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Abstract
Background: The breakthrough discovery has been made that a single dose of keta‐
mine, an N‐methyl‐D‐aspartate receptor antagonist, achieves rapid and sustained 
(~7 days) antidepressant activity in patients with major depressive disorder (MDD). 
This discovery has ushered in an exciting era of research and brought new hope for 
patients with MDD. However, the mechanisms underlying the specific antidepressant 
actions of ketamine in humans remain to be elucidated.
Objectives: This study protocol was designed to test the main hypothesis that keta‐
mine could rapidly reverse depression‐ and stress‐associated synaptic loss and defi‐
cits in resting‐state functional connectivity and that this action could be affected by 
circadian rhythm, in patients with treatment‐resistant depression.
Methods/Study Design: In this clinical study, adults (aged 18–65 years) with treat‐
ment‐resistant depression will be randomized to intravenous administration of pla‐
cebo (control group) or ketamine (0.5 mg/kg body weight) at 11 a.m. (daytime group), 
or 6 p.m. (nighttime group) for 24 weeks. The primary outcome will be the change 
from baseline to 24 weeks in the total Montgomery‐Asberg Depression Rating Scale 
score. Brain imaging, sleep, and genetic studies, including functional magnetic reso‐
nance imaging, positron emission tomography, polysomnography, and genetic analy‐
ses, will be performed to examine whether and how ketamine can rapidly reverse 
deficits in synaptic function and to identify objective markers for the assessment of 
ketamine infusion therapy for treatment‐resistant depression.
Conclusions: This clinical study protocol is the first, to our knowledge, to describe the 
prospective testing of the hypothesis that daytime and nighttime administrations of 
ketamine would have different antidepressant effects. The brain imaging, sleep, and 
genetic findings from patients with treatment‐resistant depression are expected to 
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1  | INTRODUC TION

1.1 | Major depressive disorder and current 
medications

Major depressive disorder (MDD), referred to simply as depres‐
sion, affects approximately 17% of the global population, and its 
incidence appears to be increasing (Kessler, 2012; Murray et al., 
2013). Depression is predicted to become one of the main causes 
of disability worldwide (Kessler, 2012; Murray et al., 2013). Current 
mediations for MDD, notably monoamine reuptake inhibitors of 
monoamine neurotransmitters (e.g., serotonin, norepinephrine, do‐
pamine), usually require weeks to months from treatment initiation 
to achieve full clinical response; this time lag, as well as the mod‐
erate effectiveness or lack of efficacy of such drugs, has led to an 
increased risk of suicide and even suicide occurrence among de‐
pressed patients. Moreover, as many as one‐third of patients with 
MDD respond inadequately to two or more monoamine reuptake 
inhibitors in combination and are considered to have treatment‐re‐
sistant depression (Trivedi et al., 2006). Thus, the development of 
better care delivery to patients with MDD, especially those with 
treatment‐resistant depression, is urgently needed.

1.2 | Ketamine as a breakthrough discovery due to 
its rapid and sustained antidepressant effects

In recent decades, a breakthrough discovery was made for ketamine, 
an N‐methyl‐D‐aspartate (NMDA) receptor antagonist and dissocia‐
tive anesthetic, which has been proven by multiple lines of evidence 
to possess rapid and sustained (~1  week) antidepressant actions 
(Berman et al., 2000; Sinner & Graf, 2008; Zarate et al., 2006). In 
addition to having a mild dissociative effect, a single low dose of 
ketamine (0.5 mg/kg, i.v. slow infusion) has been demonstrated to 
have robust efficacy for treatment‐resistant depression relative to 
conventional antidepressants (Duman, Shinohara, Fogaca, & Hare, 
2019). The U.S. Food and Drug Administration recently approved 
the use of esketamine, the S enantiomer of ketamine, for the man‐
agement of treatment‐refractory MDD in adult patients at imminent 

risk of suicide, and designated esketamine nasal spray as a break‐
through therapy.

Ketamine is a mixture with two equal enantiomers: R‐ketamine 
and S‐ketamine (Hashimoto, 2019). Previous studies have shown 
that each enantiomer has its own advantages and disadvantages 
(Chaki, 2017; Hashimoto, 2019; Kohrs & Durieux, 1998; Yang et al., 
2015). For instance, R‐ketamine exerts more prolonged antidepres‐
sant activities than does S‐ketamine in rodent models of depression 
(Chaki, 2017; Hashimoto, 2019; Kohrs & Durieux, 1998; Yang et al., 
2015). S‐ketamine has been proven to possess greater affinity for 
the NMDA receptor than does R‐ketamine and thus is considered 
to be a more potent and active stereoisomer of racemic ketamine 
(Chaki, 2017; Kohrs & Durieux, 1998). In this study, we will admin‐
ister a racemic mixture of ketamine containing equal amounts of R‐
ketamine and S‐ketamine to human subjects.

1.3 | Potential mechanisms underlying the rapid and 
sustained antidepressant effects of ketamine

The exciting findings mentioned above have prompted great interest 
among scientists in the study of the mechanisms by which ketamine 
exerts its rapid and sustained antidepressant actions. Although the 
exact mechanisms remain unclear, progress has been made recently 
with animal (predominantly rodent) models of depression.

1.3.1 | Ketamine rapidly reverses synaptic deficits in 
animal models of depression

One potential mechanism of action is that ketamine could reverse 
depression, chronic stress‐related synaptic loss, or deficits in syn‐
aptic connectivity through a burst of glutamate, which produces 
rapid synaptic actions that underlie antidepressant behavioral re‐
sponses (Autry et al., 2011; Duman et al., 2019). The possibility that 
synaptogenic effects have a role in the antidepressant actions of 
ketamine is also supported by evidence that stress and depression 
are associated with decreased synapse number and atrophy of the 
cortical and limbic brain regions (Autry et al., 2011; Li et al., 2010; 
Moghaddam, Adams, Verma, & Daly, 1997). Several studies of this 
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potential mechanism in rodent models of depression have shown 
that ketamine rapidly increases levels of several important synap‐
tic proteins, including synapsin 1, GluA1, PSD95, and mPFC within 
≤2 hr following administration (Giuliano et al., 2011; Li et al., 2010; 
Maeng et al., 2008; Zanos et al., 2016), which is consistent with 
its prompt antidepressant actions (Berman et al., 2000; Zarate et 
al., 2006). Notably, rapid enhancement of some synaptic proteins, 
in particular GluA1, an important member of the excitatory neu‐
rotransmitter glutamate receptor family and a main subunit of the 
alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionate receptor 
and ligand‐activated cation channels leads to increases in the num‐
ber and function of synapses (Giuliano et al., 2011; Li et al., 2010; 
Liu & Aghajanian, 2008). In animal models of depression and chronic 
unpredictable stress (CUS, a core symptom of depression), NMDA 
glutamate receptor antagonists rapidly reversed chronic stress‐in‐
duced synaptic deficits (Duman et al., 2019; Giuliano et al., 2011; 
McEwen et al., 2015; McEwen & Morrison, 2013). Interestingly, com‐
pared with the rapid reversal of CUS‐caused anhedonic behavior and 
synaptic deficits after a single dose of ketamine, traditional medica‐
tions for depression, such as MRIs of monoamine neurotransmitters, 
reversed CUS‐related anhedonic behavior as long as 3 weeks after 
administration (Giuliano et al., 2011). These findings support the dif‐
ferences in efficacy between typical antidepressants and ketamine.

Although the results obtained from rodent models of depres‐
sion or with the core symptom of depression are exciting, whether 
ketamine can reverse atrophy and synaptic loss, thereby targeting 
the underlying neurobiology of depression, in humans, remains to 
be determined. Brain imaging studies, such as functional magnetic 
resonance imaging (fMRI) studies, are needed to test this hypothe‐
sis in patients with depression; such research should include clinical 
studies investigating whether ketamine could reverse the volumetric 
changes observed in the hippocampus and prefrontal cortex (PFC) in 
patients diagnosed with depression. UCB‐J, a new synaptic positron 
emission tomography (PET) ligand, has become available to bind to 
the synaptic vesicle glycoprotein 2A (SV2A), an essential membrane 
glycoprotein expressed in virtually all synapses (Chen et al., 2018). 
Using UCB‐J radiolabeled with 11C (11C‐UCB‐J) in PET imaging, Chen 
and colleagues (Chen et al., 2018) investigated alterations in synaptic 
density in patients with Alzheimer disease (AD). Their results sug‐
gested that SV2A was a suitable target for the in vivo examination 
of synaptic density in human subjects. Taking advantage of this new 
approach, we plan to study the effects of ketamine on synaptic den‐
sity in human studies.

1.3.2 | Ketamine improves disrupted circadian and 
sleep rhythms

Circadian rhythms are correlated primarily with the sleep–wake 
cycle (Masri & Sassone‐Corsi, 2013), and depression is recognized 
as a mental illness that is correlated strongly with disrupted circa‐
dian and sleep rhythms. A recent study revealed a strong correla‐
tion between depression and poor quality of sleep, involving the 
impairment of functional connectivity in multiple regions of the 

brain, including the lateral orbital frontal cortex, dorsolateral PFC, 
anterior/posterior cingulate cortex, insula, hippocampus, amyg‐
dala nuclei, temporal lobe, and precuneus (Cheng, Rolls, Ruan, & 
Feng, 2018). In another study, electrophysiology revealed signifi‐
cant changes in auditory evoked potentials in patients with MDD 
(Goldstein et al., 2012). Moreover, slow‐wave sleep deprivation 
therapy effectively improved the core symptoms of depression 
(Landsness, Goldstein, Peterson, Tononi, & Benca, 2011). Recently, 
a subgroup of patients with MDD was found to have abnormal 
circadian processes, including interruptions in sleep, hormone 
secretions, mood, and temperature, all of which were modulated 
by circadian clock genes (Bunney et al., 2015). Interestingly, some 
studies also have shown that circadian rhythms return to normal 
as depression symptoms remit (Avery, Shah, Eder, & Wildschiodtz, 
1999; Hasler, Buysse, Kupfer, & Germain, 2010; Souetre et al., 
1988; Troxel et al., 2012). A recent study from the University of 
California at Irvine involved transcriptome profiling to identify 
genes and pathways in relation to ketamine‐associated alterations 
in circadian and sleep rhythms in mice (Orozco‐Solis et al., 2017). 
Ketamine treatment led to a rapid and significant reduction in im‐
mobility compared with the control saline treatment (Orozco‐Solis 
et al., 2017), consistent with the findings of several previous stud‐
ies (Autry et al., 2011; Hines, Schmitt, Hines, Moss, & Haydon, 
2013; Lopez‐Rodriguez, Kim, & Poland, 2004; Scheuing, Chiu, 
Liao, & Chuang, 2015). Further comparative transcriptomics anal‐
yses revealed that several key rhythmic genes (e.g., Ciart, Per2, 
Npas4, Dbp, and Rorb) were differentially expressed in the brain in 
response to ketamine treatment in mice (Orozco‐Solis et al., 2017). 
Several studies have demonstrated that ketamine enhanced rapid 
eye movement (REM) sleep and significantly increased levels of 
brain‐derived neurotrophic factor (BDNF), a synaptic protein cor‐
related strongly with slow‐wave activity (SWA), to improve BDNF‐
mediated synaptic plasticity and depressive symptoms (Ballard 
et al., 2016; Duncan et al., 2017; Evans et al., 2018; Monteggia 
& Zarate, 2015; Zarate & Machado‐Vieira, 2017). These findings 
suggest the involvement of circadian and sleep rhythms in the 
rapid, antidepressant response to ketamine.

Initial scientific evidence for the abnormal expression of circadian 
clock genes in the brain in patients with MDD came from a microar‐
ray study, which showed that circadian rhythms in as many as six 
brain areas were significantly altered, with the most disrupted brain 
area being the anterior cingulate cortex (ACC), in patients with MDD 
relative to control individuals (Li et al., 2013). The ACC is well recog‐
nized as a main component of an extended neural network, with a 
role in the regulation of mood. A growing body of findings has impli‐
cated the ACC as an important area of the brain associated with de‐
pression (Drevets, Savitz, & Trimble, 2008). Functional brain imaging 
studies also have shown that ketamine significantly increased ACC 
activation (Salvadore et al., 2009). Ketamine may reset key circadian 
and sleep rhythms, thereby exerting sustained antidepressant ef‐
fects. However, whether nighttime administration of ketamine could 
improve its efficacy in patients with MDD remains unknown. The 
potential attribution of ketamine's sustained antidepressant effect 
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to the modulation of circadian and sleep rhythms warrants further 
study.

2  | STUDY OBJEC TIVES

This study protocol is designed to examine the mechanisms under‐
lying the rapid and sustained antidepressant actions of ketamine in 
humans and to test the central hypothesis that ketamine could rap‐
idly reverse depression‐ and stress‐associated synaptic deficits in 
patients with treatment‐resistant depression, using brain imaging. 
In addition, this clinical study will be, to our knowledge, the first to 
prospectively assess the hypothesis that day and night administra‐
tions of ketamine would result in different antidepressant actions. 
We plan to test the main hypothesis and, thereby, to meet the study 
objective, by pursuing the following specific aims and conducting 
the proposed studies in patients with treatment‐resistant or treat‐
ment‐refractory depression. The long‐term goal of our ongoing 
research program is to gain neurobiological knowledge of how de‐
pression is formed, and how it can be cured through the translation 
of scientific findings into new efficacious therapeutic approaches.

Specific aim #1: To determine the optimal timing of ketamine in‐
fusion therapy for treatment‐resistant depression.

Working hypothesis 1: We hypothesize that day and night adminis‐
trations of ketamine will have different effects on the efficacy of 
ketamine for treatment‐resistant depression.

Working hypothesis 2: We hypothesize that ketamine administered 
at night will work better than ketamine administered during the 
day.

Specific aim #2: To determine whether and how ketamine can rap‐
idly reverse deficits in synaptic function, particularly volumetric 
abnormalities in the PFC and hippocampus, in patients with treat‐
ment‐resistant depression.

Working hypothesis 1: We hypothesize that ketamine will reverse 
chronic stress‐ and depression‐related deficits in synaptic con‐
nectivity in the PFC and hippocampus in patients with treatment‐
resistant depression.

Working hypothesis 2: We hypothesize that ketamine will recover 
chronic stress‐ and depression‐related volumetric abnormalities 
in the PFC and hippocampus in patients with treatment‐resistant 
depression.

Working hypothesis 3: We hypothesize that ketamine treatment will 
markedly reverse deficits in synaptic density in the PFC and hip‐
pocampus compared with baseline, as measured by the percent‐
age of SV2A‐specific binding on PET scans.

Working hypothesis 4: We hypothesize that patients who receive 
ketamine at night will show better synapse restoration in the PFC 
and hippocampus than will those who receive ketamine during 
the day, as assessed by the percentage of SV2A‐specific binding 
on PET scans.

Specific aim #3: To identify and establish objective markers for the as‐
sessment of ketamine infusion therapy for treatment‐resistant depres‐
sion using brain imaging studies.

Working hypothesis 1: We hypothesize that brain MRI studies of 
patients with treatment‐resistant depression will reveal the inter‐
action of ketamine with its target sites in the brain, which could 
be linked to the drug's pharmacological effects and used for ob‐
jective evaluation of the efficacy of ketamine.

Working hypothesis 2: We hypothesize that in vivo synapse assess‐
ment using 11C‐UCB‐J‐PET imaging will enable the direct mea‐
surement of synaptic density as a potential new objective marker 
or outcome measure of the efficacy of ketamine.

Working hypothesis 3: We hypothesize that MRI‐ and PET‐observed 
alterations will be linked, enabling the establishment of an “MRI–
PET bridge” with tremendous potential as more useful approach 
in the next 10 years.

This study is innovative and highly significant within the field. 
Completion of the proposed research is expected to (a) shed new 
light on the mechanisms underlying ketamine's rapid and sustained 
antidepressant actions in patients with treatment‐resistant depres‐
sion, (b) offer a more efficacious approach for ketamine infusion 
therapy for treatment‐resistant depression, and (c) provide sugges‐
tions for objective markers or measures for evaluation of the effi‐
cacy of ketamine for treatment‐resistant depression, or other clinical 
trials of therapies targeting synapse restoration.

3  | METHODS AND STUDY DESIGN

This study protocol is designed to test the main hypothesis that 
ketamine could rapidly reverse depression‐ and stress‐associated 
synaptic losses or deficits in resting‐state functional connectivity 
(rsFC) and that this action could be affected by circadian rhythms, 
in patients with treatment‐resistant depression. The design of this 
study is illustrated in Figure 1.

3.1 | Human subjects

Potential patients will be enrolled from the Tianjin Mental Health 
Center affiliated with Tianjin Medical University in Tianjin, a coastal 
metropolis in northern China with approximately 13,000,000 
residents. Eligible patients will (a) be aged 18–65  years to mini‐
mize potential older age‐related confounding effects, such as AD 
and cognitive impairment; (b) meet the Diagnostic and Statistical 
Manual of Mental Disorders fifth edition criteria for recurrent 
MDD without psychotic features, which will be confirmed using 
the Mini International Neuropsychiatric Interview (Sheehan et al., 
1998; Singh et al., 2016); (c) have inadequate responses to at least 
two antidepressant medications, with at least one antidepressant 
failure to treat current depressive episodes, as evaluated by medi‐
cal histories, the Massachusetts General Hospital Antidepressant 
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Response Questionnaire, and Montgomery‐Asberg Depression 
Rating Scale (MADRS) score ≥21 at baseline (Chandler, Iosifescu, 
Pollack, Targum, & Fava, 2010; Ng et al., 2019; Singh et al., 2016); 
(d) be willing to participate and fully cooperate in this study; and 
(e) provide written informed consent prior to study participation. 
Patients with the following conditions will be considered to be in‐
eligible and will be excluded from the study: (a) severe systemic 

disease; (b) epilepsy, claustrophobia, primary obsessive–compul‐
sive disorder, anorexia nervosa, bulimia nervosa, or posttraumatic 
stress disorder; (c) medical history or current diagnosis of a psy‐
chotic disorder; (d) medical history or current diagnosis of men‐
tal retardation, bipolar disorder, mood disorder with postpartum 
onset, borderline personality disorder, or somatoform disorder; 
(e) hypertension or vascular disease, including aneurysm, vascular 

F I G U R E  1  Flowchart of the study design
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malformation, thrombosis, and neoplasm; (f) unfitness for MRI, in‐
cluding the presence of a magnetic implant; (g) unfitness for PET, 
including allergy to PET tracers; (h) substance abuse; (i) use of 
medicine for a sleep disorder; (j) medical history of nonresponsive‐
ness of depressive symptoms to ketamine; (k) clinically significant 
suicidal or homicidal ideation or imminent risk of harm; and (l) cur‐
rent pregnancy or breastfeeding status. Independent World‐Class 
Services for Drug Development and Clinical Trial Success (SAFER) 
raters from Massachusetts General Hospital will be used to verify 
that all randomized patients meet the SAFER criteria, have treat‐
ment‐resistant MDD based on the Antidepressant Treatment 
Response Questionnaire, and manifest the required depression 
severity.

The study protocol will be submitted to and reviewed by the 
Ethics Committee of the Mental Health Center affiliated with Tianjin 
Medical University (Tianjin, China). The proposed study will be con‐
ducted in accordance with the Declaration of Helsinki and in consis‐
tency with good clinical practices. All enrolled patients will undergo 
preliminary examination, during which they will be informed of the 
study background and procedures, as well as the potential risks and 
benefits. With full awareness and prior to study initiation, study par‐
ticipants will provide written informed consent.

Participants will be able to withdraw from the study without 
specifying a reason during the treatment period. Supervising phy‐
sicians may decide to terminate a patients' participation if his/her 
condition deteriorates.

3.2 | Randomization and treatment

R/S‐ketamine hydrochloride, sold under the brand name Ketalar 
(Pfizer Pharmaceuticals), will be used as the study drug. A total of 
600 adult patients with treatment‐resistant depression will be en‐
rolled in this study. Randomization and stratification of the study 
patients will be carried out using the Randomization in Treatment 
Arms software (Evident). The patients will be assigned to the fol‐
lowing three groups (200 per group): placebo, daytime ketamine 
administration, and nighttime ketamine administration. Patients in 
the ketamine groups will be given ketamine infusions at a dose of 
0.5 mg/kg (R/S‐ketamine hydrochloride diluted in saline, adminis‐
tered slowly by i.v. pump for >40 min) in the morning and at night, 
respectively (Berman et al., 2000; Zarate et al., 2006); patients in the 
placebo group will receive matching saline infusions (Figure 1). These 
patients will receive two infusions per week for 24 weeks (Singh et 
al., 2016). Treatments will be administered in private rooms at the 
Mental Health Teaching Hospital affiliated with Tianjin Medical 
University.

3.3 | Clinical assessment and monitoring

Participants' blood pressure, heart rate, blood oxygen levels, and 
other clinical parameters will be measured and recorded before 
the initiation of ketamine infusion and at 10, 20, 30, 40, 80, 120, 
and 240 min thereafter. Electrical activity in the brain, mainly sleep 

parameters, will be monitored for 24 hr using an electroencephalo‐
gram (EEG).

3.4 | Polysomnographic monitoring and scoring of 
sleep and associated events

Polysomnography (PSG) will be performed using a Nicolet v32 de‐
vice (Natus Medical Incorporated). Audio–video recording, along 
with continuous recording of thermopressure air flow, blood oxy‐
gen saturation, and diaphragm movement, and EEG, electro‐ocu‐
lography, and electromyography, will be performed. Before PSG, all 
patients will avoid the consumption of caffeine‐containing bever‐
ages, and the protocol will be explained to them protocol to relieve 
nervousness. PSG will register shifts between REM and nonrapid 
eye movement (NREM) sleep phases (divided further into deep and 
light sleep phases), identified by well‐trained technicians following 
the American Academy of Sleep Medicine's (AASM's) Manual for 
the Scoring of Sleep and Associated Events version 2.5, updated 
and released in April 2018 (American Academy of Sleep Medicine; 
The AASM Manual for the Scoring of Sleep and Associated Events: 
American Academy of Sleep Medicine; https​://aasm.org/resou​rces/
pdf/scori​ng-manual-prefa​ce.pdf). The main parameters recorded will 
be the total sleep time, sleep latency, REM latency, sleep efficiency, 
phase ratio, and the apnea–hypopnea index.

The specific phases of sleep will be identified by continuous re‐
cording systems at a rate of 30 frames/s. According to the AASM 
manual (2018, version 2.5), the wake phase is identified when the 
occipital α rhythm occupies more than 50%, or one of the follow‐
ing features is present even without a recognizable α component: (a) 
eye blinking at 0.5–2 Hz; (b) regular eyeball movement; or (c) irreg‐
ular conjugate REM with normal or slightly higher mentalis tension. 
The NREM stage 1 phase is identified when a vertex sharp wave or 
low‐voltage (4–7 Hz) mixed‐frequency dominates with α synchrony 
in closed eyes. NREM stage 2 is recognized with single or multiple 
arousal‐irrelevant K complex wave/sleep spinal waves, with <20% 
of SWA in the current frame. NREM stage 3 is defined by more than 
20% of SWA in the current frame. The REM sleep phase is deduced 
from the simultaneous occurrence of low‐voltage mixed‐frequency 
EEG signals, lower mentalis tension, and irregular conjugate REM.

3.5 | Magnetic resonance imaging and analysis

All study patients will undergo two fMRI examinations for three‐
dimensional (3D) magnetization‐prepared rapid gradient‐echo 
(MPRAGE) imaging, rsFC assessment, and diffusion‐weighted im‐
aging (DWI) using an advanced GE Signa HDx 3.0T MR system (GE 
Healthcare) in accordance with the recommendation of the Human 
Connectome Project for mapping neural connections of the human 
brain (http://www.neuro​scien​ceblu​eprint.nih.gov/conne​ctome/​). 
Two hours before the initiation of ketamine infusion, patients in the 
daytime ketamine administration group will be scheduled for base‐
line fMRI examination at 9 a.m., and those in the nighttime ketamine 
administration group will undergo baseline fMRI examinations at 

https://aasm.org/resources/pdf/scoring-manual-preface.pdf
https://aasm.org/resources/pdf/scoring-manual-preface.pdf
http://www.neuroscienceblueprint.nih.gov/connectome/
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4 p.m. Twenty‐four hours after baseline fMRI, repeat fMRI examina‐
tions will be performed for patients in these two groups (Figure 1).

Functional magnetic resonance imaging examinations will be 
performed using the following parameters. For T1‐weighted 3D 
MPRAGE structural imaging of the whole brain, 128‐layer sagittal 
scanning will be carried out for 4 min using the following parameters: 
1.33 mm thickness, 0‐mm interval, 256  ×  192 in‐layer resolution, 
2,530‐ms repetition time (TR), 3.39‐ms echo time (TE), 7° flip angle 
(FA), and 256 × 256 mm2 field of view (FOV). For rsFC assessment, 
33‐layer axial imaging will be undertaken for 10 min with the fol‐
lowing parameters: 3 mm thickness, 0‐mm interval, 64 × 64 in‐layer 
resolution, 2,000‐ms TR, 30‐ms TE, 90° FA, and 220  ×  220‐mm2 
FOV. For the digital trunk interface (DTI) module, the following pa‐
rameters will be used: 70 layers with 2 mm thickness, 0‐mm interval, 
7,100/61‐ms TR/TE, 256 ×  256‐mm2 FOV, and 128 ×  128 matrix. 
The gradient direction will be set to 64 (b = 1,000, b0 image = 10, 
NEX = 1). For the diffusion kurtosis imaging (DKI) module, a 2D mul‐
tislice single‐shot spin‐echo echo‐planar‐imaging sequence will be 
used with 48 layers of 3 mm thickness, 0‐mm interval, 5,800/77‐ms 
TR/TE, 90° FA, 256 × 256 mm2 FOV, and 128 × 128 matrix. The gra‐
dient directions will be set to 25 (b = 1,000) and 25 (b = 2,000), with 
b0 image = 10 and NEX = 1. For magnetic resonance spectrometry, 
a single voxel spectrum will be located in the ACC; the TE will be set 
to 2,000 ms.

In MRI examination, sagittal 3D T1‐weighted images will be 
acquired using the following parameters: 188 sagittal slices, 1 mm 
slice thickness, no gap, 8.2‐ms TR, 3.2‐ms TE, 450‐ms inversion time 
(TI), 12° FA, 256 × 256 mm2 FOV, and 256 × 256 matrix. Resting‐
state fMRI data will be acquired using a single‐short gradient‐echo 
echo‐planar‐imaging sequence with the following parameters: 32 
interleaved transverse slices, 4  mm slice thickness, 0.5‐mm gap, 
2,000/45‐ms TR/TE, 90° FA, 220 × 220 mm2 FOV, 64 × 64 matrix, 
and 180 volumes. For analysis of the brain white matter, a single‐shot 
spin‐echo‐planar‐imaging sequence will be used with three diffusion 
weightings (b = 1,000, 1,500, and 2,000 s/mm2), 30 noncollinear di‐
rections, and five b = 0 s/mm2 volumes (13,000‐ms TR, 86.1‐ms TE, 
1.88 × 1.88 × 2.50‐mm3 voxel size). The diffusion gradient length 
(δ) and spacing (Δ) will be held constant (δ/Δ = 35.1/44.7 ms). Raw 
images will be denoised, corrected for Gibbs ringing, and corrected 
for eddy currents and motion using the eddy tool in the FMRIB 
Software Library (version 6.0; Analysis Group, FMRIB). DTI and DKI 
parameters will be calculated using weighted linear least‐squares 
estimation (https​://github.com/NYU-Diffu​sionM​RI/Diffu​sion-Kurto​
sis-Imaging).

3.6 | PET imaging and analysis

For PET imaging, 40 patients will be randomly selected from the day‐
time and nighttime ketamine administration groups (20 per group) 
to undergo PET scans using the 11C‐UCB‐J PET ligand at baseline 
and upon completion of the 24‐week treatment period. This sub‐
set of patients will be included in consideration of the difficulties 
involved in brain PET, including poor patient compliance and high 

cost (Rausch et al., 2017; Thompson et al., 2016). In brief, PET imag‐
ing will be performed using a high‐resolution research tomography 
(GE Health Care) with a reconstructed image resolution of nearly 
3 mm, as described previously (Finnema et al., 2018; Nabulsi et al., 
2016). These patients will also undergo T1‐weighted MRI imaging in 
a 3‐T whole‐body scanner (GE HealthCare) at the same timepoints 
for coregistration with the PET images.

3.7 | Blood sampling and molecular 
biological studies

Peripheral blood samples (5 ml) will be collected from all patients 
at baseline and upon treatment completion for the quantification of 
ketamine levels and molecular biological studies. The blood samples 
will be centrifuged at 5,000 g for 10 min, and the serum samples will 
be stored at −80°C in a freezer. An enzyme‐linked immunosorbent 
assay kit (Sigma‐Aldrich) will be used for the measurement of serum 
BDNF levels on a SpectraMax M5 microplate reader (Molecular 
Devices) at a wavelength of 450 nm. All samples will be measured 
in triplicate. Genomic DNA will be extracted from the blood sam‐
ples and used for subsequent genetic polymorphism genotyping 
with two genes of interest (Homer1 and BDNF), performed at the 
molecular core laboratory of Tianjin Medical University. Researchers 
blinded to the clinical data will perform the genotyping of Homer1 
at rs7713917 (the A allele indicates a higher risk of dysregulation of 
cognitive and motivational processes through effects on prefrontal 
activity during anticipation of reward), rs2290639 (the AA homozy‐
gote was associated significantly with suicide attempts in Chinese 
patients in Hong Kong), and rs60029291 (the T allele was associated 
with MDD and suicide attempts in Chinese patients), as described 
previously (Serchov et al., 2015).

3.8 | Sample size determination and power analysis

The effective sample size has been estimated using G‐Power analy‐
sis according to the G * Power 3.1 manual, released in March 2017 
(http://www.gpower.hhu.de/en.html). Assuming a 15% dropout rate 
in each group and to observe significant effects with an α value of 
0.05 and statistical power of 0.8, a total of 800 patients with treat‐
ment‐resistant depression will be enrolled in the randomized, dou‐
ble‐blinded control study.

3.9 | Outcome measures

The primary outcome measure will be the change from baseline to 
the treatment completion in the total MADRS score (0–6, normal 
or absence of symptoms; 7–19, mild depression; 20–34, moder‐
ate depression; >34, severe depression; Cunningham, Wernroth, 
Knorring, Berglund, & Ekselius, 2011; Herrmann, Black, Lawrence, 
Szekely, & Szalai, 1998; Muller‐Thomsen, Arlt, Mann, Mass, & 
Ganzer, 2005; Williams & Kobak, 2008). The MADRS will be used 
to assess the effects of ketamine in the three groups, specifi‐
cally with the following 10 items, which are used widely for the 

https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging
https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging
http://www.gpower.hhu.de/en.html
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measurement of depression severity: (a) apparent sadness, (b) re‐
ported sadness, (c) inner tension, (d) reduced sleep, (e) reduced 
appetite, (f) concentration difficulty, (g) lassitude, (h) inability to 
feel, (i) pessimistic thoughts, and (j) suicidal thoughts (Cunningham 
et al., 2011; Herrmann et al., 1998; Muller‐Thomsen et al., 2005; 
Williams & Kobak, 2008).

Patients will undergo objective cognitive testing at baseline and 
upon treatment completion. The Montreal Cognitive Assessment 
will serve as the primary cognitive measure (Nasreddine et al., 2005). 
The North American Adult Reading Test‐35 (Uttl, 2002) will be 
used to estimate intellectual function. The revised Hopkins Verbal 
Learning Test, Controlled Oral Word Association Test, and Stroop 
Color and Word Test will also be administered at baseline and at the 
end of treatment. Percentages of SV2A‐specific binding for synapse 
measurement on PET images will be calculated and compared be‐
tween the two ketamine groups, and between baseline and comple‐
tion of the 24‐week treatment period in each ketamine group.

3.10 | Side effects and safety

The occurrence of adverse events and side effects, including mem‐
ory complaints reported by patients and recorded by physicians, will 
also be evaluated. Ketamine has been reported to be associated with 
neurocognitive impairments, manifesting mainly as memory recall 
problems (Murrough et al., 2013). Patients' neurocognitive func‐
tion will also be assessed using a comprehensive battery including 
the estimated premorbid intelligence quotient (IQ), current IQ, and 
tests from the MATRICS Consensus Cognitive Battery, as described 
previously (Murrough et al., 2013). Data on patients' self‐reported 
memory complaints will be collected using the Squires Memory 
Complaint Questionnaire, Global Self‐Evaluation of Memory, and 
Patient‐Rated Inventory of Side Effects. Data on physician‐re‐
ported adverse events and side effects will be collected using the 
Brief Psychiatric Rating Scale psychotic subscale and the Clinician‐
Administered Dissociative State Scale.

Upon the development of serous medical complications, includ‐
ing but not limited to suicidal ideation, cardiovascular toxicity, and 
infusion‐related side effects, the participants will be advised to with‐
draw from the study and will receive prompt care in the emergency 
room.

3.11 | Data handling and statistical methods

Baseline demographic information and clinical characteristics of the 
enrolled patients will be compared among groups using one‐way 
analysis of variance (ANOVA) or the Kruskal–Wallis H test, as appro‐
priate, for continuous variables, and the chi‐squared test or Fisher's 
exact test, as appropriate, for nominal variables. The effects of dif‐
ferent treatments on MADRS scores will be examined using one‐way 
ANOVA, followed by post hoc testing of ketamine versus placebo 
and daytime versus nighttime ketamine administration. A multiple 
linear regression analysis of estimated conditional treatment effects 
will be conducted for effect measure modification.

The IBM SPSS version 20.0 software (IBM Corp.) will be utilized 
for statistical analyses. p values <.05 will be taken to indicate signifi‐
cant differences between groups. The statistical software and meth‐
ods used may change if newer software becomes available.

4  | DISCUSSION

A single dose of ketamine is sufficient to achieve rapid and relatively 
sustained antidepressant effects and to reduce the risk of suicide, in 
patients with MDD. Previous studies have revealed that ketamine is 
involved in circadian and sleep rhythms, as well as in reversing syn‐
aptic deficits in animal models of depression. Clinical examination of 
the neurobiological mechanisms underlying the specific actions of 
ketamine in human subjects is required. Based on our long‐standing 
interest in the study of MDD and on our preliminary findings, we 
present this protocol for investigation of the mechanisms by which 
ketamine exerts its unique antidepressant actions in patients with 
refractory depression. The anticipated findings and their implica‐
tions, as well as potential limitations, are discussed below.

4.1 | Anticipated results and implications

This study will mainly test the overarching hypothesis that ketamine 
will rapidly reverse depression‐ and stress‐associated synaptic defi‐
cits and reset disrupted circadian and sleep rhythms in patients with 
treatment‐resistant depression. These two mechanisms have differ‐
ent neurological pathways, and potential interactive effects have 
not been explored to date. Furthermore, we will test the efficacy of 
different ketamine interventions (daytime and nighttime administra‐
tion), using saline as a control. We anticipate that the findings will 
shed new light on the mechanism through which, at least in part, 
ketamine exerts its prompt and long‐lasting actions in patients with 
treatment‐resistant depression, improve ketamine infusion therapy 
for MDD, and provide suggestions for potential objective markers 
of the efficacy of ketamine infusion therapy for treatment‐resist‐
ant depression. Thus, we anticipate that the findings of this study 
will advance our understanding of the mechanisms underlying the 
antidepressant effects of ketamine. Although the results from this 
research project will stem from the specific context of ketamine, 
data obtained through the direct comparative analysis of different 
treatment approaches (daytime vs. nighttime ketamine administra‐
tion) will have a number of implications for better clinical practice 
in the management of treatment‐resistant depression, which may 
affect patient choice and health insurance policy. Additionally, the 
findings hold promise to guide the development of a more effica‐
cious approach for ketamine infusion therapy and thus may even‐
tually improve care for patients with MDD, particularly those with 
treatment‐resistant depression. Such a new approach could be eas‐
ily adopted in clinical practice. Notably, the study of SV2A‐specific 
binding to synapses using 11C‐UCB‐J‐PET will allow us to examine 
synapses directly in vivo, and we expect that it will lead to the iden‐
tification of a new objective marker or outcome measure of the 
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efficacy of ketamine for treatment‐resistant depression, or of other 
clinical trials of therapies targeting synapse restoration. The com‐
bined use of PET and MRI may reveal correlations between MRI‐ and 
PET‐observed alterations, or the “MRI–PET bridge.” This “bridge” is 
an important part of our study, and we anticipate that it will have 
significant clinical implications as more useful approach in the next 
10 years.

4.2 | Limitations of this study protocol

Despite the obvious strengths of this study, some potential limita‐
tions of our study protocol should be noted. First, we recognize that 
this entire pilot study will be conducted at a single center and that 
selection bias may be a weakness. In addition, our hospital‐based 
enrollment method could affect our findings. Second, although the 
sample size was calculated to generate sufficient power for the 
assessment of differences in intervention efficacy among study 
groups, it may not be large enough to enable analysis of subgroups, 
such as those defined by sex and genetic variants. Third, although 
we do not anticipate this to be the case, it is possible that differences 
in certain patient characteristics could affect the outcomes. Another 
weakness of this protocol could be that we will not be able to stratify 
randomization by sex.

5  | CONCLUSIONS

Despite the potential limitations of the proposed clinical pilot 
study, the anticipated findings have important implications related 
to a better understanding of the mechanisms and improvement of 
the efficacy of ketamine. We believe that the limitations will be 
addressed in future studies. More importantly, this study is ex‐
pected to form the basis for future multicenter, large‐scale clinical 
trials.
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