMaM and simulated DNA data
(Figure 8) also yielded results close to optimal experimental
design path, outperforming the haphazard path.The best and
worst experimental design paths for DNA data sets showed
less difference from each other than did their respective
amino acid counterparts. This result is consistent with the

highest variability in amino acid informativeness potential
mentioned earlier when comparing overlapping genes for
amino acid and DNA OrthoMaM data sets. A similar trend
was observed in both simulated and empirical data. Empir-
ical data showed higher variability in the performance of
individual genes. We also repeated cumulative plots ranking
genes based on the other summary statistics mentioned
previously: gene length, number of variable sites, and number
of parsimony informative sites. For all data sets with the
exception of DNA OrthoMaM, these rankings performed
better than haphazard sampling. For the DNA OrthoMaM
data set, the phylogenetic informativeness ranking performed
noticeably better than these other measures, which in some
parts of the plot crossed or were below the average path. The
analyses using MP yielded similar results.

4. Discussion

We systematically examined the Townsend [5] phylogenetic
informativeness as a metric for assessing phylogenetic signal.
Our results demonstrate that prioritizing rankings obtained
with phylogenetic informativeness was significantly corre-
lated with the ability of a gene to recover the right topology
as well as with higher branch support measures. In addition,
we found that the informativeness metrics significantly out-
performed haphazard experimental design and predicted a
close-to-optimal prioritization of gene sequencing. Although
Townsend [5] phylogenetic informativeness was based on
analysis of the canonical four-taxon problem and although
it does not specifically account for the misleading effects of
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Figure 6: Phylogenetic informativeness as a predictor of maximum likelihood bootstraps (ML-BPs). Variation in ML-BP support (EPP) as
a function of the variation in phylogenetic informativeness (PPP; see Material and Methods for more details) for (a) OrthoMaM amino acid
(dark green), OrthoMaM DNA (light green), (b) FUNYBASE (blue), (c) TBR (black), and (d) simulated amino acid (blue) and DNA (red)
data sets. The corresponding Pearson’s correlation coefficient (𝑟) and 𝑃 value for each data set are indicated. For the simulated data, the mean
and its standard error were plotted using the replicates.

homoplasy, our analysis suggests that the metric is robust
despite these limitations. We examined its predictions in
phylogenomic data sets spanning diverse time scales and
taxonomic groups for both amino acid and DNA sequences
and supplemented our empirical analyses with controlled
simulations. Furthermore, we validated the results for both
parsimony and maximum likelihood optimality criteria. We
conclude that phylogenetic informativeness profiles provide
advantageous guidance for phylogenetic projects in the selec-
tion and prioritization of loci to sequence for maximal return
on effort and investment.

Despite its crucial role, pursuit of analytical methods for
experimental design in phylogenetics has been sparse. Until
recently, the only prominent procedure developed to deal

with the question of experimental design in the context of
topological uncertainty has been the empirical saturation plot
[40]. In this plot, a lack of more or less increasing linear
sequence divergence with time would indicate saturation in
the set of characters analyzed. However, the plots are hard
to fit unambiguously to data and do not lend themselves
to immediate quantifications of informativeness for specific
epochs. Other graphical methods to visualize phylogenetic
signal have been advanced, such as likelihood mapping [41]
and plotting Treeness triangles [42]. Although well suited
for post hoc analyses, a major issue with these graphical
approaches is that they are not easy to interpret or very
practical for large-scale surveys. More importantly, neither
puts forward an applied methodology for ranking genes for
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Figure 7: Cumulative proportionate likelihood-ratio supports (PLRS) averaged across nodes for (a) OrthoMaM amino acid, (b) FUNYBASE,
(c) TBR, and (d) simulated amino acid data sets. Genes are ranked by differential phylogenetic informativeness encompassing all branches in
the tree.The upper dashed line represents cumulative PLRS when loci are prioritized, posthoc, from highest to lowest PLRS values.The lower
dashed line represents cumulative PLRS when loci are prioritized, posthoc, from lowest to highest PLRS values.The intermediate dashed line
is the hypothetical average one would achieve sampling at random from loci available.

phylogenetic utility. Recently, responding to this necessity,
two nongraphical strategies were proposed: (i) [43] suggests
ranking genes by comparing the cophenetic correlation
coefficients among individual protein distances matrices and
(ii) [16] advocates ranking phylogenetic performance of genes
using a topological metric, comparing individual gene topol-
ogy against a reliable reference tree. These two approaches
also provide insights into conflicting phylogenetic signal
among genes, a practice followed more or less formally
by phylogeneticists [44]. Both methods were tested in a
similar set of fungal genomes, however, yielding different
gene rankings [16]. Apparently, using topological distances is
a superior strategy [16]. Although they have utility for ranking
genes, such topological distance measures require a reference
topology for the taxa of interest and extensive individual
gene phylogenetic analyses. Since they yield an absolute rank

rather than a function that modulates over historical time,
they do not provide a domain of utility that may be extended
to taxa within or outside the original analysis and thus cannot
be the focus to determine genes that will be most useful for
investigating phylogenetic questions at a given taxonomic
level.

In order to estimate phylogenetic informativeness, one
requires the site rate distribution for each locus. To obtain
the rates, two prior pieces of information are needed: (1)
an alignment of loci of interest pruned to contain a set of
taxa for which the tree topology is fairly well known and
(2) an ultrametric tree for those taxa. The ultrametric tree
can be either a chronogram—an ultrametric tree with branch
lengths proportional to time—or it can be in unspecified
molecular evolutionary units. This prior information may be
derived from three potential sources: (1) preliminary data on
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Figure 8: Cumulative proportionate likelihood-ratio supports (PLRS) averaged across nodes for (a) OrthoMaM DNA and (b) simulated
DNA data sets. Genes are ranked by differential phylogenetic informativeness encompassing all branches in the tree. The upper dashed
line represents cumulative PLRS when loci are prioritized, posthoc, from highest to lowest PLRS values. The lower dashed line represents
cumulative PLRS when loci are prioritized, posthoc, from lowest to highest PLRS values. The intermediate dashed line is the hypothetical
average one would achieve sampling at random from loci available.

the candidate loci from a well-studied subset of the taxa of
interest; (2) data on the candidate loci from a well-studied
sister clade; or (3) comparative genomic data from sequenced
genomes within and/or outside the clade of interest. Informa-
tiveness profiles can be generated with the online application
PhyDesign [27] and used to rank loci based on their ability to
resolve nodes of interest, allowing assessment of the relative
signal of genes within large data sets. However, erroneous
rate estimations, such as those caused by an incorrect input
topology, will affect the accuracy of informativeness profiles.
Thus, iterative refinement/recalculation of PI while increas-
ing taxonomic sampling is recommended for researchers
seeking to identify the best candidate loci for phylogenetic
reconstruction.

To apply all the information at hand and to assess results
in a familiar way in this study, we used the phylogenetic
informativeness of genes over the full epoch integrating from
time 0 to the root. While generality and ease of presentation
were gained by this procedure, the strength of the correlations
observed herein was likely reduced as a cost of that generality.
In fact, the rank order of genes by informativeness varies
over history due to the pattern of variation of rates among
sites. Comparison of the profiles of informativeness for the
different data sets against their chronograms (Figures 1–
3) illustrated the different gene potential for signal across
their evolution. As a simple example, in Figure 2, MS409
(MetRS, mitochondrial methionyl-tRNA synthetase) from
FUNYBASE shows a great potential for questions of recent
fungi evolution and much lower potential signal for all of the
rest of fungal history. In addition, genes showing the same
mean rate can have different phylogenetic profiles [5], even
though it is a common practice to talk about slow-evolving
genes and rapid-evolving genes to define their temporal
applicability. An incontrovertible example of this is found

in the simulated sequences profiles (Figure 4), in that each
variant with a different gamma-shape parameter showed a
different informativeness profile. Numerous examples of the
importance of incorporating rate variation among sites for
the correct phylogenetic inference are found in the literature
[45–48].

Phylogenetic informativeness ably predicted gene perfor-
mance in all data sets, encompassing diverse evolutionary
contexts. In contrast, it is common practice to explore the
adequacy of a methodology for a single set of empirical
data or under a single criterion for phylogenetic inference
[5, 16, 43]. However, due to the complexity of the biological
process that generates phylogenetic data, extrapolating strong
conclusions from individual data sets can be inadvisable.

Initially, we had expected that phylogenetic noise might
hinder gene prediction of performance for data sets with
more ancient nodes. Some theoretical work associated with
particular data sets has indicated that homoplasy obscures
the phylogenetic signal for periods older than 600MA,
and eliminates the signal as 1000MA is approached [42,
49]. However, we did not observe a pattern indicating that
phylogenetic informativeness predicts better for one data set
or another based on the age of the events encompassed by
their phylogenies.

The contrast between the hypothetical ideal and worst
prioritizing rankings for DNA data sets (Figure 8) was
less than the contrast between their respective amino acid
counterparts (Figure 7). A greater similarity in phylogenetic
performance amongDNA sequences than among amino acid
sequences might be responsible for this pattern. The greater
similarity of informativeness for DNA sequences can be
attributed to the consistent presence of a homogeneous class
of fast-evolving silent sites in DNA sequences. In contrast,
amino acid sequences have no consistent, a priori identifiable
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fast-evolving site class like degenerate third codon position
sites in DNA but instead may range from extreme constraint
on all sites to lack of constraint onmany sites.Thus, polymor-
phism at silent coding sites can lead to high-informativeness
DNA profiles for genes with flat amino acid profiles and,
for the same reason, make DNA profiles more similar to
each other compared with amino acid profiles. The number
of characters and the signal retention for each character
will dictate the different phylogenetic performance of these
two data types [50]. For most inference purposes, the net
phylogenetic informativeness is the prediction of interest,
as it should correlate with empirical results, such as the
degree of support of a node. However, per site phylogenetic
informativeness can be calculated to quantify the cost versus
benefit of sequencing and to compare relative phylogenetic
potential without the confounding effect of sequence length.
For example, a top-ranked gene may show good net phyloge-
netic informativeness profiles, but there may be one or more
shorter markers (requiring less sequencing effort) that may
exhibit better per site profiles. A combination of shorter genes
requiring the equivalent sequencing effort of a longer marker
might lead to the best results.

Two explanations may underlie the observation that
amino acid data sets tended to show stronger correlations
between informativeness rankings and tree distances or BPs.
The expanded character-state space accessible for amino
acids compared with DNA sequences can diminish the
potential misleading effects of homoplasy in phylogenetic
inference. Because signal is accounted for in theTownsend [5]
informativeness but the potential for misleading homoplasy
is not, greater homoplasy in DNA sequences might have
led to worse predictions for DNA markers than for amino
acid markers. Although functional constraints in proteins
can limit character-state space available for a given amino
acid site, simulations indicate that small increases in the
character-state space increase accuracy of phylogenetic infer-
ence [50]. A second reason for the better performance of
informativeness predictions for amino acid sequences could
be better alignment.The long evolutionary distances between
sequences used can make alignment of homologous residues
of DNA sequence much more challenging than alignment of
corresponding amino acid sequences.

Simulation studies have been successfully applied to
address questions of character and taxon sampling strategies
[51–53] and also for comparing methods of branch support
[54, 55]. Differences between results achieved with empirical
data sets and results achieved with simulated data sets are
likely to derive from the strict adherence to the model of evo-
lution in simulations compared to frequent deviation from
the model typical in empirical data. Simulations oversimplify
the substitution process. To perform simulations, we incor-
porated a specific evolutionary model. Thus, the regularities
of the model dictated regularity in the results. Stochasticity
in the nature of the substitution process in empirical data
precludes better predictions of gene performance in empirical
data sets than in simulated data sets. Even when phylogenetic
informativeness predicts that there are a considerable number
of sites evolving at optimal rates, changes will not necessarily
map at all or in sufficient numbers to the branches of interest.

Mutation, selection, and genetic drift processes determine the
number and position of differences observed. Stochasticity
of the substitution process will affect any attempt at gene
performance prediction.

We found that gene length, number of parsimony infor-
mative sites, and/or number of variable sites were also
significantly correlated with the tree distances measures for
the FUNYBASE and the simulated data sets. For all data
sets except OrthoMaM, the number of variable sites and
the number of parsimony informativeness sites were also
significantly correlated with BPs. For genes in FUNYBASE,
significant correlations of gene length and number of variable
sites with gene performance have been observed previously
[16]. Accordingly, [55] found that these three indices were sig-
nificantly correlatedwith bootstrap values for some branches.
However, none of these parameters could systematically be
used as a predictor of single gene performance [55]. More-
over, the number of variable sites and particularly parsimony
informative sites represent posthoc indices giving estimates
of the amount of signal present in the alignments that cannot
be justifiably projected to a different set of taxa or to a
novel depth in a phylogeny, limiting their utility. Interestingly,
the only parameter that predicted the gene performance in
OrthoMaM DNA data set was the phylogenetic informative-
ness metric.This result reinforces the idea that incorporating
character rate evolution for gene performance predictions is a
key factor and that phylogenetic informativeness metrics can
be successfully applied to systematically facilitate more cost-
effective phylogenetic research. Extending the method of
Townsend [5] to account for additional nuances of molecular
evolution, such as the accumulation of homoplasy [56], will
further bolster its applications to phylogenetic experimental
design.

5. Conclusions

Phylogenetic analyses with broad taxonomic sampling, such
as Tree of Life projects, can, with just a few of the right
genes, accumulate sufficient data to build a reliable phy-
logeny (e.g., less than 10 genes) [16]. Ideally, the set of
genes required would be minimized. Thus, as a consequence
of the extensive selection of potential loci that may be
pursued based on genome projects, a decision on what
genes need to be sequences has to be made. Despite this
need, pursuit of analytical methods for experimental design
in phylogenetics has been sparse. We explored the impact
of using the Townsend [5] phylogenetic informativeness
and found it to be an advantageous procedure for using
genome-scaled sequence data to identify loci with high utility
for phylogenetic inference. This choice of genes is critical,
not only for their global performance across depths of the
tree but also for their performance in resolving particular
timescales. By estimating the full distribution of rates at
each site, phylogenetic informativeness profiles showed how
signal content varies among genes and across time. Thus,
one may select genes that will perform best for the epoch
of interest, whether for recent divergence times or for more
ancient divergence times. Prioritization predictions made
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by the Townsend [5] phylogenetic informativeness correlate
with the accuracy and robustness with which a gene sequence
recovers the correct topology. These predictions are valid for
amino acid and DNAmarkers of diverse groups of organisms
spanning broad time scales, especially when the time scale
is not significantly deeper than the peak of informativeness.
This quantitative and objective informativeness metric can
play a critical role in augmenting the efficiency and accuracy
of many phylogenetic studies at multiple time scales.
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