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Abstract
Background: The breakthrough discovery has been made that a single dose of keta‐
mine,	 an	 N‐methyl‐D‐aspartate	 receptor	 antagonist,	 achieves	 rapid	 and	 sustained	
(~7	days)	antidepressant	activity	 in	patients	with	major	depressive	disorder	 (MDD).	
This	discovery	has	ushered	in	an	exciting	era	of	research	and	brought	new	hope	for	
patients	with	MDD.	However,	the	mechanisms	underlying	the	specific	antidepressant	
actions of ketamine in humans remain to be elucidated.
Objectives: This study protocol was designed to test the main hypothesis that keta‐
mine could rapidly reverse depression‐ and stress‐associated synaptic loss and defi‐
cits in resting‐state functional connectivity and that this action could be affected by 
circadian	rhythm,	in	patients	with	treatment‐resistant	depression.
Methods/Study Design: In	this	clinical	study,	adults	 (aged	18–65	years)	with	treat‐
ment‐resistant	depression	will	be	randomized	to	 intravenous	administration	of	pla‐
cebo	(control	group)	or	ketamine	(0.5	mg/kg	body	weight)	at	11	a.m.	(daytime	group),	
or	6	p.m.	 (nighttime	group)	for	24	weeks.	The	primary	outcome	will	be	the	change	
from	baseline	to	24	weeks	in	the	total	Montgomery‐Asberg	Depression	Rating	Scale	
score.	Brain	imaging,	sleep,	and	genetic	studies,	including	functional	magnetic	reso‐
nance	imaging,	positron	emission	tomography,	polysomnography,	and	genetic	analy‐
ses,	will	 be	performed	 to	examine	whether	and	how	ketamine	can	 rapidly	 reverse	
deficits in synaptic function and to identify objective markers for the assessment of 
ketamine infusion therapy for treatment‐resistant depression.
Conclusions: This	clinical	study	protocol	is	the	first,	to	our	knowledge,	to	describe	the	
prospective testing of the hypothesis that daytime and nighttime administrations of 
ketamine	would	have	different	antidepressant	effects.	The	brain	imaging,	sleep,	and	
genetic	findings	from	patients	with	treatment‐resistant	depression	are	expected	to	
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1  | INTRODUC TION

1.1 | Major depressive disorder and current 
medications

Major	 depressive	 disorder	 (MDD),	 referred	 to	 simply	 as	 depres‐
sion,	 affects	 approximately	 17%	 of	 the	 global	 population,	 and	 its	
incidence	 appears	 to	 be	 increasing	 (Kessler,	 2012;	 Murray	 et	 al.,	
2013).	Depression	 is	predicted	 to	become	one	of	 the	main	causes	
of	disability	worldwide	(Kessler,	2012;	Murray	et	al.,	2013).	Current	
mediations	 for	 MDD,	 notably	 monoamine	 reuptake	 inhibitors	 of	
monoamine	neurotransmitters	(e.g.,	serotonin,	norepinephrine,	do‐
pamine),	usually	require	weeks	to	months	from	treatment	initiation	
to	achieve	 full	 clinical	 response;	 this	 time	 lag,	 as	well	 as	 the	mod‐
erate	effectiveness	or	 lack	of	efficacy	of	such	drugs,	has	 led	to	an	
increased risk of suicide and even suicide occurrence among de‐
pressed	patients.	Moreover,	as	many	as	one‐third	of	patients	with	
MDD	 respond	 inadequately	 to	 two	or	more	monoamine	 reuptake	
inhibitors in combination and are considered to have treatment‐re‐
sistant	depression	 (Trivedi	et	 al.,	2006).	Thus,	 the	development	of	
better	 care	 delivery	 to	 patients	 with	MDD,	 especially	 those	 with	
treatment‐resistant	depression,	is	urgently	needed.

1.2 | Ketamine as a breakthrough discovery due to 
its rapid and sustained antidepressant effects

In	recent	decades,	a	breakthrough	discovery	was	made	for	ketamine,	
an	N‐methyl‐D‐aspartate	(NMDA)	receptor	antagonist	and	dissocia‐
tive	anesthetic,	which	has	been	proven	by	multiple	lines	of	evidence	
to	 possess	 rapid	 and	 sustained	 (~1	 week)	 antidepressant	 actions	
(Berman	et	al.,	2000;	Sinner	&	Graf,	2008;	Zarate	et	al.,	2006).	 In	
addition	 to	 having	 a	mild	 dissociative	 effect,	 a	 single	 low	 dose	 of	
ketamine	 (0.5	mg/kg,	 i.v.	 slow	 infusion)	has	been	demonstrated	 to	
have robust efficacy for treatment‐resistant depression relative to 
conventional	 antidepressants	 (Duman,	 Shinohara,	 Fogaca,	&	Hare,	
2019).	 The	U.S.	 Food	 and	Drug	Administration	 recently	 approved	
the	use	of	esketamine,	the	S	enantiomer	of	ketamine,	for	the	man‐
agement	of	treatment‐refractory	MDD	in	adult	patients	at	imminent	

risk	of	 suicide,	 and	designated	esketamine	nasal	 spray	 as	 a	break‐
through therapy.

Ketamine	is	a	mixture	with	two	equal	enantiomers:	R‐ketamine	
and	 S‐ketamine	 (Hashimoto,	 2019).	 Previous	 studies	 have	 shown	
that each enantiomer has its own advantages and disadvantages 
(Chaki,	2017;	Hashimoto,	2019;	Kohrs	&	Durieux,	1998;	Yang	et	al.,	
2015).	For	instance,	R‐ketamine	exerts	more	prolonged	antidepres‐
sant	activities	than	does	S‐ketamine	in	rodent	models	of	depression	
(Chaki,	2017;	Hashimoto,	2019;	Kohrs	&	Durieux,	1998;	Yang	et	al.,	
2015).	S‐ketamine	has	been	proven	 to	possess	greater	affinity	 for	
the	NMDA	receptor	 than	does	R‐ketamine	and	 thus	 is	 considered	
to be a more potent and active stereoisomer of racemic ketamine 
(Chaki,	2017;	Kohrs	&	Durieux,	1998).	In	this	study,	we	will	admin‐
ister	a	racemic	mixture	of	ketamine	containing	equal	amounts	of	R‐
ketamine	and	S‐ketamine	to	human	subjects.

1.3 | Potential mechanisms underlying the rapid and 
sustained antidepressant effects of ketamine

The	exciting	findings	mentioned	above	have	prompted	great	interest	
among scientists in the study of the mechanisms by which ketamine 
exerts	its	rapid	and	sustained	antidepressant	actions.	Although	the	
exact	mechanisms	remain	unclear,	progress	has	been	made	recently	
with	animal	(predominantly	rodent)	models	of	depression.

1.3.1 | Ketamine rapidly reverses synaptic deficits in 
animal models of depression

One potential mechanism of action is that ketamine could reverse 
depression,	 chronic	 stress‐related	 synaptic	 loss,	or	deficits	 in	 syn‐
aptic	 connectivity	 through	 a	 burst	 of	 glutamate,	 which	 produces	
rapid synaptic actions that underlie antidepressant behavioral re‐
sponses	(Autry	et	al.,	2011;	Duman	et	al.,	2019).	The	possibility	that	
synaptogenic effects have a role in the antidepressant actions of 
ketamine is also supported by evidence that stress and depression 
are associated with decreased synapse number and atrophy of the 
cortical	and	limbic	brain	regions	(Autry	et	al.,	2011;	Li	et	al.,	2010;	
Moghaddam,	Adams,	Verma,	&	Daly,	1997).	Several	studies	of	 this	
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in	the	brain,	which	can	be	used	for	objective	evaluation	of	the	efficacy	of	ketamine.
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potential mechanism in rodent models of depression have shown 
that ketamine rapidly increases levels of several important synap‐
tic	proteins,	including	synapsin	1,	GluA1,	PSD95,	and	mPFC	within	
≤2	hr	following	administration	(Giuliano	et	al.,	2011;	Li	et	al.,	2010;	
Maeng	 et	 al.,	 2008;	 Zanos	 et	 al.,	 2016),	 which	 is	 consistent	 with	
its	 prompt	 antidepressant	 actions	 (Berman	 et	 al.,	 2000;	 Zarate	 et	
al.,	 2006).	Notably,	 rapid	enhancement	of	 some	 synaptic	proteins,	
in	 particular	 GluA1,	 an	 important	 member	 of	 the	 excitatory	 neu‐
rotransmitter glutamate receptor family and a main subunit of the 
alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole	 propionate	 receptor	
and ligand‐activated cation channels leads to increases in the num‐
ber	and	function	of	synapses	 (Giuliano	et	al.,	2011;	Li	et	al.,	2010;	
Liu	&	Aghajanian,	2008).	In	animal	models	of	depression	and	chronic	
unpredictable	stress	 (CUS,	a	core	symptom	of	depression),	NMDA	
glutamate receptor antagonists rapidly reversed chronic stress‐in‐
duced	 synaptic	 deficits	 (Duman	et	 al.,	 2019;	Giuliano	 et	 al.,	 2011;	
McEwen	et	al.,	2015;	McEwen	&	Morrison,	2013).	Interestingly,	com‐
pared	with	the	rapid	reversal	of	CUS‐caused	anhedonic	behavior	and	
synaptic	deficits	after	a	single	dose	of	ketamine,	traditional	medica‐
tions	for	depression,	such	as	MRIs	of	monoamine	neurotransmitters,	
reversed	CUS‐related	anhedonic	behavior	as	long	as	3	weeks	after	
administration	(Giuliano	et	al.,	2011).	These	findings	support	the	dif‐
ferences in efficacy between typical antidepressants and ketamine.

Although	 the	 results	 obtained	 from	 rodent	models	 of	 depres‐
sion	or	with	the	core	symptom	of	depression	are	exciting,	whether	
ketamine	can	reverse	atrophy	and	synaptic	 loss,	 thereby	targeting	
the	underlying	neurobiology	of	depression,	 in	humans,	 remains	 to	
be	determined.	Brain	 imaging	studies,	such	as	 functional	magnetic	
resonance	imaging	(fMRI)	studies,	are	needed	to	test	this	hypothe‐
sis in patients with depression; such research should include clinical 
studies investigating whether ketamine could reverse the volumetric 
changes	observed	in	the	hippocampus	and	prefrontal	cortex	(PFC)	in	
patients diagnosed with depression. UCB‐J,	a	new	synaptic	positron	
emission	tomography	(PET)	ligand,	has	become	available	to	bind	to	
the	synaptic	vesicle	glycoprotein	2A	(SV2A),	an	essential	membrane	
glycoprotein	expressed	in	virtually	all	synapses	(Chen	et	al.,	2018).	
Using	UCB‐J	radiolabeled	with	11C	(11C‐UCB‐J)	in	PET	imaging,	Chen	
and	colleagues	(Chen	et	al.,	2018)	investigated	alterations	in	synaptic	
density	 in	patients	with	Alzheimer	disease	 (AD).	Their	 results	sug‐
gested	that	SV2A	was	a	suitable	target	for	the	in	vivo	examination	
of synaptic density in human subjects. Taking advantage of this new 
approach,	we	plan	to	study	the	effects	of	ketamine	on	synaptic	den‐
sity in human studies.

1.3.2 | Ketamine improves disrupted circadian and 
sleep rhythms

Circadian	 rhythms	 are	 correlated	 primarily	with	 the	 sleep–wake	
cycle	(Masri	&	Sassone‐Corsi,	2013),	and	depression	is	recognized	
as a mental illness that is correlated strongly with disrupted circa‐
dian	and	sleep	rhythms.	A	recent	study	revealed	a	strong	correla‐
tion	between	depression	and	poor	quality	of	sleep,	 involving	the	
impairment of functional connectivity in multiple regions of the 

brain,	including	the	lateral	orbital	frontal	cortex,	dorsolateral	PFC,	
anterior/posterior	 cingulate	 cortex,	 insula,	 hippocampus,	 amyg‐
dala	nuclei,	 temporal	 lobe,	and	precuneus	 (Cheng,	Rolls,	Ruan,	&	
Feng,	2018).	In	another	study,	electrophysiology	revealed	signifi‐
cant	changes	in	auditory	evoked	potentials	in	patients	with	MDD	
(Goldstein	 et	 al.,	 2012).	 Moreover,	 slow‐wave	 sleep	 deprivation	
therapy effectively improved the core symptoms of depression 
(Landsness,	Goldstein,	Peterson,	Tononi,	&	Benca,	2011).	Recently,	
a	 subgroup	 of	 patients	 with	MDD	was	 found	 to	 have	 abnormal	
circadian	 processes,	 including	 interruptions	 in	 sleep,	 hormone	
secretions,	mood,	and	temperature,	all	of	which	were	modulated	
by	circadian	clock	genes	(Bunney	et	al.,	2015).	Interestingly,	some	
studies also have shown that circadian rhythms return to normal 
as	depression	symptoms	remit	(Avery,	Shah,	Eder,	&	Wildschiodtz,	
1999;	 Hasler,	 Buysse,	 Kupfer,	 &	 Germain,	 2010;	 Souetre	 et	 al.,	
1988;	Troxel	et	al.,	2012).	A	 recent	study	 from	the	University	of	
California at Irvine involved transcriptome profiling to identify 
genes and pathways in relation to ketamine‐associated alterations 
in	circadian	and	sleep	rhythms	in	mice	(Orozco‐Solis	et	al.,	2017).	
Ketamine treatment led to a rapid and significant reduction in im‐
mobility	compared	with	the	control	saline	treatment	(Orozco‐Solis	
et	al.,	2017),	consistent	with	the	findings	of	several	previous	stud‐
ies	 (Autry	 et	 al.,	 2011;	 Hines,	 Schmitt,	 Hines,	Moss,	 &	 Haydon,	
2013;	 Lopez‐Rodriguez,	 Kim,	 &	 Poland,	 2004;	 Scheuing,	 Chiu,	
Liao,	&	Chuang,	2015).	Further	comparative	transcriptomics	anal‐
yses	 revealed	 that	 several	 key	 rhythmic	 genes	 (e.g.,	 Ciart,	 Per2,	
Npas4,	Dbp,	and	Rorb)	were	differentially	expressed	in	the	brain	in	
response	to	ketamine	treatment	in	mice	(Orozco‐Solis	et	al.,	2017).	
Several	studies	have	demonstrated	that	ketamine	enhanced	rapid	
eye	movement	 (REM)	 sleep	 and	 significantly	 increased	 levels	 of	
brain‐derived	neurotrophic	factor	(BDNF),	a	synaptic	protein	cor‐
related	strongly	with	slow‐wave	activity	(SWA),	to	improve	BDNF‐
mediated	 synaptic	 plasticity	 and	 depressive	 symptoms	 (Ballard	
et	 al.,	 2016;	Duncan	 et	 al.,	 2017;	 Evans	 et	 al.,	 2018;	Monteggia	
&	Zarate,	2015;	Zarate	&	Machado‐Vieira,	2017).	These	 findings	
suggest the involvement of circadian and sleep rhythms in the 
rapid,	antidepressant	response	to	ketamine.

Initial	scientific	evidence	for	the	abnormal	expression	of	circadian	
clock	genes	in	the	brain	in	patients	with	MDD	came	from	a	microar‐
ray	 study,	which	 showed	 that	 circadian	 rhythms	 in	 as	many	as	 six	
brain	areas	were	significantly	altered,	with	the	most	disrupted	brain	
area	being	the	anterior	cingulate	cortex	(ACC),	in	patients	with	MDD	
relative	to	control	individuals	(Li	et	al.,	2013).	The	ACC	is	well	recog‐
nized	as	a	main	component	of	an	extended	neural	network,	with	a	
role	in	the	regulation	of	mood.	A	growing	body	of	findings	has	impli‐
cated	the	ACC	as	an	important	area	of	the	brain	associated	with	de‐
pression	(Drevets,	Savitz,	&	Trimble,	2008).	Functional	brain	imaging	
studies	also	have	shown	that	ketamine	significantly	increased	ACC	
activation	(Salvadore	et	al.,	2009).	Ketamine	may	reset	key	circadian	
and	 sleep	 rhythms,	 thereby	 exerting	 sustained	 antidepressant	 ef‐
fects.	However,	whether	nighttime	administration	of	ketamine	could	
improve	 its	 efficacy	 in	patients	with	MDD	 remains	unknown.	The	
potential	attribution	of	ketamine's	sustained	antidepressant	effect	
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to the modulation of circadian and sleep rhythms warrants further 
study.

2  | STUDY OBJEC TIVES

This	study	protocol	is	designed	to	examine	the	mechanisms	under‐
lying the rapid and sustained antidepressant actions of ketamine in 
humans and to test the central hypothesis that ketamine could rap‐
idly reverse depression‐ and stress‐associated synaptic deficits in 
patients	with	treatment‐resistant	depression,	using	brain	 imaging.	
In	addition,	this	clinical	study	will	be,	to	our	knowledge,	the	first	to	
prospectively assess the hypothesis that day and night administra‐
tions of ketamine would result in different antidepressant actions. 
We	plan	to	test	the	main	hypothesis	and,	thereby,	to	meet	the	study	
objective,	by	pursuing	 the	 following	specific	aims	and	conducting	
the proposed studies in patients with treatment‐resistant or treat‐
ment‐refractory depression. The long‐term goal of our ongoing 
research program is to gain neurobiological knowledge of how de‐
pression	is	formed,	and	how	it	can	be	cured	through	the	translation	
of scientific findings into new efficacious therapeutic approaches.

Specific	aim	#1:	To	determine	the	optimal	timing	of	ketamine	in‐
fusion therapy for treatment‐resistant depression.

Working	hypothesis	1:	We	hypothesize	that	day	and	night	adminis‐
trations of ketamine will have different effects on the efficacy of 
ketamine for treatment‐resistant depression.

Working	hypothesis	2:	We	hypothesize	that	ketamine	administered	
at night will work better than ketamine administered during the 
day.

Specific	aim	#2:	To	determine	whether	and	how	ketamine	can	rap‐
idly	 reverse	 deficits	 in	 synaptic	 function,	 particularly	 volumetric	
abnormalities	 in	 the	PFC	and	hippocampus,	 in	patients	with	 treat‐
ment‐resistant depression.

Working	hypothesis	1:	We	hypothesize	 that	 ketamine	will	 reverse	
chronic stress‐ and depression‐related deficits in synaptic con‐
nectivity	in	the	PFC	and	hippocampus	in	patients	with	treatment‐
resistant depression.

Working	hypothesis	2:	We	hypothesize	 that	ketamine	will	 recover	
chronic stress‐ and depression‐related volumetric abnormalities 
in	the	PFC	and	hippocampus	in	patients	with	treatment‐resistant	
depression.

Working	hypothesis	3:	We	hypothesize	that	ketamine	treatment	will	
markedly	reverse	deficits	in	synaptic	density	in	the	PFC	and	hip‐
pocampus	compared	with	baseline,	as	measured	by	the	percent‐
age	of	SV2A‐specific	binding	on	PET	scans.

Working	 hypothesis	 4:	We	 hypothesize	 that	 patients	who	 receive	
ketamine	at	night	will	show	better	synapse	restoration	in	the	PFC	
and hippocampus than will those who receive ketamine during 
the	day,	as	assessed	by	the	percentage	of	SV2A‐specific	binding	
on PET scans.

Specific	aim	#3:	To	identify	and	establish	objective	markers	for	the	as‐
sessment of ketamine infusion therapy for treatment‐resistant depres‐
sion using brain imaging studies.

Working	 hypothesis	 1:	We	 hypothesize	 that	 brain	MRI	 studies	 of	
patients with treatment‐resistant depression will reveal the inter‐
action	of	ketamine	with	its	target	sites	in	the	brain,	which	could	
be	linked	to	the	drug's	pharmacological	effects	and	used	for	ob‐
jective evaluation of the efficacy of ketamine.

Working	hypothesis	2:	We	hypothesize	that	in	vivo	synapse	assess‐
ment using 11C‐UCB‐J‐PET	 imaging	will	 enable	 the	 direct	mea‐
surement of synaptic density as a potential new objective marker 
or outcome measure of the efficacy of ketamine.

Working	hypothesis	3:	We	hypothesize	that	MRI‐	and	PET‐observed	
alterations	will	be	linked,	enabling	the	establishment	of	an	“MRI–
PET bridge” with tremendous potential as more useful approach 
in	the	next	10	years.

This study is innovative and highly significant within the field. 
Completion	of	 the	proposed	 research	 is	expected	 to	 (a)	 shed	new	
light	on	the	mechanisms	underlying	ketamine's	rapid	and	sustained	
antidepressant actions in patients with treatment‐resistant depres‐
sion,	 (b)	 offer	 a	 more	 efficacious	 approach	 for	 ketamine	 infusion	
therapy	for	treatment‐resistant	depression,	and	(c)	provide	sugges‐
tions for objective markers or measures for evaluation of the effi‐
cacy	of	ketamine	for	treatment‐resistant	depression,	or	other	clinical	
trials of therapies targeting synapse restoration.

3  | METHODS AND STUDY DESIGN

This study protocol is designed to test the main hypothesis that 
ketamine could rapidly reverse depression‐ and stress‐associated 
synaptic losses or deficits in resting‐state functional connectivity 
(rsFC)	and	that	this	action	could	be	affected	by	circadian	rhythms,	
in patients with treatment‐resistant depression. The design of this 
study	is	illustrated	in	Figure	1.

3.1 | Human subjects

Potential	patients	will	be	enrolled	from	the	Tianjin	Mental	Health	
Center	affiliated	with	Tianjin	Medical	University	in	Tianjin,	a	coastal	
metropolis	 in	 northern	 China	 with	 approximately	 13,000,000	
residents.	 Eligible	 patients	 will	 (a)	 be	 aged	 18–65	 years	 to	 mini‐
mize	potential	older	age‐related	confounding	effects,	such	as	AD	
and	cognitive	 impairment;	 (b)	meet	 the	Diagnostic	 and	Statistical	
Manual	 of	 Mental	 Disorders	 fifth	 edition	 criteria	 for	 recurrent	
MDD	without	 psychotic	 features,	 which	will	 be	 confirmed	 using	
the	Mini	International	Neuropsychiatric	Interview	(Sheehan	et	al.,	
1998;	Singh	et	al.,	2016);	(c)	have	inadequate	responses	to	at	least	
two	antidepressant	medications,	with	at	 least	one	antidepressant	
failure	to	treat	current	depressive	episodes,	as	evaluated	by	medi‐
cal	histories,	 the	Massachusetts	General	Hospital	Antidepressant	
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Response	 Questionnaire,	 and	 Montgomery‐Asberg	 Depression	
Rating	Scale	 (MADRS)	 score	≥21	at	baseline	 (Chandler,	 Iosifescu,	
Pollack,	Targum,	&	Fava,	2010;	Ng	et	al.,	2019;	Singh	et	al.,	2016);	
(d)	be	willing	 to	participate	and	fully	cooperate	 in	 this	study;	and	
(e)	provide	written	 informed	consent	prior	 to	study	participation.	
Patients with the following conditions will be considered to be in‐
eligible	 and	will	 be	 excluded	 from	 the	 study:	 (a)	 severe	 systemic	

disease;	 (b)	 epilepsy,	 claustrophobia,	 primary	 obsessive–compul‐
sive	disorder,	anorexia	nervosa,	bulimia	nervosa,	or	posttraumatic	
stress	 disorder;	 (c)	medical	 history	or	 current	 diagnosis	 of	 a	 psy‐
chotic	 disorder;	 (d)	 medical	 history	 or	 current	 diagnosis	 of	men‐
tal	 retardation,	 bipolar	 disorder,	mood	 disorder	with	 postpartum	
onset,	 borderline	 personality	 disorder,	 or	 somatoform	 disorder;	
(e)	hypertension	or	vascular	disease,	including	aneurysm,	vascular	

F I G U R E  1  Flowchart	of	the	study	design
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malformation,	thrombosis,	and	neoplasm;	(f)	unfitness	for	MRI,	in‐
cluding	the	presence	of	a	magnetic	 implant;	 (g)	unfitness	for	PET,	
including	 allergy	 to	 PET	 tracers;	 (h)	 substance	 abuse;	 (i)	 use	 of	
medicine	for	a	sleep	disorder;	(j)	medical	history	of	nonresponsive‐
ness	of	depressive	symptoms	to	ketamine;	(k)	clinically	significant	
suicidal	or	homicidal	ideation	or	imminent	risk	of	harm;	and	(l)	cur‐
rent pregnancy or breastfeeding status. Independent World‐Class 
Services	for	Drug	Development	and	Clinical	Trial	Success	(SAFER)	
raters	from	Massachusetts	General	Hospital	will	be	used	to	verify	
that	all	 randomized	patients	meet	 the	SAFER	criteria,	have	 treat‐
ment‐resistant	 MDD	 based	 on	 the	 Antidepressant	 Treatment	
Response	 Questionnaire,	 and	 manifest	 the	 required	 depression	
severity.

The study protocol will be submitted to and reviewed by the 
Ethics	Committee	of	the	Mental	Health	Center	affiliated	with	Tianjin	
Medical	University	(Tianjin,	China).	The	proposed	study	will	be	con‐
ducted	in	accordance	with	the	Declaration	of	Helsinki	and	in	consis‐
tency	with	good	clinical	practices.	All	enrolled	patients	will	undergo	
preliminary	examination,	during	which	they	will	be	informed	of	the	
study	background	and	procedures,	as	well	as	the	potential	risks	and	
benefits.	With	full	awareness	and	prior	to	study	initiation,	study	par‐
ticipants will provide written informed consent.

Participants will be able to withdraw from the study without 
specifying	a	 reason	during	 the	 treatment	period.	Supervising	phy‐
sicians	may	decide	 to	 terminate	 a	patients'	 participation	 if	 his/her	
condition deteriorates.

3.2 | Randomization and treatment

R/S‐ketamine	 hydrochloride,	 sold	 under	 the	 brand	 name	 Ketalar	
(Pfizer	Pharmaceuticals),	will	be	used	as	 the	study	drug.	A	total	of	
600 adult patients with treatment‐resistant depression will be en‐
rolled	 in	 this	 study.	 Randomization	 and	 stratification	 of	 the	 study	
patients	will	 be	carried	out	using	 the	Randomization	 in	Treatment	
Arms	 software	 (Evident).	 The	 patients	will	 be	 assigned	 to	 the	 fol‐
lowing	 three	 groups	 (200	 per	 group):	 placebo,	 daytime	 ketamine	
administration,	 and	nighttime	ketamine	administration.	Patients	 in	
the ketamine groups will be given ketamine infusions at a dose of 
0.5	mg/kg	 (R/S‐ketamine	 hydrochloride	 diluted	 in	 saline,	 adminis‐
tered	slowly	by	i.v.	pump	for	>40	min)	in	the	morning	and	at	night,	
respectively	(Berman	et	al.,	2000;	Zarate	et	al.,	2006);	patients	in	the	
placebo	group	will	receive	matching	saline	infusions	(Figure	1).	These	
patients	will	receive	two	infusions	per	week	for	24	weeks	(Singh	et	
al.,	2016).	Treatments	will	be	administered	 in	private	rooms	at	 the	
Mental	 Health	 Teaching	 Hospital	 affiliated	 with	 Tianjin	 Medical	
University.

3.3 | Clinical assessment and monitoring

Participants'	 blood	 pressure,	 heart	 rate,	 blood	 oxygen	 levels,	 and	
other clinical parameters will be measured and recorded before 
the	 initiation	of	 ketamine	 infusion	 and	at	10,	20,	 30,	 40,	 80,	 120,	
and	240	min	thereafter.	Electrical	activity	in	the	brain,	mainly	sleep	

parameters,	will	be	monitored	for	24	hr	using	an	electroencephalo‐
gram	(EEG).

3.4 | Polysomnographic monitoring and scoring of 
sleep and associated events

Polysomnography	(PSG)	will	be	performed	using	a	Nicolet	v32	de‐
vice	 (Natus	 Medical	 Incorporated).	 Audio–video	 recording,	 along	
with	 continuous	 recording	 of	 thermopressure	 air	 flow,	 blood	oxy‐
gen	 saturation,	 and	 diaphragm	 movement,	 and	 EEG,	 electro‐ocu‐
lography,	and	electromyography,	will	be	performed.	Before	PSG,	all	
patients will avoid the consumption of caffeine‐containing bever‐
ages,	and	the	protocol	will	be	explained	to	them	protocol	to	relieve	
nervousness.	 PSG	will	 register	 shifts	 between	 REM	 and	 nonrapid	
eye	movement	(NREM)	sleep	phases	(divided	further	into	deep	and	
light	sleep	phases),	 identified	by	well‐trained	technicians	 following	
the	 American	 Academy	 of	 Sleep	Medicine's	 (AASM's)	Manual	 for	
the	 Scoring	 of	 Sleep	 and	 Associated	 Events	 version	 2.5,	 updated	
and	released	in	April	2018	(American	Academy	of	Sleep	Medicine;	
The	AASM	Manual	for	the	Scoring	of	Sleep	and	Associated	Events:	
American	Academy	of	Sleep	Medicine;	https	://aasm.org/resou	rces/
pdf/scori	ng‐manual‐prefa	ce.pdf).	The	main	parameters	recorded	will	
be	the	total	sleep	time,	sleep	latency,	REM	latency,	sleep	efficiency,	
phase	ratio,	and	the	apnea–hypopnea	index.

The specific phases of sleep will be identified by continuous re‐
cording	systems	at	a	 rate	of	30	 frames/s.	According	 to	 the	AASM	
manual	 (2018,	version	2.5),	 the	wake	phase	 is	 identified	when	the	
occipital α	 rhythm	occupies	more	 than	50%,	or	one	of	 the	 follow‐
ing	features	is	present	even	without	a	recognizable	α	component:	(a)	
eye	blinking	at	0.5–2	Hz;	(b)	regular	eyeball	movement;	or	(c)	irreg‐
ular	conjugate	REM	with	normal	or	slightly	higher	mentalis	tension.	
The	NREM	stage	1	phase	is	identified	when	a	vertex	sharp	wave	or	
low‐voltage	(4–7	Hz)	mixed‐frequency	dominates	with	α synchrony 
in	closed	eyes.	NREM	stage	2	is	recognized	with	single	or	multiple	
arousal‐irrelevant	K	 complex	wave/sleep	 spinal	waves,	with	<20%	
of	SWA	in	the	current	frame.	NREM	stage	3	is	defined	by	more	than	
20%	of	SWA	in	the	current	frame.	The	REM	sleep	phase	is	deduced	
from	the	simultaneous	occurrence	of	low‐voltage	mixed‐frequency	
EEG	signals,	lower	mentalis	tension,	and	irregular	conjugate	REM.

3.5 | Magnetic resonance imaging and analysis

All	 study	 patients	will	 undergo	 two	 fMRI	 examinations	 for	 three‐
dimensional	 (3D)	 magnetization‐prepared	 rapid	 gradient‐echo	
(MPRAGE)	 imaging,	 rsFC	 assessment,	 and	 diffusion‐weighted	 im‐
aging	(DWI)	using	an	advanced	GE	Signa	HDx	3.0T	MR	system	(GE	
Healthcare)	in	accordance	with	the	recommendation	of	the	Human	
Connectome Project for mapping neural connections of the human 
brain	 (http://www.neuro	scien	ceblu	eprint.nih.gov/conne	ctome/	).	
Two	hours	before	the	initiation	of	ketamine	infusion,	patients	in	the	
daytime ketamine administration group will be scheduled for base‐
line	fMRI	examination	at	9	a.m.,	and	those	in	the	nighttime	ketamine	
administration	 group	 will	 undergo	 baseline	 fMRI	 examinations	 at	

https://aasm.org/resources/pdf/scoring-manual-preface.pdf
https://aasm.org/resources/pdf/scoring-manual-preface.pdf
http://www.neuroscienceblueprint.nih.gov/connectome/
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4	p.m.	Twenty‐four	hours	after	baseline	fMRI,	repeat	fMRI	examina‐
tions	will	be	performed	for	patients	in	these	two	groups	(Figure	1).

Functional	 magnetic	 resonance	 imaging	 examinations	 will	 be	
performed	 using	 the	 following	 parameters.	 For	 T1‐weighted	 3D	
MPRAGE	structural	 imaging	of	 the	whole	brain,	128‐layer	 sagittal	
scanning will be carried out for 4 min using the following parameters: 
1.33	mm	 thickness,	 0‐mm	 interval,	 256	 ×	 192	 in‐layer	 resolution,	
2,530‐ms	repetition	time	(TR),	3.39‐ms	echo	time	(TE),	7°	flip	angle	
(FA),	and	256	×	256	mm2	field	of	view	(FOV).	For	rsFC	assessment,	
33‐layer	 axial	 imaging	will	 be	undertaken	 for	10	min	with	 the	 fol‐
lowing	parameters:	3	mm	thickness,	0‐mm	interval,	64	×	64	in‐layer	
resolution,	 2,000‐ms	 TR,	 30‐ms	 TE,	 90°	 FA,	 and	 220	 ×	 220‐mm2 
FOV.	For	the	digital	trunk	interface	(DTI)	module,	the	following	pa‐
rameters	will	be	used:	70	layers	with	2	mm	thickness,	0‐mm	interval,	
7,100/61‐ms	TR/TE,	 256	×	 256‐mm2	 FOV,	 and	 128	×	 128	matrix.	
The	gradient	direction	will	be	set	to	64	(b	=	1,000,	b0	image	=	10,	
NEX	=	1).	For	the	diffusion	kurtosis	imaging	(DKI)	module,	a	2D	mul‐
tislice	 single‐shot	 spin‐echo	 echo‐planar‐imaging	 sequence	will	 be	
used	with	48	layers	of	3	mm	thickness,	0‐mm	interval,	5,800/77‐ms	
TR/TE,	90°	FA,	256	×	256	mm2	FOV,	and	128	×	128	matrix.	The	gra‐
dient	directions	will	be	set	to	25	(b	=	1,000)	and	25	(b	=	2,000),	with	
b0	image	=	10	and	NEX	=	1.	For	magnetic	resonance	spectrometry,	
a	single	voxel	spectrum	will	be	located	in	the	ACC;	the	TE	will	be	set	
to	2,000	ms.

In	 MRI	 examination,	 sagittal	 3D	 T1‐weighted	 images	 will	 be	
acquired	using	the	following	parameters:	188	sagittal	slices,	1	mm	
slice	thickness,	no	gap,	8.2‐ms	TR,	3.2‐ms	TE,	450‐ms	inversion	time	
(TI),	12°	FA, 256	×	256	mm2	FOV,	and	256	×	256	matrix.	Resting‐
state	fMRI	data	will	be	acquired	using	a	single‐short	gradient‐echo	
echo‐planar‐imaging	 sequence	 with	 the	 following	 parameters:	 32	
interleaved	 transverse	 slices,	 4	 mm	 slice	 thickness,	 0.5‐mm	 gap,	
2,000/45‐ms	TR/TE,	90°	FA, 220	×	220	mm2	FOV, 64	×	64	matrix,	
and	180	volumes.	For	analysis	of	the	brain	white	matter,	a	single‐shot	
spin‐echo‐planar‐imaging	sequence	will	be	used	with	three	diffusion	
weightings	(b	=	1,000,	1,500,	and	2,000	s/mm2),	30	noncollinear	di‐
rections,	and	five	b = 0 s/mm2	volumes	(13,000‐ms	TR,	86.1‐ms	TE,	
1.88	×	1.88	×	2.50‐mm3	 voxel	 size).	The	diffusion	gradient	 length	
(δ)	and	spacing	(Δ)	will	be	held	constant	(δ/Δ	=	35.1/44.7	ms).	Raw	
images	will	be	denoised,	corrected	for	Gibbs	ringing,	and	corrected	
for eddy currents and motion using the eddy	 tool	 in	 the	 FMRIB	
Software	Library	(version	6.0;	Analysis	Group,	FMRIB).	DTI	and	DKI	
parameters	 will	 be	 calculated	 using	 weighted	 linear	 least‐squares	
estimation	(https	://github.com/NYU‐Diffu	sionM	RI/Diffu	sion‐Kurto	
sis‐Imaging).

3.6 | PET imaging and analysis

For	PET	imaging,	40	patients	will	be	randomly	selected	from	the	day‐
time	and	nighttime	ketamine	administration	groups	 (20	per	group)	
to undergo PET scans using the 11C‐UCB‐J	PET	 ligand	 at	 baseline	
and upon completion of the 24‐week treatment period. This sub‐
set of patients will be included in consideration of the difficulties 
involved	 in	 brain	PET,	 including	poor	 patient	 compliance	 and	high	

cost	(Rausch	et	al.,	2017;	Thompson	et	al.,	2016).	In	brief,	PET	imag‐
ing will be performed using a high‐resolution research tomography 
(GE	Health	Care)	with	 a	 reconstructed	 image	 resolution	 of	 nearly	
3	mm,	as	described	previously	(Finnema	et	al.,	2018;	Nabulsi	et	al.,	
2016).	These	patients	will	also	undergo	T1‐weighted	MRI	imaging	in	
a	3‐T	whole‐body	scanner	(GE	HealthCare)	at	the	same	timepoints	
for coregistration with the PET images.

3.7 | Blood sampling and molecular 
biological studies

Peripheral	 blood	 samples	 (5	ml)	will	 be	 collected	 from	all	 patients	
at	baseline	and	upon	treatment	completion	for	the	quantification	of	
ketamine levels and molecular biological studies. The blood samples 
will	be	centrifuged	at	5,000	g	for	10	min,	and	the	serum	samples	will	
be	stored	at	−80°C	in	a	freezer.	An	enzyme‐linked	immunosorbent	
assay	kit	(Sigma‐Aldrich)	will	be	used	for	the	measurement	of	serum	
BDNF	 levels	 on	 a	 SpectraMax	 M5	 microplate	 reader	 (Molecular	
Devices)	at	a	wavelength	of	450	nm.	All	samples	will	be	measured	
in	 triplicate.	Genomic	DNA	will	be	extracted	 from	the	blood	sam‐
ples	 and	 used	 for	 subsequent	 genetic	 polymorphism	 genotyping	
with	two	genes	of	 interest	 (Homer1	and	BDNF),	performed	at	the	
molecular	core	laboratory	of	Tianjin	Medical	University.	Researchers	
blinded	to	the	clinical	data	will	perform	the	genotyping	of	Homer1	
at	rs7713917	(the	A	allele	indicates	a	higher	risk	of	dysregulation	of	
cognitive and motivational processes through effects on prefrontal 
activity	during	anticipation	of	reward),	rs2290639	(the	AA	homozy‐
gote was associated significantly with suicide attempts in Chinese 
patients	in	Hong	Kong),	and	rs60029291	(the	T	allele	was	associated	
with	MDD	and	suicide	attempts	 in	Chinese	patients),	as	described	
previously	(Serchov	et	al.,	2015).

3.8 | Sample size determination and power analysis

The	effective	sample	size	has	been	estimated	using	G‐Power	analy‐
sis	according	to	the	G	*	Power	3.1	manual,	released	in	March	2017	
(http://www.gpower.hhu.de/en.html).	Assuming	a	15%	dropout	rate	
in each group and to observe significant effects with an α value of 
0.05	and	statistical	power	of	0.8,	a	total	of	800	patients	with	treat‐
ment‐resistant	depression	will	be	enrolled	in	the	randomized,	dou‐
ble‐blinded control study.

3.9 | Outcome measures

The primary outcome measure will be the change from baseline to 
the	treatment	completion	in	the	total	MADRS	score	(0–6,	normal	
or	 absence	 of	 symptoms;	 7–19,	 mild	 depression;	 20–34,	 moder‐
ate	 depression;	 >34,	 severe	 depression;	Cunningham,	Wernroth,	
Knorring,	Berglund,	&	Ekselius,	2011;	Herrmann,	Black,	Lawrence,	
Szekely,	 &	 Szalai,	 1998;	 Muller‐Thomsen,	 Arlt,	 Mann,	 Mass,	 &	
Ganzer,	2005;	Williams	&	Kobak,	2008).	The	MADRS	will	be	used	
to	 assess	 the	 effects	 of	 ketamine	 in	 the	 three	 groups,	 specifi‐
cally	with	 the	 following	10	 items,	which	are	used	widely	 for	 the	

https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging
https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging
http://www.gpower.hhu.de/en.html
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measurement	of	depression	severity:	(a)	apparent	sadness,	(b)	re‐
ported	 sadness,	 (c)	 inner	 tension,	 (d)	 reduced	 sleep,	 (e)	 reduced	
appetite,	 (f)	 concentration	difficulty,	 (g)	 lassitude,	 (h)	 inability	 to	
feel,	(i)	pessimistic	thoughts,	and	(j)	suicidal	thoughts	(Cunningham	
et	al.,	2011;	Herrmann	et	al.,	1998;	Muller‐Thomsen	et	al.,	2005;	
Williams	&	Kobak,	2008).

Patients will undergo objective cognitive testing at baseline and 
upon	 treatment	 completion.	 The	 Montreal	 Cognitive	 Assessment	
will	serve	as	the	primary	cognitive	measure	(Nasreddine	et	al.,	2005).	
The	 North	 American	 Adult	 Reading	 Test‐35	 (Uttl,	 2002)	 will	 be	
used	to	estimate	 intellectual	 function.	The	revised	Hopkins	Verbal	
Learning	Test,	Controlled	Oral	Word	Association	Test,	 and	Stroop	
Color and Word Test will also be administered at baseline and at the 
end	of	treatment.	Percentages	of	SV2A‐specific	binding	for	synapse	
measurement on PET images will be calculated and compared be‐
tween	the	two	ketamine	groups,	and	between	baseline	and	comple‐
tion of the 24‐week treatment period in each ketamine group.

3.10 | Side effects and safety

The	occurrence	of	adverse	events	and	side	effects,	including	mem‐
ory	complaints	reported	by	patients	and	recorded	by	physicians,	will	
also be evaluated. Ketamine has been reported to be associated with 
neurocognitive	 impairments,	manifesting	mainly	 as	memory	 recall	
problems	 (Murrough	 et	 al.,	 2013).	 Patients'	 neurocognitive	 func‐
tion will also be assessed using a comprehensive battery including 
the	estimated	premorbid	intelligence	quotient	(IQ),	current	IQ,	and	
tests	from	the	MATRICS	Consensus	Cognitive	Battery,	as	described	
previously	 (Murrough	et	al.,	2013).	Data	on	patients'	 self‐reported	
memory	 complaints	 will	 be	 collected	 using	 the	 Squires	 Memory	
Complaint	 Questionnaire,	 Global	 Self‐Evaluation	 of	 Memory,	 and	
Patient‐Rated	 Inventory	 of	 Side	 Effects.	 Data	 on	 physician‐re‐
ported adverse events and side effects will be collected using the 
Brief	Psychiatric	Rating	Scale	psychotic	subscale	and	the	Clinician‐
Administered	Dissociative	State	Scale.

Upon	the	development	of	serous	medical	complications,	includ‐
ing	but	not	 limited	to	suicidal	 ideation,	cardiovascular	toxicity,	and	
infusion‐related	side	effects,	the	participants	will	be	advised	to	with‐
draw from the study and will receive prompt care in the emergency 
room.

3.11 | Data handling and statistical methods

Baseline	demographic	information	and	clinical	characteristics	of	the	
enrolled patients will be compared among groups using one‐way 
analysis	of	variance	(ANOVA)	or	the	Kruskal–Wallis	H	test,	as	appro‐
priate,	for	continuous	variables,	and	the	chi‐squared	test	or	Fisher's	
exact	test,	as	appropriate,	for	nominal	variables.	The	effects	of	dif‐
ferent	treatments	on	MADRS	scores	will	be	examined	using	one‐way	
ANOVA,	 followed	by	post	hoc	 testing	of	ketamine	versus	placebo	
and	daytime	versus	nighttime	ketamine	administration.	A	multiple	
linear regression analysis of estimated conditional treatment effects 
will be conducted for effect measure modification.

The	IBM	SPSS	version	20.0	software	(IBM	Corp.)	will	be	utilized	
for statistical analyses. p	values	<.05	will	be	taken	to	indicate	signifi‐
cant differences between groups. The statistical software and meth‐
ods used may change if newer software becomes available.

4  | DISCUSSION

A	single	dose	of	ketamine	is	sufficient	to	achieve	rapid	and	relatively	
sustained	antidepressant	effects	and	to	reduce	the	risk	of	suicide,	in	
patients	with	MDD.	Previous	studies	have	revealed	that	ketamine	is	
involved	in	circadian	and	sleep	rhythms,	as	well	as	in	reversing	syn‐
aptic	deficits	in	animal	models	of	depression.	Clinical	examination	of	
the neurobiological mechanisms underlying the specific actions of 
ketamine	in	human	subjects	is	required.	Based	on	our	long‐standing	
interest	 in	 the	 study	of	MDD	and	on	our	preliminary	 findings,	we	
present this protocol for investigation of the mechanisms by which 
ketamine	exerts	 its	unique	antidepressant	actions	 in	patients	with	
refractory depression. The anticipated findings and their implica‐
tions,	as	well	as	potential	limitations,	are	discussed	below.

4.1 | Anticipated results and implications

This study will mainly test the overarching hypothesis that ketamine 
will rapidly reverse depression‐ and stress‐associated synaptic defi‐
cits and reset disrupted circadian and sleep rhythms in patients with 
treatment‐resistant depression. These two mechanisms have differ‐
ent	 neurological	 pathways,	 and	 potential	 interactive	 effects	 have	
not	been	explored	to	date.	Furthermore,	we	will	test	the	efficacy	of	
different	ketamine	interventions	(daytime	and	nighttime	administra‐
tion),	using	saline	as	a	control.	We	anticipate	that	 the	findings	will	
shed	new	 light	 on	 the	mechanism	 through	which,	 at	 least	 in	 part,	
ketamine	exerts	its	prompt	and	long‐lasting	actions	in	patients	with	
treatment‐resistant	depression,	improve	ketamine	infusion	therapy	
for	MDD,	and	provide	suggestions	 for	potential	objective	markers	
of the efficacy of ketamine infusion therapy for treatment‐resist‐
ant	depression.	Thus,	we	anticipate	 that	 the	 findings	of	 this	 study	
will advance our understanding of the mechanisms underlying the 
antidepressant	effects	of	ketamine.	Although	the	results	from	this	
research	 project	 will	 stem	 from	 the	 specific	 context	 of	 ketamine,	
data obtained through the direct comparative analysis of different 
treatment	approaches	(daytime	vs.	nighttime	ketamine	administra‐
tion)	will	have	a	number	of	 implications	 for	better	clinical	practice	
in	 the	management	 of	 treatment‐resistant	 depression,	 which	may	
affect	patient	choice	and	health	 insurance	policy.	Additionally,	 the	
findings hold promise to guide the development of a more effica‐
cious approach for ketamine infusion therapy and thus may even‐
tually	 improve	care	for	patients	with	MDD,	particularly	those	with	
treatment‐resistant	depression.	Such	a	new	approach	could	be	eas‐
ily	adopted	in	clinical	practice.	Notably,	the	study	of	SV2A‐specific	
binding to synapses using 11C‐UCB‐J‐PET	will	allow	us	 to	examine	
synapses	directly	in	vivo,	and	we	expect	that	it	will	lead	to	the	iden‐
tification of a new objective marker or outcome measure of the 
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efficacy	of	ketamine	for	treatment‐resistant	depression,	or	of	other	
clinical trials of therapies targeting synapse restoration. The com‐
bined	use	of	PET	and	MRI	may	reveal	correlations	between	MRI‐	and	
PET‐observed	alterations,	or	the	“MRI–PET	bridge.”	This	“bridge”	is	
an	 important	part	of	our	study,	and	we	anticipate	 that	 it	will	have	
significant	clinical	implications	as	more	useful	approach	in	the	next	
10 years.

4.2 | Limitations of this study protocol

Despite	the	obvious	strengths	of	this	study,	some	potential	 limita‐
tions	of	our	study	protocol	should	be	noted.	First,	we	recognize	that	
this entire pilot study will be conducted at a single center and that 
selection	 bias	may	 be	 a	weakness.	 In	 addition,	 our	 hospital‐based	
enrollment	method	could	affect	our	findings.	Second,	although	the	
sample	 size	 was	 calculated	 to	 generate	 sufficient	 power	 for	 the	
assessment of differences in intervention efficacy among study 
groups,	it	may	not	be	large	enough	to	enable	analysis	of	subgroups,	
such	as	those	defined	by	sex	and	genetic	variants.	Third,	although	
we	do	not	anticipate	this	to	be	the	case,	it	is	possible	that	differences	
in	certain	patient	characteristics	could	affect	the	outcomes.	Another	
weakness of this protocol could be that we will not be able to stratify 
randomization	by	sex.

5  | CONCLUSIONS

Despite the potential limitations of the proposed clinical pilot 
study,	the	anticipated	findings	have	important	implications	related	
to a better understanding of the mechanisms and improvement of 
the efficacy of ketamine. We believe that the limitations will be 
addressed	 in	 future	 studies.	More	 importantly,	 this	 study	 is	 ex‐
pected	to	form	the	basis	for	future	multicenter,	large‐scale	clinical	
trials.
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