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Opioid use disorder is a highly heterogeneous disease driven by a variety of genetic and 

environmental risk factors which have yet to be fully elucidated. Opioid overdose, the most 

severe outcome of opioid use disorder, remains the leading cause of accidental death in the 

United States. We interrogated the effects of opioid overdose on the brain using ChIP-seq to 

quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 

51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed 

global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. 

Machine learning on H3K27ac patterns predicted case-control status with high accuracy. 

We focused on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, 

uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity 

based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes 

over-burdened by alterations in their regulatory network or “plexus”: ASTN2, KCNMA1, DUSP4, 

GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and 

heritability for generalized anxiety, number of sexual partners, and years of education. Overall, 

our multi-pronged approach uncovers neurobiological aspects of opioid use disorder and captures 

genetic and environmental factors perpetuating the opioid epidemic.

Introduction

Opioid use disorder (OUD) and the rise of opioid overdose deaths have taken a devastating 

emotional and economic toll on society. This public health crisis has only been exacerbated 

during the COVID19 pandemic with reports of a 16 to 25% increase in opioid-related 

overdose deaths in the US (1). Uncovering the neurobiological basis of OUD is urgently 

needed to drive prevention and treatment interventions. However, current GWAS, with 

over 10,000 cases, have only replicably identified the OPRM1 gene (2)(3), making it an 

especially challenging phenotype to study. Conservative estimates suggest that hundreds of 

thousands of samples will be needed to uncover a majority of risk loci (4). Animal models 

have produced valuable insights into the biology of disease, but the extent to which these 

will translate to the complexity of human behavioral traits remains unclear. In lieu of larger 

GWAS sample sizes that are not currently available from human studies, we present a 

methodological innovation to shortcut discovery of genes involved in the neurobiology of 

OUD. We further identify novel genes and pathways that point us towards biology relevant 

for understanding OUD and opioid overdose.

Here, we reason that a successful approach would encompass three key features: (1) 

the accurate measurement of epigenomic activity and connectivity to genes, (2) the 

importance of making these measurements in the appropriate cellular context, and (3) 

the need to harness heterogeneous, case-specific alterations. We pioneer such an analysis 

in OUD through the analysis of histone acetylation landscapes in opioid overdose cases 

vs. accidental sudden death (physiologically normal) controls. We focus on neurons from 

dorsolateral prefrontal cortex (DLPFC) as a cell type broadly involved in the neural circuitry 

of OUD and addiction more broadly, as well as, the frequently co-occurring disorders 

of anxiety and impulsivity. Moreover, animal and human studies have drawn a firm link 

between long-term vulnerability to addiction and cellular and molecular adaptations in the 

brain’s reward-processing circuitry (5), including changes in gene expression programs in 

Corradin et al. Page 2

Mol Psychiatry. Author manuscript; available in PMC 2022 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the prefrontal cortex and other target areas of the mesocorticolimbic dopamine system (6). 

These include the dorsolateral PFC, which by functional neuroimaging in subjects diagnosed 

with substance abuse, shows abnormal activation profiles in context of drug exposures, 

motivational drive and inhibitory control over drug-related behaviors (including intoxication 

and binge) that critically depend on the balanced interaction between DLPFC and the 

more ventral portions of the PFC (7). We therefore reasoned that mapping the epigenome 

of DLPFC in opioid overdose death cases vs. controls provides an important context to 

discover regulatory loci important in mediating addictive behaviors.

Tissue-specific regulatory elements consistently show a high correlation with GWAS catalog 

risk loci in phenotypically relevant tissue types (8)(9)(10). We focus our epigenomic 

assays on H3K27ac, the canonical mark of active regulatory elements. We interrogate 

neuronal H3K27ac epigenomes of DLPFC from opioid overdose cases compared with 

controls. Moreover, by analyzing H3K27ac epigenomes in the context of promoter-bound 

chromosomal conformations, using a promoter-capture Hi-C reference set from the DLPFC 

(11), we are able to connect individual H3K27ac peaks to promoter targets with high 

confidence.

Previous H3K27ac epigenomic profiling of colon cancer, metastatic osteosarcoma and 

numerous other types of cancer (12)(13)(14) has revealed stark tumor-specific alterations 

in enhancer activity. We termed these VELs (Variable or Variant Enhancer Loci). Unlike 

these observations from rapidly dividing cells undergoing a constant evolution from normal 

to malignant, here we study post-mitotic neurons in the human brain. Thus, we do not 

anticipate dramatic changes in enhancer activities in this setting. This requires a rethinking 

of our theoretical framework; instead of single clear changes with potent effects on 

gene expression, we transition to dispersed, subtle effects that cumulatively tweak gene 

expression. We hypothesize that direct ascertainment of subtle yet converging heterogeneous 

variants present in the brain epigenome of fatal opioid overdose cases will illuminate the 

biological and genetic underpinnings of the traits involved in OUD.

RESULTS

Identification of homogeneous H3K27ac hypoacetylation events

We generated H3K27ac ChIP-seq data from neuronal nuclei sorted from postmortem 

DLPFC dissected from 60 confirmed opioid overdose death cases and 58 age-matched, 

sudden accidental death controls. Opioid cases had a documented history of opioid abuse, 

positive toxicology report for opioids, and forensic determination of opioids as the cause of 

death. Controls were age-matched from sudden accidental or cardiac deaths with negative 

urine screens for all common drugs and no history of licit or illicit drug use. Samples 

with known history of psychiatric disorders, debilitating chronic pain or death by suicide 

were excluded from both groups. A total of 51 cases and 51 controls passed stringent 

quality control (Methods, Table S1) and were selected for further analysis (Figure 1A, 

S1). These samples were sequenced to a mean read depth per sample of 112,215,946 

(s.d. = 33,175,526), with no difference in read depth between case and control groups 

(Welsh unpaired two-sample t-test, two-sided P=0.605, n=102 biologically independent 

samples, read count mean difference ± SEM: 3418882 ± 6593642; 95% confidence 
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interval (CI): −9684412–16522176; t=0.5185, df=88.09) (Figure S1). To our knowledge, 

this represents one of the most extensive analyses of H3K27ac in human neuronal DLPFC 

performed to date, and the only one focused on opioid overdose. Across the cohort, we 

detected 655,505 H3K27ac peaks. We utilized a linear model to regress out covariates, 

including age, postmortem interval, ancestry and sex, and used residuals in subsequent T 

tests (Methods, Figure S1D,E). We observed modest but widespread hypoacetylation of 

H3K27 in cases versus controls, with 388 peaks showing statistically significant differences 

(PBonf. < 1×10−7) (Figure 1B,C, Table S2). An exemplar locus linked to target gene dual-

specificity phosphatase 4 (DUSP4) in DLPFC promoter capture Hi-C data, involved in the 

addiction-relevant GPCR and MAPK signaling pathways (15,16), is shown in Figure 1D. 

Strikingly, no significant hyperacetylated peaks in cases were found. Of the 388 significant 

hypoacetylated peaks, 95.9% were located distal (> 2 kb) to transcription start sites and 

are putative active regulatory elements. Motifs corresponding to AP1 transcription factors, 

including FOS, ATF3, and JUNB (P<1×10−15) were highly enriched at these regulatory 

elements (Figure 1E). While opioid exposed promoter capture data was not available, we 

identified putative gene targets of the differentially acetylated loci using promoter-capture 

Hi-C data available from control DLPFC (11).

We performed RNA-seq analysis of a subset of the cohort (24 cases, 27 controls, bulk 

DLPFC, not neuronal nuclei sorted) (Figure 1F, Figure S1F). While bulk tissue profiling 

limits the ability to detect cell type specific expression changes, we nonetheless identified 

ten differentially expressed genes, 8 downregulated, 2 upregulated in cases compared to 

controls (Figure 1G, PBonf. < 2.4×10−6). The AP1 transcription factor FOS was among 

the significantly reduced genes. Genes assigned by promoter capture Hi-C to the 388 

hypoacetylated regulatory elements generally show a modest but statistically significant 

decrease in gene expression levels in cases compared to controls (P < 0.05) (Figure 1H). 

Overlap of the significant epigenome and transcriptome results highlights 3 genes: DUSP4, 

DUSP6, ETV5 (Figure 1G). DUSP4 and DUSP6 regulate MAPK-ERK signaling. Consistent 

with this known biological function, the MAP kinase pathway was the most enriched GO 

molecular function term associated with the set of differentially expressed genes in opioid 

cases versus controls (Padj< 0.01) (Figure 1I) (17,18). Both the input transcription factors 

to the 388 loci (FOS AP1 factors) and output MAPK genes are consistent with known 

addiction pathways (19)(15)(6)(16)(20).

Seven loci can accurately predict case/control status

The 388 hypoacetylated loci identified above represent only a small proportion of the 

hundreds of thousands of ChIP-seq peaks evaluated. We therefore applied machine learning 

(ML) as an agnostic strategy to re-evaluate the entirety of the data. We used Gradient 

Boosting classification algorithm with ChIP-seq peaks and covariates as potential features 

to distinguish case/control status (Methods) (21). Remarkably, seven ChIP-seq peaks can 

differentiate opioid cases from controls with high accuracy (5-fold cross-validated mean 

AUC = 0.972, s.d.=0.037) (Figure 2A). This outperformed models that used only covariates, 

or the 388 hypoacetylated peaks (P<0.001) (Figure 2B). Given the global hypoacetylation 

observed in this dataset, we reasoned that these 7 peaks may not be the only features capable 

of distinguishing opioid cases. To identify additional peak sets with similar predictive 
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accuracy, we developed a stepwise strategy which iteratively removed peaks used by 

previous models and then identified new models from the remaining peaks (Figure 2C). In 

total, we identified 108 independent models ranging from 4 to 43 peaks with median AUCs 

>0.9 (Supplemental Figure 2A,B, Table S3). Altogether, these 108 models incorporated 

3200 peaks. Using unbiased Uniform Manifold Approximation and Projection (UMAP) 

dimensionality reduction (22), we found that these features could easily distinguish opioid 

cases from controls (Figure 2D) and that their separation was not observed when utilizing all 

ChIP-seq peaks (Figure 2E). Using DLPFC promoter-capture Hi-C data, we identified 830 

gene targets of model peaks. While individual peaks were unique to each model, we found 

167 (20%) target genes that were incorporated across multiple models. Genes found by three 

or more models include DUSP4 and the potasium channel KCNMA1 (Figure 2F). Using 

Functional Mapping and Annotation (FUMA) (23), we found that gene targets of model 

peaks were enriched for genes involved in six different pathways. This included several 

pathways broadly involved in synapse function and behavior such as regulating GABAergic 

transmission, G protein signaling, and neuronal phosphodiesterases and sex steroid (incl. 

androgen) receptor pathways (Figure 2G). Collectively, these results demonstrate that while 

individual changes in regulatory elements are small, they are sufficient to distinguish opioid 

overdose death cases from controls. More importantly, the repeated appearance of synaptic 

gene targets in the 108 models, and the use of peaks beyond the 388 in these models, 

suggests the heterogeneity amongst individual cases is converging on shared underlying 

biology.

Identification of heterogeneous case-specific alterations

In order to uncover the epigenetic heterogeneity of opioid overdose, we used an information-

theoretic approach to identify changes that distinguish individual cases from the full set of 

controls (Figure 3A, Methods). A similar strategy has been used to pinpoint key regulatory 

differences among heterogeneous cancers (12)(13)(14). We refer to these individual-specific 

changes as Variable or Variant Enhancer Loci, or VELs. The vast majority of differentially 

acetylated regions identified through VEL-mapping were hypoacetylation events, consistent 

with our prior findings. Specifically, we identified 81,399 VELs with reduced H3K27ac, or 

“lost VELs”, in at least one opioid overdose death case relative to controls (FDR<5%), and 

976 gained VELs (Table S4). Of the 388 hypoacetylated regions, all but two were detected 

via the VEL-mapping approach. On average, the magnitude of the effect was far greater 

for H3K27ac differences found through VEL-mapping (Figure 3B) than for hypoacetylation 

analysis in Figure 1, suggesting that case-specific changes may be larger contributors to 

phenotype than the hypoacetylation events revealed through case/control analysis. VEL gene 

targets showed changes in expression consistent with the accumulation of gains and losses, 

albeit asymmetrically, with gains showing a more immediate effect (Figure 3C). The number 

of VELs shared across cases is far greater for losses than gains (Figure S3).

Case-specific lost VELs showed striking convergence at the gene level. Upon linking VELs 

to their putative gene targets using DLPFC promoter-capture Hi-C data, we found that 

while only 10% of lost VELs occurred in two or more overdose cases, 60% of target genes 

were physically linked to VELs in two or more overdose cases (Figure 3D). As we looked 

for VEL peaks and VEL target genes that were found in a larger number of cases, the 
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percentage of genes and peaks decreased exponentially (Figure 3D). However, the ratio of 

VEL target genes to VEL peaks (convergence ratio) increased exponentially, indicating that 

heterogeneous case-specific losses accumulated at the gene level in a large number of cases. 

In other words, despite vast heterogeneity at the level of individual enhancers, the signal 

appeared to “yield” at the gene level, becoming increasingly homogenous. We next sought 

out to capture this homogeneity and resolve it into concrete genes at which these alterations 

converged through the development of a novel statistical framework which we refer to as 

“convergence analysis.”

Regulatory losses converge on synaptic genes

Convergence analysis is designed to resolve genomically dispersed, low-frequency variation 

in either the DNA sequence or epigenomic signals into high-frequency convergent events. 

We use the term “plexus” to refer to the collection of regulatory elements that physically 

contact the gene promoter (24)(25). Plexi are derived from DLPFC promoter-capture Hi-C 

(11). Here, we used convergence analysis to identify genetic loci and target genes that have 

an overabundance of opioid case VELs. The strategy identifies single elements in a gene 

plexus altered across multiple cases, multiple elements altered within a single case, multiple 

elements altered across multiple cases, and intermediate patterns (Figure 4A). This approach 

takes into account the differing number of elements contained in each gene’s plexus and 

their activity to identify genes with the most significant accumulation of VELs.

Five convergent plexi were statistically significant for accumulation of lost VELs: ASTN2, 

KCNMA1, DUSP4, GABBR2, and ENOX1 (PFDR: 1×10−11, 1×10−7, 1×10−7, 1×10−6, 

1×10−6; Figure 4B,C, Table S5). We did not identify significant plexi for the accumulation 

of gained VELs. The ASTN2 plexus, the most significant result, is composed of 106 putative 

regulatory elements contained in loci that interact with the ASTN2 promoter in DLPFC; 

65.1% of its elements and 21.6% of the cases have at least one VEL (plexus and cohort 

convergence, respectively). KCNMA1 showed the highest single-patient burden of losses: 

36.3% (41 out of 113 elements). DUSP4 showed the highest level of cohort convergence: 

37.3% (19 of the 51 patients); however, in this plexus, the highest frequency of losses at 

any single element is 9.8% (5 of the 51 cases), highlighting the ability of the convergence 

framework to decode case heterogeneity. GABBR2 showed the highest plexus convergence: 

84.6% (88 out of 104 elements). The plexi of these five genes do not overlap, indicating that 

the significance of the results was mutually independent.

Here, we were able to distill 81,399 case-specific VEL alterations into five genes where 

global hypoacetylation was concentrated beyond what is expected by chance, showing clear 

erosion of regulatory activity across each gene’s plexus. Conventional strategies seek to 

identify robust changes that distinguish all cases from controls. The VEL convergence 

strategy offers a novel opportunity to take full advantage of the richness of information 

contained in the network of subtle and heterogenous regulatory changes.

Convergent losses account for heritability of anxiety and overlap OUD risk genes

We hypothesized that direct ascertainment of converging heterogeneous effects of opioid 

exposure on the human brain’s epigenome will illuminate the genetic underpinnings of the 
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traits involved in OUD. To evaluate this hypothesis, we compared the top 5 convergent 

plexi to the heritability of a panel of 27 traits (10) (Figure 5A,B, Table S6). This included 

summary statistics from the MVP study of OUD with 10,544 cases and 72,163 controls with 

one replicable finding (OPRM1) (2). We did not observe heritability enrichment for OUD, 

potentially owing to low power of the OUD GWAS; alternatively, as OPRM1 enhancers 

were not differentially acetylated, it is possible that opioid overdose death is epigenetically 

heritable at loci distinct from the genetically heritable loci. Similar to our findings, recent 

postmortem studies have reported that OPRM1 transcript levels in the anterior insula (a 

cortical node in reward circuitry heavily interconnected with DLPFC) as well as in the 

DLPFC are not significantly affected by opioid use or SUD diagnosis (26,27).

In evaluating other phenotypes, the top 5 gene’s plexi account for a significant proportion of 

heritability of generalized anxiety disorder (N=200K), number of sexual partners (N=370K) 

and educational attainment (N=126K) (Figure 5C). Given that regulatory regions active in 

the CNS have been previously shown to explain a substantial proportion of the heritability 

of neuropsychiatric disorders and behavioral phenotypes, we compared these results to 

control sets of cortical enhancers with similar H3K27ac patterns as the VELs. VELs 

associated with the top 5 plexus genes were substantially more enriched for heritability 

of these three phenotypes, with generalized anxiety disorder showing nearly 4-fold more 

heritability enrichment than activity-matched cortical enhancer regions (Figure 5C). These 

traits have been shown to genetically correlate with OUD and generalized anxiety disorder 

is also frequently co-morbid with OUD (28)(2)(29). These results suggest that previously 

identified genetic vulnerabilities to traits linked with OUD co-localize with the convergent 

epigenetic changes we identified in our opioid overdose cohort. Notably, amongst all 

identified lost VELs, we observed heritability enrichment for additional traits including 

alcohol use disorder, drinks per week, smoking initiation, smoking cessation and measures 

of risk tolerance. However, in contrast to the top 5 plexi, heritability enrichment for VEL 

regions was equal to the enrichment found in other regulatory elements active in the neurons 

(Supplemental Figure 4A,B).

We expanded our analysis to the entire list of plexi ranked genes to further investigate 

overlap with OUD GWAS (2). We directly assessed whether loci with greater VEL 

convergence were enriched among the strongest OUD-associated SNPs as sorted by GWAS 

p-values. We identified genes nearest the top 1%, 0.5%, and 0.05% of OUD GWAS SNP 

associations. Using GSEA (30,31), we found these genes to be significantly enriched 

amongst genes with the greatest VEL convergence (Figure 5D). Of the top 40 genes 

with the greatest VEL convergence, 23 (57.5%) were the nearest gene to a SNP in the 

top 1% of the OUD GWAS results (Figure 5E). Interestingly, of these 40 target genes, 8 

were also identified through our earlier hypoacetylation analysis (Figure 1) and 21 through 

ML analysis (Figure 2). These 40 also include multiple genes from pathways enriched in 

previous analyses (Figure 5E). These results suggest that our multi-pronged approach may 

be effective at revealing loci that predispose to OUD and its related traits.
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Discussion

Neuropsychiatric traits like OUD and its most severe outcome, opioid overdose death, 

are complex and are best addressed by multiple complementary epigenomic analyses. Our 

new approach embraces the deep heterogeneity of complex traits, by employing linear 

regression, T tests, ML, VEL mapping and convergence analysis to identify novel genes 

associated with opioid overdose. Our novel VEL-convergence approach recovers the rich, 

case-specific variation that would be discarded in a conventional study, either because 

their effect sizes would be too small in aggregate across subjects, scattered across the 

genome, or case-specific. The approach we use here leverages the topology of the genome 

to decode heterogeneous variation, resolving low-frequency patterns of variation across all 

regulatory elements connected to a gene into more detectable high-frequency alterations at 

the gene level. DUSP4 provides a good example of the value of our ensemble approach: 

it is connected to an element identified by T tests, and it shows a transcriptional change; 

however, it also harbors a preponderance of case-specific alterations, observed in 37.3% of 

the cases. Without the convergence approach, this profuse effect would have gone unnoticed. 

Most importantly, the convergence framework reveals additional genes with even more 

extensive burden of alterations that would have been completely missed, as they don’t fall 

near any of the 388 LR-identified elements.

We use three different approaches to characterize epigenetic events in opioid overdose cases. 

Across all three approaches, we identified KCNMA1, DUSP4, and GABBR2 as critical 

target genes. Our analyses implicate MAPK signaling, GABA signaling, and potassium 

channel genes. Each of these three pathways have been broadly linked to addiction. 

For example, KCNMA1 is a large conductance potassium channel previously linked to 

alcohol dependence (32) and considered a hub gene for alcohol-induced transcriptomic 

alterations in the prefrontal cortex (33). DUSP4 encodes a MAP kinase broadly relevant 

for synaptic plasticity and memory functions in the brain (34). GABBR2 encodes a 

metabotropic, G-protein coupled GABA receptor and potential OUD risk gene (35), with 

altered gene expression in the prefrontal cortex in an animal model (36). Finally, common 

polymorphisms in Astrotactin 2 (ASTN2), a membrane-bound regulator of the surface 

expression of many synaptic proteins (37), exert a surprisingly strong effect on postoperative 

pain phenotypes, including patient-controlled dosing of opioid-based analgesics (38).

The approach pioneered here is able to uncover some of the biology of OUD with as 

few as 51 cases and 51 controls. Expanding to larger cohorts and other addiction-relevant 

brain regions beyond DLPFC may yield many more genes for further investigation as either 

biomarkers of opioid exposure, potential druggable targets, or causal genes that underlie risk 

of OUD, similarly to how one would functionally characterize GWAS hits. Coupling this 

approach to single cell strategies could further inform specific neuronal or non-neuronal cell 

subtypes that are especially affected by opioid abuse. Our approach does not replace GWAS 

and animal studies, as both are critical in advancing our understanding of complex traits, 

particularly for traits that disproportionately impact hard-to-reach populations. The hybrid 

experimental and computational strategy that we present here is designed to augment or even 

accelerate the mapping of complex genetic architectures.
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What have we uncovered with this new methodology, and what is the relevance to 

the current opioid crisis? We believe our study is capturing shards of the genetic and 

environmental factors perpetuating the opioid epidemic. In fact, our top 5 plexus-genes 

are enriched among the top 1% of OUD GWAS. While we did not observe global 

enrichment for OUD heritability, this is not unexpected given the incompleteness of the 

OUD genetic architecture, as the largest OUD GWAS captures <12% of the expected 

heritability. Alternatively, the most severe outcome of OUD, opioid overdose death, may be 

driven by genetic and/or environmental factors that are either entirely distinct from OUD, or 

are comprised of a particular subset of OUD risk factors. This further highlights the need 

for approaches which simultaneously capture the genetic and epigenetic influences of the 

disorder.

The three traits uncovered in the top 5 gene plexi - anxiety, years of education and number 

of sexual partners - have been associated with early childhood adversity (39)(40)(41). 

All of these traits as well as early childhood adversity are major risk factors for OUD 

(42)(43)(44). This observation points to a potential shared pleiotropic risk that may be 

revealed as the risk factors for all of these related traits are uncovered. Early life adversity 

(ELA) and resource scarcity has been shown to have lasting impacts on the epigenome 

in both rodent and human studies (45)(46), and thus has the potential to play a causal 

role in some of the epigenetic changes we identified. ELA is an increasingly recognized 

contributor to many public health crises (47). We expect that genetic and environmental 

factors, such as ELA and drug exposure, may cooperatively contribute to the epigenetic 

changes we have identified. Risk factors in adulthood for opioid overdose death, such as lack 

of social support, exposure to opioids, and lacking economic opportunity have been rising 

steadily over the past few decades, driven by shifting socioeconomic factors and changes in 

opioid availability (48)(49). Angus Deaton and colleagues called these changes “the ongoing 

erosion of working-class life for those born after 1950” (50). In their landmark study, they 

describe a generational increase in self-reported pain in the United States, which they tie 

to the opioid epidemic. Intriguingly, two variants in our top result, ASTN2, are associated 

with sensitivity to opioids in a study of pain-related phenotypes of fentanyl use after surgery 

(38), suggesting we may also be identifying variation in pain response. Furthermore, genetic 

and environmental risk factors may influence the overlapping sets of target genes through 

distinct mechanisms. Epigenomic studies like ours are uniquely poised to identify the loci 

most critically affected by this milieu of genetic and environmental influences.

Our study identifies novel elements of the OUD exposure and risk architecture, as well 

as phenotypes related to early life adversity, expanding the field’s current limited view 

of the underlying influences that contribute to the opioid epidemic. Altogether our results 

indicate that we are seeing just the tip of the iceberg of the intertwined causes, consequences 

of opioid exposure in the brain, and related traits that ultimately lead to opioid related 

fatalities. The epigenome is a palimpsest where inherited epigenetic and genetic patterns 

are repeatedly overwritten by environmental exposures throughout our lives. The ensemble 

of methods we present here allow us to reveal previously-hidden genes. Further studies are 

needed to distinguish the nature of the factors leading to their dysregulation. Expanding 

both epigenetic and genetic studies of OUD and related phenotypes will enable us to further 

elucidate how diverse contributors manifest in the brain and drive this devastating epidemic.
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METHODS

Patient cohort

Cases (N= 51) were selected from an opportunistic sample of opioid-related deaths and 

unaffected controls that came to autopsy. The use of de-identified cadaver specimens 

is not defined as human subjects research and exempt from regulation 45 CFR pt 46 

(NIH SF424 guide Part II: Human Subjects). The cause of death was determined by 

forensic pathologists following medico-legal investigations evaluating the circumstances of 

death including medical records, police reports, autopsy findings and forensic toxicology 

analysis. Common drugs of abuse and alcohol and positive urine screens were confirmed 

by quantitative analysis of blood and brain. The detection of 6-acetyl morphine (6-AM) 

was taken as definitive evidence of acute heroin exposure. Retrospective chart reviews 

were conducted to confirm history of opioid abuse, methadone or addiction treatment, drug 

related arrests or drug paraphernalia found at the scene. Supplemental brain toxicology was 

done on select cases for comparison to blood levels at the time of death. Case inclusion 

in the opioid group was based on a documented history of opioid abuse, toxicology report 

positive for opioids, and forensic determination of opioids as cause of death. Drug-free 

control subjects (N=51) were age-matched from sudden accidental (motor vehicle accidents 

or trauma) or cardiac deaths with negative urine screens for all common drugs and no history 

of licit or illicit drug use reported by next-of-kin informants prior to death. Exclusion criteria 

for either group included death by suicide, a known history of psychiatric disorder, or 

debilitating chronic illness. The subject groups were matched as closely as possible for age, 

gender, and postmortem interval (PMI). Neurons were isolated via sorting of NeuN+ cells 

(Catalog number: MAB377X, vendor: Sigma Aldrich, manufacturer: Chemicon) following 

ChIP-seq for H3K27ac (Catalog number: 39133, vendor: Active Motif) as previously 

described (Kundakovic et al. 2017).

ChIP-Seq data processing

Cutadapt v1.9.1 (51) was used to remove paired-end adapter sequences and discard reads 

with a length less than 20bp. All fastqs were aligned to the hg19 genome assembly (retrieved 

from hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes) using BWA-MEM v0.7.17-

r1188 (52) with default parameters in paired-end mode. Output SAM files were converted to 

binary (BAM) format, sorted, indexed, and PCR duplicates were removed using SAMtools 

v1.10 (53). Peaks were detected with MACS v2.1.2 (54) with the --broad flag set. DeepTools 

v3.2.0 (55) was used to generate RPGC-normalized bigWig tracks with 50 bp bin sizes 

of the final sample BAM files and visualized on the Integrative Genomics Viewer (56) in 

order to eliminate samples with pronounced track irregularities or low signal-to-noise ratio. 

The Bioconductor (57) package ChIPQC (58) was used to generate quality metrics for each 

processed library – those libraries which contained very few mapped reads, a RelativeCC 

enrichment score (RelCC) < 1, percentage of reads in peak regions (RiP%) < 2%, or number 

of detected peaks < 10,000 were excluded from additional analysis. Peak lists were filtered 

to remove all peaks overlapping ENCODE blacklisted regions (https://sites.google.com/site/

anshulkundaje/projects/blacklists).
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Normalization

We use the Inherent Normalization algorithm as part of the Axiotl Convergence Platform 

to process and normalize H3K27ac BigWig tracks. This normalization approach is designed 

specifically for epigenomes and uses a robust and reproducible reference found within 

the sample itself. In order to find this “inherent unit” we first focus on the most stable 

epigenomic elements in the genome: promoters. We use the set of 81,232 reference 

promoters from the Roadmap project [Roadmap2015]. This set of promoters contains a 

subset of constitutive elements (23,374), active in virtually all cell types, and a subset of 

highly cell-type-specific elements (16,807), active in only one reference cell type. We refer 

to the first list as the “on” promoters and to the second as the “off” promoters. By using 

111 reference epigenomes, the group of “off” promoters will overwhelmingly be inactive in 

any cell type. Given the large number of elements in each list, we can compute very precise 

averages. The distance between the averages of the “on” and “off” collections constitutes our 

“inherent unit,” hence the name of the algorithm. The values of the “on” and “off” averages 

in each sample are then used to align the data, such that all the “off” averages across samples 

are at zero and all “on” averages are at one. Data is log2 transformed so as to make the 

data normally distributed. The approach is described in more detail in Chakraborty et al. (In 

preparation), where the authors show consistent reduction of noise when reprocessing the 

ENCODE 3 reference epigenomes. Noise reduction translates to greater statistical power to 

discover new results in the data. The approach also makes the data biologically interpretable 

and universally meaningful, with a value of one representing the standard activity of a 

constitutive promoter.

ChIP-seq case/control analysis

Power Analysis: We used the package Web power (https://rdrr.io/cran/WebPower/man/

wp.regression.html) with the following parameters to calculate power, p1 = 5 (4 covariates 

(Age, Race, Gender, PMI) + 1 peak), p2 = 4 (4 covariates), alpha = 0.05, power = NULL. 

Our sample sie of 102 achieves 80% power with an effective size (proportion of variance 

explained to variance unaccounted) >0.08.

Covariate and differential acetylation Analysis: We tested and corrected inherent 

normalized H3K27ac data for covariate effects using the following statistical procedures. 

Levene’s tests (R package “car”) showed homogeneity of variances for continuous 

covariates Age (P = 0.1558) and PMI (P = 0.07561). Chi-squared tests (R package “stats”) 

showed no difference for discrete covariates Race (P = 0.8203) and Gender (P = 1). T 

tests (R package “stats”) revealed differences in means for PMI (P = 4.355e-06) and not 

Age (P = 0.3483). We use a linear model (R package “stats”) to regress out all covariates. 

We performed T tests between cases and controls at each H3K27ac element on residuals 

from the linear model, correcting for all four covariates (Age, Race, Gender, PMI). The 

global hypoacetylation we report in opioid-exposed neurons naturally skews the p-value 

distribution obtained from the T tests, nevertheless we use uncorrected p-values as a 

heuristic measure to identify the most pronounced hyper- and hypoacetylated elements.
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RNA-seq data processing and quality control

Postmortem, dorsolateral prefrontal cortex (Brodmann area 9) were dissected from 

cryopreserved coronal slices of brain to obtain bulk tissue RNA samples. 150 samples 

were prepared for sequencing using Takara Bio SMARTer Stranded RNA-seq Kit and 150 

bp paired-end sequencing was performed on an Illumina. Trimmomatic v0.39 (59) was 

used for read trimming and quality filtering with the following settings: ILLUMINACLIP 
seedMismatches=2, ILLUMINACLIP palindromeClipThreshold=30, ILLUMINACLIP 
simpleClipThreshold=10, ILLUMINACLIP minAdapterLength=4, ILLUMINACLIP 
keepBothReads=true, LEADING quality=3, TRAILING quality=3, SLIDINGWINDOW 
windowSize=4, SLIDINGWINDOW requiredQuality=10, MINLEN length=75, AVGQUAL 
quality=20. Read pairs with both reads passing quality filtering were mapped using Salmon 
v1.1.0 (60) in selective alignment mode (61) with an index comprised of a GENCODE v30 

transcriptome (comprehensive gene annotation) and the full GRCh38 primary assembly as a 

decoy. The options --gcBias and --seqBias were enabled to account for potential transcript 

quantification biases (62). Salmon transcript quantifications were aggregated to the gene 

level using tximport v1.12.3 (63).

Samples were excluded based on the following criteria: >40% of reads removed by 

Trimmomatic, mean read GC content <40%, effective sequencing depth <10 million read 

pairs, transcriptomic mapping rate <0.3, RIN score <5, mitochondrial mapping rate >0.5, 

gene expression principal component analysis outliers (along principal components 1 and 2), 

age outlier (age at death >60 years), and self-reported race not African-American or White. 

Several RNA samples were derived from the same individuals (i.e., replicates). For each of 

these replicates sets, the sample with the highest effective sequencing depth was retained 

among the samples that passed quality control. Following all sample exclusions, 24 opioid 

intoxication cases and 27 controls were used for subsequent analysis.

Differential gene expression analysis

Genes were tested for differential expression by opioid overdose death case/control status 

using DESeq2 v1.26.0 (64) to fit a generalized linear model with normalized gene counts 

as the outcome. Opioid intoxication status, ancestry, sex, age at death, PMI, RIN, RNA-

seq sequencing batch, and 11 surrogate variables (SVs) were included in the model as 

explanatory variables. The 11 SVs were estimated using SVA v3.36.0 (65) with variance 

stabilized gene counts and the aforementioned explanatory variables as null model variables. 

To reduce the multiple testing burden, lowly expressed genes, defined as having <10 counts 

in 40% of samples (i.e., the approximate proportion of cases), were excluded, leaving 20,855 

genes in our analysis.

Variable Enhancer Loci (VEL) mapping approach

VELs were identified as previously described (12). Briefly, each opioid case was compared 

independently to the full panel of controls. Shannon entropy scoring was performed on 

inherent normalized H3K27ac ChIP-seq data (described above) to quantify peak specificity 

for each opioid case. Case/control status was then randomly permuted and shannon entropy 

scoring was repeated. These permutations were performed at least 70,000 times to generate a 

unique null expectation of peak specificity scores for each individual peak region. These 
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permutations reveal the expected distribution of specificity scores due to inter-sample 

variation at each peak region. The true value was compared to these distributions for each 

peak to define the p-value. As each peak was tested twice to identify cases with significantly 

higher signal than controls (gained VELs) and significantly lower (lost) VELs, p-values 

were first multiplied by 2. We then applied Benjamini-Hochberg FDR correction to identify 

lost and gained VELs at an FDR 0.05%.

Machine learning models

We utilized inherent normalized (see above) data for all 652,055 H3K27ac peaks, as well 

as a list of covariates as input features. The covariates include: sample descriptors such as, 

sex, age, ancestry and PMI; and ChIP-seq data descriptors such as number of peaks per 

ChIP, number sequencing reads generated, number of aligned reads after duplicate removal, 

alignment rate, fraction reads in peaks, and batch number. We selected Gradient Boosting 

models based on overall performance on tabular data and interpretability via SHAP method. 

Additionally, we aimed to evaluate the cohort with a non-linear approach. Gradient boosting 

models are well suited to capturing complex interactions among features in datasets of 

small sample size. We used XGBoost’s (21) default hyper-parameters to generate models to 

predict case control status of ChIP samples and only varied the input feature list in order to 

compare the models.

Step-wise strategy for peak set removal.—We utilized a step-wise strategy to identify 

distinct models capable of distinguishing cases and controls at high accuracy. The first 

model receives all input features (see definition above). For each subsequent model, the 

features utilized by the previous models are removed from the input feature list. We repeated 

this strategy until we identified a model where the AUC median (described below) fell below 

0.9, resulting in a total of 108 models. To find peak sets that are predictive and robust to 

the choice of train/test set, we utilized two stage assessment of new models: 1) peak set 

discovery and 2) peak set evaluation.

Peak set discovery.—We split the data into five folds, with 4 folds of 10 samples and 

1 fold of 11 samples. We train 5 models, each using a different combination of four folds 

as training set (80% of samples) and the remaining fold as test set (20% of samples). By 

training 5 models, each fold is used as test set exactly once. Early stopping was used during 

training to obtain the minimal number of features that achieves good performance. After 

training, we examined each model to extract information about which features the model 

deemed most relevant to the classification task. We used the SHAP package to calculate 

SHAP values for each feature per sample (66). In order to find features that are important in 

distinguishing cases from controls, we used the mean of absolute SHAP values as the overall 

importance of each feature across all samples (a non-negative value). We define the “peak 

set” of a model as peaks that had non-zero overall importance.

Peak set evaluation.—The predictive performance of a peak set in stage 1 might be 

specific to how the samples are split into folds. If there is heterogeneity in the data, the 

specific samples in the test fold can influence model performance. Thus, to obtain unbiased 

metric for model performance, we evaluated the peak sets on multiple different 5-fold splits. 
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For each of the 5 peak set discovered in step 1, we trained 1000 5-fold cross-validated 

models (5000 models in total per peak set). To select the final peak set, we examine the 

AUC distribution across the aforementioned models. The chosen peak set for downstream 

analyses is the one that ranks highest when sorted by decreasing AUC mean and AUC 

minimum.

Convergence analysis

Interactions between gene promoters and non-promoter loci are intersected with merged, 

non-overlapping elements called from the 51 case and 51 control H3K27ac tracks (652,055 

elements).

Convergence analysis is run on two binary matrices of gained and lost variant H3K27ac 

elements (VEL) identified on 51 opioid-overdose individuals using our entropy-based 

approach using the Axiotl Convergence Platform (convergence.axiotl.com). The analysis 

consists of a permutation test in which a convergence statistic in the observed plexus is 

compared to a null distribution obtained from a collection of null plexi sampled from the 

binary matrix so as to match the activity and connectivity properties of the original plexus. 

Heterogeneity in global patient activity is also preserved. The algorithm is described in 

detail in Sallari et al. (manuscript in preparation).

LD score regression

LDSR was used to estimate heritability enrichment across significant plexi. Annotated 

SNPs lists were generated for all SNPs within VEL regions (+/−5kb from VEL peak 

centers) associated with the top 5 significant plexi. European LD scores and weights were 

downloaded from the LDSC (67). Summary statistics for 27 traits were obtained from 

previously published studies listed in Supplemental Table S6. LD scores were calculated as 

recommended https://github.com/bulik/ldsc/wiki/ using HapMap3 SNPs and 1000 genomes 

phase 3 reference files (68). Heritability enrichment calculations were performed using 

the recommended ‘baseline model’, composed of multiple functional categories including 

conserved regions and coding regions. The significance threshold was defined through 

Bonferroni multi-test correction for 27 traits tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of homogeneous H3K27ac hypoacetylation events
(A) Schematic overview of experimental strategy. NeuN+ nuclei were identified using 

FANS from post mortem dorsolateral prefrontal cortex tissues, followed by H3K27ac ChIP-

seq. (B) Volcano plot of hypoacetylation analysis of ChIP-seq samples. 388 differentially 

acetylated peaks identified at genome-wide significance are shown in blue. Example locus 

DUSP4 highlighted in orange corresponding orange bar in D. (C) Aggregate H3K27ac 

ChIP-seq signal across controls (grey) and opioid cases (blue) for 388 differentially 

acetylated regions. (D) Browser image of H3K27ac ChIP-seq results at example locus 

DUSP4. Orange bar highlights differentially acetylated peak. (E) Motifs enriched in 

differentially acetylated peaks ranked by enrichment p-value. (F) Volcano plot of 

differentially expressed genes identified through RNA-seq of bulk tissue samples (n=24 

cases and n=27 controls). Bonferroni multi-test correction threshold is shown in dotted line. 

(G) Comparison of differential peaks and genes. (left) Differentially expressed genes with 
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log2 fold change (cases/controls) shown in parentheses. Genes in blue overlap gene targets 

of hypoacetylated peaks. (right) Venn diagram showing 10 differentially expressed genes 

(left circle) compared to 460 genes linked to hypoacetylated peaks (right circle). (H) Tukey 

boxplot of log2 fold-change (cases/controls) in gene expression of gene targets associated 

with hypoacetylated peaks versus randomly selected control genes not associated with a 

hypoacetylated peak. Welch’s two sample t-test p=0.00067. Outliers not shown. (I) Gene 

ontology enrichment of differentially expressed genes.
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Figure 2. Machine learning reveals models and key features that distinguish opioid cases from 
controls
(A) Heatmap of the seven peaks that distinguish cases for controls in the first ML 

model. (B) Distribution of AUC derived from multiple 80/20 train/test splits (5-fold cross 

validation with 1,000 repetitions) shown for the top machine learning model (blue), models 

derived from the 388 hypoacetylated peaks identified (grey) and models derived only 

using covariates (white). (C) Schematic representing iterative strategy to identify additional 

models with high predictive accuracy. (D) UMAP projection of opioid cases (blue) and 

control samples (grey) based on peaks utilized by 108 machine learning models and (E) 
based on all ChIP-seq peaks. (F) Gene targets that are shared across 4 or more ML models. 

(G) Pathways enriched across all ML model genes.
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Figure 3. Identification of Variable Enhancer Loci (VELs)
(A) Schematic overview of VEL identification. Each opioid case is compared to the full 

set of control samples to identify case-specific alterations in H3K27ac. (B) Log2 fold 

change (cases/controls) in ChIP-seq signal for lost VELs (blue), gained VELs (grey), and 

hypoacetylated peaks (black). (C) Tukey boxplot of fold change in average gene expression 

for genes associated with VELs. Genes associated with gained VELs (grey) and lost VELs 

(blue) in multiple samples are shown as well as control gene lists shown in white. Outliers 

not shown. Kruskal-wallis ANOVA P<0.0001. Dunn’s post-hoc test is shown *P<0.05 

**P<0.009. (D) Comparison of VELs and VEL gene targets across opioid cases. Percentage 

of VEL peaks shared across multiple cases (grey bar). Percentage of VEL gene targets 

shared across multiple samples (blue bar). Convergence ratio, i.e. the ratio of shared genes to 

shared VEL peaks (orange line).
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Figure 4. VEL convergence of shared target genes with plexus analysis
(A) Schematic representing plexus convergence strategy. (top) H3K27ac peaks (black) 

associated with common target promoter (orange) in promoter capture Hi-C (arcs). Example 

traces are shown for multiple VELs associated with the same target gene in one opioid 

case (single patient), multiple samples with the same VEL (single element), different VELs 

associated with the same target gene across cases (convergence). (B) Quantile-quantile plot 

of plexus analysis of VEL convergence. Five genome-wide significant genes are labelled 

(font proportional to p-value). (C) Plexus VEL trace for top gene ASTN2 is shown with 

genomic location and Hi-C interaction indicated above. Bar graphs indicating the total 

number of VELs identified per case is shown (right).
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Figure 5. Convergent VEL genes are enriched for disease heritability
(A) Schematic representing analytical approach using LDSC to compare published GWAS 

results to top 5 plexus regions in (B) and to control regions with matched neuronal H3K27ac 

activity (C). (B) LDSC heritability enrichment (-log10 p-value) for VEL regions associated 

with top 5 plexus genes (Fig. 4B). Dotted line indicates Bonferroni multi-test correction 

threshold. Traits with significant enrichment are shown in blue. (C) Heritability enrichment 

(proportion of heritability / proportion of SNPs in peak set) with standard error is shown 

for VEL regions (blue dots) and 10 control sets of randomly selected neuronal peaks with 

activity profiles matched to VELs (grey bars). (D) GSEA analysis comparing genes ranked 

by plexus p-value to OUD candidate gene sets defined as genes nearest top 1%, 0.5% and 

0.05% of SNPs identified by OUD GWAS (2). (E) Heatmap representing top 40 genes 

defined by plexus analysis (left). Genes nearest the top 1%, 0.5% and 0.05% of OUD GWAS 

SNPS are indicated (blue). P-value based on 10,000 permutations. Genes also identified by 
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previous approaches including linear regression, T tests and machine learning models are 

highlighted in center. Genes linked to key pathways are indicated (right).
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