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Gradient phase and amplitude errors
in atomic magnetic gradiometers
for biomagnetic imaging systems

Ziqi Yuan,1,2 Shudong Lin,1,2 Ying Liu,1,2,4,5,* Junjian Tang,1,2,3 Tengyue Long,1,2 and Yueyang Zhai1,2,4,*
SUMMARY

The cross-axis projection error (CAPE) caused by residual magnetic fields has recently attracted wide-
spread attention. In this study, we propose a more specific theoretical model and expand the CAPE in
gradient measurements. We first report that differences in relaxation rate and residual magnetic field be-
tween optically pumped magnetometers (OPMs) introduce a significant error term in the output of OPM
gradiometers, referred to as the gradient phase error. Furthermore, when the longitudinal field compen-
sation is inadequate, the interaxial response interference of a single OPM is prominent, resulting in an
amplitude distortion of the signal. This is further amplified in the gradiometer configuration, introducing
the gradient amplitude error. Our experiments demonstrated that the efficacy of mitigating common-
mode noise of OPM gradiometers was significantly impaired when existing the gradient errors. In addi-
tion, a simulation with a magnetoencephalography (MEG) system illustrated an induced source localiza-
tion error of exceeding 2 cm, severely compromising the localization accuracy of OPM-MEG systems.

INTRODUCTION

Magnetoencephalography (MEG) and magnetocardiography (MCG) are noninvasive imaging techniques for biomagnetic fields.1–5 Super-

conducting quantum interference devices (SQUIDs) and optically pumped magnetometers (OPMs) are considered as the main means of

performing MEG and MCG.6–8 To eliminate the influence of environmental magnetic field drift9 and suppress the intrinsic noise of the

measurement system,10 a magnetic gradiometer configuration has been proposed that effectively guarantees the reliability and accuracy

of multi-channel MEG and MCG systems.11,12 Gradiometers implemented using SQUIDs have been developed for several decades, and

multi-channel OPM gradiometers have also been widely applied in recent years.13–15 Instead of coupling weak magnetic fields to low Tc

SQUIDs via pickup coils,16 OPMs utilize the thermal atomic ensembles to performmagnetic field measurements.17,18 By eliminating the bulky

dewar used to insulate between the cryogenic liquid nitrogen from the subject’s skin, OPMs are more flexible and portable, requiring lower

construction and maintenance costs.19,20 More importantly, closer spacing between channels and smaller distances from subjects make

OPMs more effective in terms of their better spatial-resolution and higher signal-to-noise ratio.21

Researchers havemade remarkable achievements in the structural design of the OPM array to enhance the source localization capabilities

of the OPM-MEG and OPM-MCG systems. Multiple designs of multi-channel configuration in a single vapor cell have been proposed for

in-situ gradient measurements and gradient magnetic field compensation.22,23 However, they are limited in actual applications because of

their inflexibility and the difficulty of adjusting their locations. To combine the properties of flexibility and miniaturization, multi-channel

designs with multiple vapor cells have been developed for high-resolution gradient measurements of fetal MCG (fMCG) and adult MEG

systems.20,24,25 These structures allow more channels to be arranged in a limited space, facilitating the flexible configuration of OPM gradi-

ometers.Magnetic gradiometers are typically implemented by subtracting themeasurement signals of two adjacentmagnetometers through

post-processing to suppress common-mode noise.26 Thus, high common-mode rejection ratio (CMRR) requires high consistency between

channels. The consistency of different probes in SQUIDs systems is usually limited by hand-wound coils.27 Unlike SQUIDs, the output of

OPMs includes ambient-field related terms,28 and their sensing axes are susceptible to environmental field changes.1 Furthermore, the in-

crease in array density necessitates the consideration of coupling between channels, including analysis of factors such as the crosstalk of

the modulation field in typical single-beam SERF OPMs,29 and the crosstalk of the static magnetic field generated by three-axis magnetic
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compensation coils.30–32 All of these factors ultimately lead to measurement errors that are large enough to distort the difference signals and

yield inaccurate positioning results.33 Therefore, configuring OPMs as magnetic gradiometers with high CMRR remains a challenge.

The output gain errors drifted by the ambient field and the cross-axis projection error (CAPE)1 in the presence of a residual static magnetic

field have previously been theoretically and experimentally analyzed. Jiang et al. observed and analyzed the relationship between the CAPE

and the frequency of the externalmagnetic field signals of interest in dual-beamOPMs.34 They found that CAPE caused the frequency-depen-

dent measurement amplitude distortion in the nuclear magnetic resonance (NMR) spectrum. Later, Borna et al. simulated and measured

the sensitive axis rotation and amplitude error with CAPE and examined the impact of CAPE on the source localization capabilities of

the OPM-MEG systems.1 Recently, Lin et al. presented a detailed analysis of interaxial time-domain interference in a single-beam SERF

magnetometer. The potential measurement error induced by interference was also demonstrated in an MCG simulation.35 However,

these studies did not consider measurement errors in the OPM gradiometer configuration. The measurement error analysis of magnetic

gradiometers is not identical to that of a single magnetometer. Gradient measurement errors are related to not only the measurement errors

of the individual magnetometers, but also the inconsistency of their properties and performance.

In this study, we first analyzed the interference-dependent gradient phase and amplitude errors which were highly dependent on the

atomic relaxation rate differences and residual magnetic fields. Combined with theoretical analysis and physical model, we detailly demon-

strated this frequency-dependent magneto-optical interaction with atoms and further explored the inducedmeasurement error in MCG and

MEG systems based on OPM gradiometers. Finally, we provided a discussion and conclusion regarding the significance of the gradient

difference error and the calibration method in practical applications.
RESULTS

Dynamic response of the single-beam modulated atomic magnetometer

In general, an OPM system resembles a first-order low-pass filter, where the bandwidth fb (3 dB point) is determined by the total relaxation

rate G0 of the atomic ensemble, giving by fb = G0=ð2pqÞ, with q represents the slowing down factor of 87Rb. In a near-zero magnetic field

environment, the amplitude spectrum M (us, G
0) and phase spectrum 4 (us, G

0) of the OPM have the following form:8>>>>><
>>>>>:

Mðus;G
0Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+
�usq

G0
�2

r

4ðus;G
0Þ = � arctan

�usq

G0
� ; (Equation 1)

where us is the angular frequency of the external magnetic signal to be measured. Equation 1 shows that when the residual static magnetic

field can be ignored, for a signal with a certain frequency, the response amplitude and phase delay of OPM are only related to G0:However, it
is impossible to analytically solve the frequency response of the single-beam modulated OPM when a significant static magnetic field exists

along the laser’s propagation axis.1 Comparing the steady-state solution of dual-beamOPMs36 with the first harmonic steady-state solution of

the single-beammodulated OPM,37 we know that they have the same form as a function of pumping rate Rop, G
0, and the external magnetic

field, except for the Bessel functions introduced by the high-frequency modulation field. Therefore, we can approximately derive the first har-

monic dynamic response of the single-beammodulatedOPM under non-negligible static magnetic field with the reference to the dual-beam

configuration.34 Since the magnetic field compensation along the pump axis (Bz ) is the most error-prone and contributes the most to mea-

surement errors,1 we only consider the effect of the bias field Bz . Assuming that the angle between the external field Bs cosðustÞ to be

measured and the sensitive axis (x-axis) is q, the spin polarization along the pumping beam (Pz ) can be expressed as:35

PzðtÞ = 2J0J1
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2
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where U = gB is the atomic Larmor precession rate in the external magnetic field B; 4x = arctan

�
�usqðG0+us

2q2 � J2
0
Uz

2Þ
G0 ðG02+us

2q2+J2
0
Uz

2Þ

�
and 4y =

arctan
�

� 2usqG
0

G02 �us
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0
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�
. For simplify, we use Jn to represent JnðuÞ, where Jn denotes the nth order Bessel functions of the first kind. See

STAR Methods for the specific derivation process.
Definition of gradient phase and amplitude errors

The observation from Equation 2 is that in the condition of existing residual magnetic fields in pumping axis, the magnetic field along non-

sensitive axis (y axis) will also generate response, introducing the response cross-talk between the two non-pumping axes in both amplitude

and phase. Furthermore, the response phase of the OPM is determined by the total relaxation rate G0. Therefore, if the properties of the two

channels in the gradiometer configuration are different, the response phase of which will also be different, even if Bz is zero.
13,26 The specific

frequency characteristics of the response amplitude and phase to the external signals can be quantified, fitted, and analyzed according to

Equation 2. Thus, we studied the performance of OPM gradiometers based on the above theory as the following two cases.
2 iScience 27, 109250, March 15, 2024
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Case I (gradient phase error): q = 0: Although a singleOPMdoes not experience the amplitude errors caused by4x , the existence ofBz and

the difference in G0 introduce a response phase difference between multiple OPMs, ultimately leading to measurement errors in multi-chan-

nel systems. In this paper, this measurement error is termed as the gradient phase error. The output signal of the OPM ðVðtÞ = A0PzðtÞÞ is an
oscillating signal, where A0 represents the conversion factors of the photodetector and other system parameters. Hence, we can write the

difference amplitude of the OPM gradiometer as:

Vdiff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Vax

2+Vbx
2 � 2VaxVbx cosðD4Þ

�q
; (Equation 3)

where D4 = 4ax � 4bx , where 4ax and 4bx are the response phases of x-axis of the two OPMs. D4 is determined by the signal frequency,

relaxation rate and z axis bias field. Equation 3 reveals that D4 distorts the output amplitude of the OPM gradiometer and further introduces

measurement error. Even when Bz is small enough to be neglected, the gradient phase error exists if the relaxation rates of the twoOPMs are

different. The existence of the gradient phase error is not confined solely to the sensitive axis, but is also present in the non-sensitive axis.

Nevertheless, in cases where the external magnetic field angle is small or the y axis response is inferior to that of the x-axis, the contribution

of the gradient phase error from the non-sensitive y axis to the total error is negligible. In this study, wemainly consider a special case where q

is equal to p=2, such as the maternal cardiomagnetic signal at the sensor position during fMCG measurement. Generally, the gradient

difference technique is employed to suppress the maternal signal; however, the difference in 4y degrades the accuracy of the common

mode noise suppression.

Case II (gradient amplitude error): qs0: The presence of Bz causes Pz also sensitive to the magnetic field along the y axis and thus rotates

the sensitive axis. When the external magnetic field is not parallel to the x-axis, the actual output amplitude of a single OPM in the gradient

configuration can be expressed by:

Vi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Vix

2+Viy
2+2VixViy cosðD4Þ

�q
; (Equation 4)

where i = a;b, D4 = 4ix � 4iy = arctan ðusq =G0Þ. D4 is the inherent response phase difference between the two non-pumping axes. Vi

combines the responses of the two non-pumping axis fields, leading to measurement errors. In addition, different OPMs in the gradient

configuration have diverse response characteristics, inducing different response proportions of x axis and y axis. Previous studies have

systematically discussed the deterministic measurement error that arises from the interaxial response interference of a single-beam modu-

lated SERF magnetometer.35 In this study, we focus on the measurement error arising from the collective effect of the magnitude distortion

exhibited in each OPM in the gradient configuration, which is referred to as the gradient amplitude error. Note that D4 is only related to the

frequency of the external magnetic field and the relaxation rate of the atomic ensemble. However, Equation 2 shows that alterations in Vi are

associated with the angle between the external field and x-axis. It is apparent that, given a constant residual magnetic field, an increase in

the angle between the external field and the x-axis corresponds to an increase in the degree of y axis response. This leads to an increase

in the resulting error. This is particularly important in MEG and MCG applications where the signals of interest may not be entirely parallel

to the sensitive axis.
Calculation of gradient phase and amplitude errors

Calculation of the gradient phase error: Differences in relaxation rate and residual magnetic fields cause OPMs to exhibit distinct response

phases to a dynamic magnetic field. To evaluate the gradient error resulting from the different response phases of OPMs, a set of coils

embedded in the magnetic shield was used to apply a 100 pTrms sinusoidal magnetic field along the sensitive axis of the gradiometer.

Each OPM’s output was continuously collected for 100 s and subsequently normalized. The normalized dynamic outputs of the two OPMs

were directly subtracted. The difference signal was then processed through transformation and calculation using fast Fourier transform

(FFT) to determine the effective value of the component at the same frequency as the applied signal. This value was used to quantify the

magnitude of the gradient phase error. When the response phases of the twoOPMs were identical, the theoretical difference result was zero.

Calculation of the gradient amplitude error: Bz induces the OPM to respond to the magnetic field along the non-sensitive axis, causing a

rotation of the sensitive axis. To assess the gradient amplitude error caused by the rotation of the sensitive axis, a static field was applied along

the z axis of one OPM of the gradiometer by a rectangular Helmholtz coil set surrounding each channel. The field produced by this coil was

negligible at the position of the other channel. Additionally, a 100 pTrms sinusoidal magnetic field was applied by a set of shield coils along

the direction at an angle qwith x-axis (in x-y plane). The dynamic responses of the twoOPMs were collected for 100 s and subjected to FFT to

obtain the response amplitudes. Note that the OPM response amplitude at q = 0 is typically used as a scale factor for converting the OPM

response amplitude to the magnetic field amplitude. Utilizing this scale factor, the OPM response amplitudes at different q were normalized.

The normalized response amplitudes of the two OPMs were differenced to characterize the magnitudes of the gradient amplitude error. The

theoretical difference result was expected to be zero when Bz = 0 (no sensitive axis rotation).
Experimental setup

Our experimental measurement based on our self-designed compact four-channel OPM sensor with high spatial resolution, similar to the

work reported in,38 as shown in Figure 1A. The sensor has a compact volume of only 18 cm3. It can be served as four separate atomic

magnetometers or as two synthetic gradiometers formed by two adjacent channels. The experimental apparatus depicted in
iScience 27, 109250, March 15, 2024 3
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Figure 1. The structure of the OPM sensor and the experimental setup

(A) The multi-channel OPM sensor’s schematic. The sensor has a total volume of about 18 cm3. Each vapor cell contains 600 Torr N2 in addition to a small amount

of 87Rb metal. PD: photodetector.

(B) The experimental setup based on single-beam principle. DBR: distributed Bragg reflector. PMF: polarization-maintaining fiber. TIA: transimpedance

amplifier. LPF: low-pass filter. LIA: lock-in amplifier. DAQ: data acquisition. WG: waveform generator. DAC: digital-to-analog converter. TC: temperature

controller.
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Figure 1B was employed to provide magnetic signals and record the response of the OPM. See STAR Methods for details of experimental

operation.
Simulation of gradient phase error

Simulation calculations were performed to assess the gradient phase error with the assumption that the same calibration signal was

applied to the two OPMs in the gradiometer configuration. Figure 2 provides an overview of how the gradient phase error varies as a

function of signal frequency under different residual magnetic fields (Bz ) and bandwidth divergences. Figure 2A depicts the correlation

between the gradient phase error and signal frequency at q = 0, which is notably impacted by the differences between channels. Figure 2B

displays the computed gradient phase error when measuring the signal along the non-sensitive y axis (q = p=2) for comparison with

Figure 2A. Figure 2B follows a similar trend to Figure 2A, with the gradient phase error of the non-sensitive axis significantly larger

than that of the sensitive axis. The observation from Figure 2 demonstrates a considerable increase in the measurement error of the

OPM gradiometers as the bandwidth decreases, particularly in the low-frequency range. This indicates that the gradient measurement er-

ror has a greater impact on measurement systems utilizing OPM sensors with narrower bandwidths. It’s worth noting that in the simulations

sections, both the gradient phase and amplitude errors represent the proportion of the differential result to the amplitude of the original

calibration signal.
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Figure 2. The calculated gradient phase error varies with the signal frequency under different Bz and bandwidth differences

The simulated gradient phase error represents the proportion of the differential result to the amplitude of the original calibration signal.

(A) The measured signal along the x-axis (q = 0).

(B) The measured signal along the y axis (q = p=2).
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Figure 3. The measured amplitude error of the OPM gradiometer caused by the gradient phase error as a function of signal frequency

In order to eliminate the error caused by the fluctuation of the scale factor, the output of each OPM is normalized.

(A) The measured amplitude error at different Bz .

(B) The measured amplitude error at different cell temperatures.
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Experimental measurement results of gradient phase error

Figure 3 illustrates that the gradient phase error affects the non-sensitive axismore significantly. Therefore, we focused onevaluating the effect of

thegradientphaseerror on the suppressionperformanceofOPMgradiometers for the yaxis response.This is criticalwhengradiometers areused

toeliminatecommon-modebackgroundsignalsalong the yaxis, as in thecaseof thematernal cardiomagnetic signal during fMCGmeasurement.

Twoarbitrary channels in the four-channelmagnetometer shown inFigure 1Awere selected to forma synthetic gradiometer. The four-channel

electronic control system illustrated in Figure 1B ensured that the twoOPMsoperated simultaneously. A uniformfieldwas applied along the non-

sensitive at the sensors position. Under ideal conditions, the gradiometer output should be zero. However, with the similar trend with the simu-

lation results, thedifferenceof the twoOPMswasnonzeroand increasedwith the signal frequencyas shown inFigure3. Thus,wedemonstrate that

the gradient phase error is dominant in the high frequency band. Then, themagnetic field of 15 nTwas applied above the Bz magnetic compen-

sation zero point of one channel in the gradiometer configuration, and we found that the differential result was approximately zero, as shown by

the blue line in Figure 3A. We demonstrate that introducing an extra magnetic field to one channel diminishes the phase difference in response

between the two magnetometers, resulting in a reduction in the gradient phase error; however, if Bz continues to increase on this basis, the

gradient phase error will increase significantly. To assess the impact of bandwidth differences between channels on the gradient phase error,

the temperaturesofbothchannelsweresimultaneously adjusted, asdepicted inFigure3B.Amodest increase in the temperature inboth channels

leads toa reductionof thegradientphaseerror.Suchdecrease isattributed toa reduction in thebandwidthdifferencebetweenchannels, aligning

with the trend observed in the simulated influence of bandwidth difference on the gradient phase error in Figure 2. It is worth mentioned that

because of the relatively low accuracyof the automaticmagnetic compensation algorithmof the four-channel electronic control system, themag-

netic compensation point (0 nT) in this section does not truly represent the point at which Bz equals to zero.

Furthermore, we analyzed the impact of the gradient phase error on the measurement accuracy of an fMCG system. In the actual mea-

surement, the maternal heart was located farther away from the magnetometer than the heart of the fetus, and the direction of maternal car-

diacmagnetic field was nearly perpendicular to the sensitive axis of the sensor. Consequently, thematernal heart magnetic signal was consid-

ered as a more uniform background field than the fMCG signal. Thus, the gradient differential method can be used to partly suppress the

maternal heart magnetic signal in the fMCGmeasurement system.39 A shield coil set, driven by a waveform generator, provided a simulated

uniform cardiac magnetic field with a frequency of 1 Hz and an effective value of 100 pT in the non-sensitive axis direction. The output of the

OPM gradiometer was then calculated under several different static magnetic fields along the pump laser propagation axis. In Figure 4, the

power spectral density (PSD) is presented for both the single-channel cardiac magnetic field signal and the differential signal obtained from

the two OPMs. The cardiomagnetic signal primarily falls within the frequency range of 50 Hz, as indicated by the black line in Figure 4. The

presence of Bz leads to the excitation of the OPMs’ response to the magnetic field along the y axis. Moreover, because of the difficulty in

maintaining consistent relaxation rates among the OPMs, the phase error is introduced, causing the noise suppression ability of the OPM

gradiometer to reduce. Although the gradient phase error is more significant in high frequency band, we note that with increasing Bz , the

impact of the error on relatively low-frequency MCG signals cannot be ignored.

To eliminate the gradient phase error, merely compensating Bz to zero is insufficient. Figure 2 shows that the gradient phase error persists

even when Bz = 0 if there is a bandwidth difference between the OPMs. Therefore, in gradiometer applications, it is necessary to reduce the

relaxation difference between channels without compromising the OPMs’ fundamental performance by adjusting parameters such as Bz ,

pumping light intensity and cell temperature tominimize the gradient phase error. Afterward, relatively high-frequency signals can be applied

to confirm the efficacy of error suppression.

Simulation of gradient amplitude error

Simulation calculations were conducted to evaluate the gradient amplitude error, assuming that an identical calibration signal was applied to

both OPMs in the gradiometer configuration. The static magnetic field present along the pumping axis excites the OPM response to the
iScience 27, 109250, March 15, 2024 5
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magnetic field aligned with the non-sensitive axis, which eventually induces the gradient amplitude error. The relationship between the calcu-

lated amplitude error and signal frequency at different q is depicted in Figure 5. When the remanence of the pumping axis is null, the ampli-

tude error becomes zero. However, when the remanence is nonzero, the amplitude error increases with the differences between the channels.

Notably, a larger q leads to a more substantial error. This is particularly important in MEG and MCG applications where the signals of

interest may not be entirely parallel to the sensitive axis. Upon comparing Figures 2 and 5, it becomes evident that the variation in bandwidth

between channels has a greater impact on the gradient phase error, whereas the difference in static magnetic field along the pumping axis

between channels notably influences the gradient amplitude error. In general, both the gradient phase and amplitude errors decrease as

the performance difference between channels narrows. Figures S1 and S2 represent additional simulation results of gradient phase and

amplitude errors with higher Bz difference and smaller bandwidth difference.

Experimental measurement results of gradient amplitude error

The response of the OPM to themagnetic field along the non-sensitive axis is visually illustrated by the rotation of the sensitive axis. To quan-

tify the correlation between the rotation angle of the sensitive axis and the static magnetic field along the pumping axis, a sinusoidal field with
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Figure 5. The calculated gradient amplitude error varies with the signal frequency under different Bz and bandwidth differences

The simulated gradient amplitude error represents the proportion of the differential result to the amplitude of the original calibration signal.
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Figure 6. Experimental observation regarding the rotation of the sensitive axis

(A) Relationship between the sensitive axis rotation and the signal frequency under different static magnetic fields.

(B) The difference between the rotation angle of the sensitive axis at 10 Hz and 270 Hz under different static magnetic fields.
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a frequency range of 10–270 Hz and an effective value of 100 pTrms was generated using shield coils driven by a digital-to-analog converter.

The applied rotating field, with a resolution of 0.1�, was rotated in the x-y plane. This experiment was conducted on a single OPM. Figure 6A

demonstrates a notable correlation between the sensitive axis rotation angle with the signal frequency and Bz . As D4 varies with the signal

frequency, the response coupling between the two non-pumping axes is frequency-dependent. This coupling is dominated by low-frequency

signals, aligning with the correlation between gradient amplitude error and signal frequency observed in Figure 5. Meanwhile, the rotation

angle of the sensitive axis increases with the increase in Bz . Additionally, the rate at which the rotation angle decreases with frequency in-

creases with larger Bz values, suggesting a widening gap between the rotation angles at low and high frequencies. However, this relationship

is not linear, as illustrated in Figure 6B. Specifically, the disparity between the low and high frequencies first increases and then decreases asBz

increases. This is attributed to the fact that while increasing Bz enhances the response of the non-sensitive axis, it also affects the bandwidth

and scale factor of the OPM system.

When the signal aligns with the sensitive x-axis, the calibration process can prevent amplitude measurement errors resulting from the

rotation of the sensitive axis. However, the limitations of practical conditions often result in the signal being at an angle relative to the

x-axis. According to Equation 4, when the external magnetic field is not parallel to the x-axis, the collective amplitude distortion exhibited

by each OPM in the gradient configuration causes the gradient amplitude error to emerge. The normalized response amplitudes of the

two OPMs at various frequencies and incident angles of the external magnetic field are shown in Figures 7A and 7B, respectively, and their

differential amplitudes are depicted in Figure 7C. Each OPM’ response amplitude was obtained by applying a 10 nT remanence to their

pumping axes after the magnetic field was compensated.

As shown in Figures 7A and 7B, the OPM response is affected by the sensitive axis rotation, resulting in an initial increase and subsequent

decrease in the response as q increases. Although different OPMs exhibits varying response trends with parameter changes, the overall

relationship holds true. The findings confirm that the rotation of the sensitive axis causes a greater amplitude distortion of the OPM for

low-frequency signals, consistent with the experimental results presented in Figure 6A. The data presented in Figure 7C further support

this conclusion, as the figure depicts a decrease in the gradient error as the signal frequency increases, which is in a good agreement

with the simulation results presented in Figure 5. The black line in Figure 5 indicates that the gradient amplitude error can be eliminated

when the value of Bz is zero. A widely used method to compensate for the residual static magnetic field is to ensure that the dispersion curve

of the sensitive x-axis response crosses the zero point. However, it should be noted that the zero crossing of the dispersion curve does not

necessarily indicate that the response of the non-sensitive y axis is zero. Hence, we propose our precisemagnetic field compensationmethod.

First, using the conventional single-beam OPM magnetic compensation method40 to offset the triaxial remanence, ensuring the dispersion

curve of the sensitive-axis response intersects the zero point. Subsequently, minimize the response of the non-sensitive axis by adjustingBz , as

illustrated in Figure 8A. Following this, compensate x and y axis remanence again to eliminate the effect of the coils’ orthogonal angle. Finally,

the scale factor of the response of the x-axis will increase accordingly, as shown in Figure 8B. Using our method, the scale factor of the y axis

can be decreased by 86%, while the scale factor of the sensitive x-axis can be further increased by 4%.

Impacts of gradient phase and amplitude errors on the localization accuracy of OPM-MEG systems

An OPM-MEG simulation was conducted to evaluate the effects of the gradient errors on the localization accuracy of the MEG system. The

simulation and processing tasks for theMEG signals were based on FieldTrip, an open-sourceMATLAB toolbox for advancedMEGanalysis.41

A 20-channel OPM-MEG system consisting of five four-channel magnetometers, as shown in Figure 1A, was simulated. The channel positions

were artificially adjusted to approximately cover the auditory cortex of the right brain, as shown in Figure 9. The single-shell model developed

by Nolte was used as the head-volume conduction model. Following the auditory oddball experiment provided by the NatMEG workshop,

the position and orientation of the activated cortex were determined using the equivalent current dipole model. First, we used the forward

modeling method to determine the magnetic field distribution induced by the calculated activated source at all the channel location. The
iScience 27, 109250, March 15, 2024 7



Figure 7. The experimental results of the gradient amplitude error

(A) The normalized responses of channel 1 at different frequencies and incident angles (q) of the external magnetic field.

(B) The normalized responses of channel 2 at different frequencies and incident angles (q) of the external magnetic field.

(C) The amplitude difference between the two OPMs.
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ideal OPM output was thenmodified by calculating the output affected by the gradient errors in the presence of a static magnetic field on the

laser’s propagation axis, according to the previously discussed theory. Finally, the dipole fittingmethod provided by Fieldtrip was used again

to estimate the new source location corresponding to the calculated outputs of all channels.

TheOPM-MEG system is typically located in a magnetic shielding room and experiences a non-uniform gradient magnetic field. Owing to

limitations in the accuracy of the magnetic compensation system and the residual fictitious magnetic field resulting from the intensity and

frequency fluctuations of the pumping light, it is difficult to eliminate the gradient phase and amplitude errors, which have a negative impact

on the localization capability of the OPM-MEG system, particularly for wearable systems that require displacement. Furthermore, the errors

are highly dependent on signal frequency, which places higher demands on the pre-use calibration process of OPM-MEG, as the brain source

signals picked up by the MEG system cover a wide frequency range of 10–100 Hz.42 In this section, we discuss the errors in source location for

OPM-MEG gradient measurement systems with varying performance when exposed to a random residual DC magnetic field and different

frequency signals. To simulate a random Bz scenario, each OPM channel was assigned a random static magnetic field along the laser prop-

agation axis. The field was drawn from a normal Gaussian distribution with different means (m) and standard deviations (s). Random distribu-

tions were generated 20 times, and the results were averaged.

The effect of the gradient phase error on the OPM-MEG source localization system was first analyzed, assuming that the angle between the

direction of the signal to be measured and the x-axis was negligible. Figure 10 displays the average values of the source localization error for

different frequency signals when changing the standard deviation of Bz (sððBzÞÞ) at different Bz mean values (mðBzÞ). The mean values of Bz in

Figures 10A and 10B are 5 and 10 nT, respectively. Each pair of OPMs that constituted the gradiometer possessed bandwidth of 80 and

130Hz. The source localizationerror increaseswith themeanandstandarddeviationofBz , indicating that thegreater thedifference in the residual

magnetic fieldbetween the channels, the larger the localization error. The relationship between the source localizationerror and signal frequency

exhibits the same trendas the simulation results inFigure 2and themeasured results inFigure3. In comparingFigures10Aand10B,wefind that as

mðBz ) increases, themaximumerror point moves toward higher frequencies. For a mðBzÞ of 10 nT and a sðBzÞ of 5 nT, the induced average source

localization error can be greater than 1 cm for signals with frequencies of about 100 Hz. To quantify the effect of the channel bandwidth on the

localization error, the bandwidth values of each pair of OPMs were increased to 130 Hz and 180 Hz and the experiments described above
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Figure 9. The simulated 20-channel OPM-MEG system

The OPM array covers the auditory cortex of the right brain. The blue dots represent the head shape, while the skin-colored grids depict the head model. Each

channel’s position is marked by a black circle, and the center of each channel is indicated by a red dot. The yellow round arrow represents the activated cortex.

The LPA point corresponds to the left pre-auricular, and the RPA point corresponds to the right pre-auricular.
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were repeated (see Figure S3). Basedon the above simulations, we conclude that the impact of the gradient phase error ismore significant on the

MEG system using OPMs with narrower bandwidth.

When the external magnetic field is not strictly parallel to the sensitive axis, the presence of the static magnetic field along the laser prop-

agation direction causes interaxial response interference. Equation 2 shows that the distortion of theOPMoutput is associated with the angle

between the external field and the sensitive x axis (q). An increase in q corresponds to an increase in the non-sensitive axis response under a

certain Bz . Figure 11 illustrates the average values of the simulated source localization error induced by the gradient amplitude error for

different frequency signals when changing the standard deviation of Bz at different incident angles of the measured signals. Unlike the local-

ization error induced by the gradient phase error, the localization error induced by the gradient amplitude error decreases as the frequency

increases. Additionally, it has been verified that the error increases with larger q, consistent with the simulation results shown in Figure 5 and

the measured results in Figure 7. Similar to the abovementioned simulation process of the gradient phase error, we also increased the OPM

bandwidth and repeated the simulation process (see Figure S4). In the MEG system constructed using OPMs with a narrower bandwidth, the

gradient amplitude error diminishes more rapidly with increasing frequency.

Consequently, the gradient phase and amplitude errors simultaneously induce source location errors. From Figures 10 and 11, we can infer

that the location error can accumulate to over 2 cm, which severely reduces the accuracy of MEG or MCG systems. In practical gradient ap-

plications, the gradient errors should be considered and compensated for.

DISCUSSION

In recent years, the CAPE in OPMs has garnered widespread attention among researchers due to its crucial significance in optimizing OPM

performance. In this study, we presented a comprehensive theoretical and experimental analysis of the gradient phase and amplitude errors

in a single-beam modulated SERF atomic magnetic gradiometer. Specifically, we examined the relationship between the errors and signal

frequency, angle of the external magnetic field, and performance consistency between channels. The simulation results agree well with

the experimental data. For practical applications, we employed simulations to assess the impact of the errors on OPM gradiometer-based

MEG andMCG systems. Our results reveal that the effect of the errors is non-negligible in high-precision biomagnetic measurement systems

that useOPMgradiometers. In addition to the impact on synthetic gradiometer approaches, the gradient phase and amplitude errors will also

influence the accuracy of the source inversion algorithm. For instance, the different response phases of OPMs may result in the temporal ac-

curacy reduction of the inversion algorithm.43,44 Due to the different frequency characteristics of the gradient errors, researchers need to focus

on different priorities when selecting source inversion systems for diagnosing different diseases under different frequency bands.

Because the gradient phase and amplitudeerrors are inherent error terms in gradientmeasurements through atomic ensembles, our inves-

tigation delves beyond single-beam OPM gradiometers. The response of the OPM system to an external magnetic field resembles that of a

low-pass filter, exhibiting a frequency response similar to that of the conventional filter. Each OPM exhibits an intrinsic phase delay in its

response to an externalmagnetic field, which is primarily related to the relaxation of the atomic ensemble, residual field, and signal frequency.

When the external magnetic field is aligned with the sensitive axis, the response phase difference of each single OPM introduces a zero-

crossing error in the multichannel OPM measurement system, which can be readily detected by visual inspection. However, for gradiometer

configurations, the variation in the response phase among OPMs yields the emergence of the gradient phase error, distorting not only the

phase delay of a single OPM but also the amplitude of the gradiometer output. In addition, the gradient phase error shows the frequency-

dependent characteristic that dominants in high-frequency band,which fits our theorywell. Notably, compensatingBz to zero fails to eliminate
iScience 27, 109250, March 15, 2024 9



Figure 10. The simulated source localization error induced by the gradient phase error at various signal frequencies and standard deviations of residual

static magnetic fields on pumping axis

The bandwidths of the two OPMs that constitute the gradiometer are 80 Hz and 130 Hz, respectively.

(A) mðBzÞ = 5 nT.

(B) mðBzÞ = 10 nT.
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the impact of the gradient phase error, given its greater susceptibility to relaxation consistency between channels. Thus, when constructing an

OPMgradiometer, pre-calibrationof theOPMbandwidth and reduction in their differenceare crucial andcanbeachievedbymanipulating the

operating temperature of the alkali metal cell and adjusting the pumping light intensity. However, in practical applications, an ideal alignment

between the externalmagnetic field and the sensitive axis of theOPM is often unattainable. The presence ofBz causes rotation of the sensitive

axis, thus compromising the calibration of theOPMand resulting in amplitudeerrors.WhenmultipleOPMs are combined in a gradient config-

uration, theamplitudedistortionof a singleOPM is amplified, resulting in thegradient amplitudeerror. Thegradient amplitudeerror shows the

frequency-dependent characteristics that dominants in low-frequencyband.Meanwhile, the impact ofBz canbemitigatedby compensating it

to zero. Therefore, the effective elimination of residualmagnetic fields in themagnetic shielding room is crucial to ensure the accuracy ofOPM

measurements. In general, correlated variations inBz depict amore realistic scenariowhere environmental fluctuations induce similar changes

amongOPMs, leading to comparatively minor errors. However, whenOPMs are allowed tomove in the remnant background field, the uncor-

related changes of Bz will generatemore problematic gradient phase and amplitude errors.33 Thus, the accuracy and consistency of the active

magnetic field zeroing technique become more significant. We believe that the ongoing development of calibration and real-time residual

magnetic field zeroing techniques holdspromise for reducing theeffects of these inherent gradient errors onOPMgradiometers, thereby real-

izing the advantages of OPM gradiometer-based biomagnetic measurement systems.

Limitations of the study

We configured 20 fixed-location channels in the simulated OPM-MEG system. However, to enhance the measurement sensitivity and spatial

resolution, the latest OPM-MEG systems now have involved hundreds of channels. Therefore, our simulation settings may also be improved

synchronously to simulate the most realistic testing conditions.
Figure 11. The simulated source localization error induced by the gradient amplitude error at various signal frequencies and standard deviations of

residual static magnetic fields with mðBzÞ = 5 nT

The bandwidths of the two OPMs that constitute the gradiometer are 80 Hz and 130 Hz, respectively.

(A) q = 0.03 rad (1.72 �).
(B) q = 0.15 rad (8.60 �).
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In addition, we have preliminarily validated the effective suppression of gradient difference errors throughmagnetic field closed-loop con-

trol (not shown in this paper). Nevertheless, this approach will introduce additional noises and othermeasurement errors. In the future, we will

further investigate the impact of closed-loop control on the performance of the gradientmeasurement system to improve the reliability of the

OPM gradient measurement system.
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16. Storm, J.H., Hömmen, P., Drung, D., and
Körber, R. (2017). An ultra-sensitive and
wideband magnetometer based on a
superconducting quantum interference
device. Appl. Phys. Lett. 110, 072603. https://
doi.org/10.1063/1.4976823.

17. Savukov, I., Kim, Y.J., and Schultz, G. (2020).
Detection of ultra-low field NMR signal with a
commercial QuSpin single-beam atomic
magnetometer. J. Magn. Reson. 317, 106780.
https://doi.org/10.1016/j.jmr.2020.106780.

18. Roberts, G., Holmes, N., Alexander, N., Boto,
E., Leggett, J., Hill, R.M., Shah, V., Rea, M.,
Vaughan, R., Maguire, E.A., et al. (2019).
Towards OPM-MEG in a virtual reality
environment. Neuroimage 199, 408–417.
https://doi.org/10.1016/j.neuroimage.2019.
06.010.

19. Kominis, I.K., Kornack, T.W., Allred, J.C., and
Romalis, M.V. (2003). A subfemtotesla
multichannel atomic magnetometer. Nature
422, 596–599. https://doi.org/10.1038/
nature01484.
12 iScience 27, 109250, March 15, 2024
20. Shah, V.K., andWakai, R.T. (2013). A compact,
high performance atomic magnetometer for
biomedical applications. Phys. Med. Biol. 58,
8153–8161. https://doi.org/10.1088/0031-
9155/58/22/8153.

21. Wyllie, R., Kauer, M., Smetana, G.S., Wakai,
R.T., and Walker, T.G. (2012).
Magnetocardiography with a modular spin-
exchange relaxation-free atomic
magnetometer array. Phys. Med. Biol. 57,
2619–2632. https://doi.org/10.1088/0031-
9155/57/9/2619.

22. Johnson, C., Schwindt, P.D.D., and Weisend,
M. (2010). Magnetoencephalography with a
two-color pump-probe, fiber-coupled atomic
magnetometer. Appl. Phys. Lett. 97, 243703.
https://doi.org/10.1063/1.3522648.

23. Colombo, A.P., Carter, T.R., Borna, A., Jau,
Y.Y., Johnson, C.N., Dagel, A.L., and
Schwindt, P.D.D. (2016). Four-channel
optically pumped atomic magnetometer for
magnetoencephalography. Opt Express 24,
15403–15416. https://doi.org/10.1364/OE.24.
015403.

24. Wyllie, R., Kauer, M., Wakai, R.T., andWalker,
T.G. (2012). Optical magnetometer array for
fetal magnetocardiography. Opt. Lett. 37,
2247–2249. https://doi.org/10.1364/OL.37.
002247.

25. Boto, E., Holmes, N., Leggett, J., Roberts, G.,
Shah, V., Meyer, S.S., Muñoz, L.D., Mullinger,
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study does not use experimental models typical in the life sciences.
METHOD DETAILS

Steady-state response of the dual-beam and single-beam modulated atomic magnetometer

The magnetometers’ coordinates are shown in Figure S5. Whether it is dual-beam configuration or single-beam configuration the circularly

polarized pump beam is defined on the z-axis. For dual-beamOPM, the external magnetic field to be sensed is defined on the y-axis and the

linearly polarized probe beam is along the x-axis. For single-beam OPM, the sensitive axis is x-axis.

When the spin-exchange rate is much faster than the spin precession, the evolution of alkali-metal atomic ground state electron spin po-

larization P can be described by a Bloch equation as follows:36

dP

dt
=

1

q

	
UðtÞ 3 P + Ropðbz � PÞ � GP



; (Equation 5)

where UðtÞ = gBðtÞ, g is the gyromagnetic ratio of the orbital electron, BðtÞ = ½BxðtÞ;ByðtÞ;BzðtÞ� is the external magnetic field, q is the slow-

ing-down factor, Rop is the pumping rate, bz is the unit vector along the z-axis, G is the total relaxation rate except Rop. When the field to be

measured is a static field, the electron spin polarization of the atomic ensemble in the vapor cell quickly reaches the steady state. Solving

Equation 5 for dP
dt = 0, we obtain

Px =
Rop

G0�G02+Ux
2+Uy

2+Uz
2
� �G0Uy + UxUz

�
; (Equation 6)
Py =
Rop

G0�G02+Ux
2+Uy

2+Uz
2
� ��G0Ux + UyUz

�
; (Equation 7)
Pz =
Rop

G0�G02+Ux
2+Uy

2+Uz
2
� �G02 + Uz

2
�
; (Equation 8)
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where G0 = G+Rop. For a dual-beam magnetometer, Px (Py ) is only sensitive to By (Bx ) when Bz = 0, but the z-component of the spin po-

larization Pz is non-sensitive to the external field. However, after applying a high-frequency modulation field Bm cos ðumtÞ (Bm � 150 nT,

jUj � um) on the sensitive axis (x-axis), the first order harmonic response of Pz becomes as follows:37

Pz = 2
Rop

G02J0ðuÞJ1ðuÞ
�

G0Ux

G02+U0
2
+ J0ðuÞ2 UyUz

G02+U0
2

�
; (Equation 9)

where Jn is the nth order Bessel functions of the first kind; U0
2

= g2ðBx
2 + J0ðuÞ2By

2 + J0ðuÞ2Bz
2Þ, u = gBm=ðqumÞ : At this time Pz becomes

sensitive to Bx in the near zero field environment. This is the operational principle of a single-beam modulated magnetometer.

We make two important observations comparing Equations 7 and 9: (1) the atomic magnetometer is simultaneously sensitive to the mag-

netic fields along the x and y axes when existing residual magnetic field on the pumping axis (Bz ); (2) the response formulas of the spin po-

larization components of the probe axes of the single-beam and dual-beammagnetometers have the similar form. The first difference is that

the demodulation of the first harmonic introduces attenuation of the amplitude. Another difference is that the presence of the modulation

field modifies the precession frequency of the atom in weak fields. Themodification depends on the relative orientation of the static field and

the radio-frequency field. If these two fields are parallel, the Larmor frequency is unchanged; if, on the contrary, they are perpendicular, the

Larmor frequency is multiplied by J0ðuÞ.37
Dynamic response of the dual-beam atomic magnetometer

We consider the operation of theOPM in a bias magnetic field along the pumping axis (Bz ) and a small transverse oscillatingmagnetic field in

x-y plane. We consider a general case of UðtÞ = ½Ux cosðustÞ;Uy cosðustÞ;Uz �. Rewrite Equation 5 as a system of partial first-order, linear dif-

ferential equations:34

dPx

dt
=

1

q

	
UyðtÞPz � UzPy � G0Py



; (Equation 10)
dPy

dt
=

1

q

	
UzPx � UxðtÞPz � G0Py



; (Equation 11)
dPz

dt
=

1

q

	
UxðtÞPy � UyðtÞPx � G0Pz + Rop



: (Equation 12)

From Equation 8 we know that in the weakmagnetic field environment, the steady-state of Pz can be regarded as a constant Pz0z Rop= G
0.

Since the small transverse oscillating magnetic field will not deviate Pz much from Pz0, Pz can be replaced by Pz0 in Equations 10 and 11.

Combing the first two equations using Equation 10 G i * Equation 11, one can derive

dPG

dt
=

1

q
½GiUzPG � G0PG H iUGðtÞPz0�; (Equation 13)

where PG = PxGiPy , UGðtÞ = UxðtÞGiUyðtÞ. The general solution to the above equation is

P+ðtÞ = e�
R

G0 � iUz
q dt

�
C1 +

Z � iPz0U+ðtÞ
q

e
R

G0 � iUz
q dtdt

�
: (Equation 14)

Since the term proportional to C1 decays exponentially to zero very fast, Equation 14 becomes

P+ðtÞ = � i
Rop

G
0
U1+

	
usq sinðustÞ+ðG0 � iUzÞcos ðustÞ



ðG0 � iUzÞ2+us

2q2
; (Equation 15)

where U1+ = Ux + iUy . The real part of Equation 15 represents PxðtÞ as follows

PxðtÞ =
Rop

G0

2
64Uy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02+u2q2

q
cos

�
ust+Fy

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
G02 � Uz

2+us
2q2

�2
+4G02Uz

2
q +Ux

Uz cos ðust+FxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
G02 � Uz

2+us
2q2

�2
+4G02Uz

2
q

3
75; (Equation 16)

where Fy = arctan

�
�usqðG02+us

2q2 �Uz
2Þ

G0ðG02+us
2q2+Uz

2Þ

�
, Fx = arctan

�
� 2usqG

0

G02 �us
2q2+Uz

2

�
.

Dynamic response of the single-beam modulated atomic magnetometer

We now calculate the dynamic response of the single-beammodulated atomic magnetometer. We consider the case at first where the mag-

netic field along y- and z-axes are approximately zero, leading to a zero steady state of Px . Combining Equations 11 and 12, one can derive:
14 iScience 27, 109250, March 15, 2024
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dPG

dt
=

1

q

	� iUxðtÞPG � G0PG + Rop



; (Equation 17)

where PG = PzGiPy . Applying a modulation field with an amplitude of Bm at an angular frequency um and assuming the amplitude of the

field to bemeasured along the x-axis is Bx at an angular frequency ux (Ux � Um). The general solution to Equation 17 can be expressed as:

P+ðtÞ = e�
R

iðUx cosðux tÞ+Um cosðumtÞÞ+G0
q dt

�
C1 +

Z
Rop

q
e
R

iðUx cosðux tÞ+Um cosðumtÞÞ+G0
q dtdt

�
: (Equation 18)

Similarly, we ignore terms related to C1. Using Bessel expansion eiu sinðutÞ =
PN

k = �NJkðuÞeikut , Equation 18 becomes as follows

P+ðtÞ=
Rop

im0umq+in0uxq+G
0e

iðm0 �mÞumt+iðn0 � nÞux tÞ

3
XN

m = �N

XN
m0 = �N

XN
n = �N

XN
n0 = �N

Jmðu1ÞJm0 ðu1ÞJnðu2ÞJn0 ðu2Þ;
(Equation 19)

where u1 = gBm=ðqumÞ; u2 = gBx=ðquxÞ; n0 � n=G 1. Since the higher-order resonance terms tend to zero, we only consider the dominant

zero-order resonance term (m0 = 0). Demodulating the response of the atomic magnetometer at the modulation frequency (m = 1Þ, Equa-
tion 19 reduces to

P+ðtÞ = 2RopJ0ðu1ÞJ1ðu1Þ
XN

n = �N

XN
n0 = �N

Jnðu2ÞJn0 ðu2Þ 1

in0uxq+G
0e

iðn0 � nÞux tÞ

= 2RopJ0ðu1ÞJ1ðu1Þ
XN

n = �N

XN
n0 = �N

Jnðu2ÞJn0 ðu2Þ
�
G0 � in0uxq

�fcos½uxtðn0 � nÞ�+i sin½uxtðn0 � nÞ�g
G02+

�
n0uxq

�2 :

(Equation 20)

Its real part is

PzðtÞ= 2RopJ0ðu1ÞJ1ðu1Þ
XN

n = �N

XN
n0 = �N

Jnðu2ÞJn0 ðu2Þ G0 cos½uxtðn0 � nÞ�+n0uxq sin½uxtðn0 � nÞ�
G02+

�
n0uxq

�2
= 2RopJ0ðu1ÞJ1ðu1Þ

XN
n = �N

XN
n0 = �N

Jnðu2ÞJn0 ðu2Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02+

�
n0uxq

�2q cosðuxtðn0 � nÞ+ qxÞ;
(Equation 21)

where qx = arctan
�� n0uxq

G0
�
:

The above equations give the analytical solution of the frequency response of the single-beam modulated atomic magnetometer to the

sinusoidal oscillating field along the sensitive x-axis when By = Bz = 0. This formula is too complicated to calculate the specific response

phase and amplitude. Combining the amplitude-frequency response and the phase-frequency response of the first-order low-pass filter

and the numerical solution of the dual-beam magnetometer, we deduce that Equation 21 can be simplified as:

PzðtÞ = 2J0J1Rop
Ux

G0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02+us

2q2

q sin
�
uxt + arctan

�
� uxq

G0
��

= Ax sinðux + 4xÞ; (Equation 22)

where Ax represents the response amplitude and 4x represents the response phase. To verify the accuracy of Equation 22, we use MATLAB

to numerically simulate the amplitude-frequency response and phase-frequency response of the magnetometer represented by Equation 21

to different frequency signals, and compare the simulation results with the ones calculated by Equation 22, as shown in Figure S6.

Figure S6 proves the accuracy of our deduction. Thus, we furthermake an analogy and extend Equation 22 to a general situation according

to the analysis in dynamic response of dual-beam atomic magnetometer. When existing static remanence in the pumping axis and the mag-

netic field to be measured has components on both the sensitive and non-sensitive axes, the frequency response of the single-beam modu-

lated magnetometer can be inferred as

PzðtÞ = 2J0J1
Rop

G0

2
64Ux

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02+us

2q2

q
cosðust+4xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

G02 � J20Uz
2+us

2q2
�2
+4G02J20Uz

2

q + Uy

J20Uz cos
�
ust+4y

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
G02 � J20Uz

2+us
2q2

�2
+4G02J20Uz

2

q
3
75; (Equation 23)

where 4x = arctan

�
�usqðG0+us

2q2 � J2
0
Uz

2Þ
G0 ðG02+us

2q2+J2
0
Uz

2Þ

�
;4y = arctan

�
� 2usqG

0

G02 �us
2q2+J2

0
Uz

2

�
.

When By = Bz = 0, Equation 23 is equal to Equation 22. To fully verify the accuracy of Equation 23, we use MATLAB to numerically

solve the Bloch equation represented by Equations 6, 7, and 8. The simulation results are compared with the response signal

calculated by Equation 23. The detailed comparisons of the amplitude and phase responses at different Bz , Rop, and G are shown in

Figures S7–S11. The dots represent the numerical solutions of the Bloch equation and the lines represent the calculation results based on
iScience 27, 109250, March 15, 2024 15
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our closed-form solution. The simulation results prove that Equation 23 is acceptable to be applied in the calculation and analysis of the

dynamic response of the single-beam modulated OPM. The minor differences between numerical simulations and Equation 23 may be

induced by the neglect of higher-order terms in the calculation process.
Sensor structure

The sensor depicted in Figure 1A consists of four magnetometers, each with a sensitivity of approximately 25 fT/ Hz1/2 and a bandwidth of

about 250 Hz. A single fiber is utilized to transmit pumping light for all four channels. The pumping beam, generated by a distributed Bragg

reflector laser, was delivered to the sensor through a polarization-maintaining fiber. The spot diameter of the laser beam was expanded to

2.7mmusing a fiber collimator. Three identical combination prisms split the light emitted from the fiber into four beams of circularly polarized

light directed into four 87Rb vapor cells (each measuring 43 4 3 4 mm3 with a wall thickness of 0.5 mm). The incident light power for each

channel was below 1 mW, and the light frequency was close to the resonance transition center of the 87Rb D1 line. A three-axis rectangular

Helmholtz coil set encircled each channel to produce a modulating magnetic field with an amplitude of approximately 150 nT at a frequency

of 1 kHz, along with multi-axis static compensation fields.
Experimental apparatus

The sensor was located at the center of a five-layer magnetic shield (four m-metal layers and one outermost aluminum layer) with a shielding

factor of over 105. The experimental apparatus depicted in Figure 1B was employed to provide magnetic signals and record the response of

the OPM. To measure the rotation of the sensitive axis in the presence of a static magnetic field along the pumping axis, a triaxial coil set

embedded in the magnetic shield was driven by a commercial digital-to-analog converter (National Instruments, PXIe-4463) to generate a

rotating magnetic field with an effective value of 100 pT at an angle q with respect to the x-axis in the x-y plane across a frequency range

of 10-200 Hz. Another set of shield coils was used to generate Bz . The photodiode currents of the OPMwere fed to a transimpedance-ampli-

fier (Thorlabs) and then filtered using a low-pass filter (Stanford Research Systems). A lock-in amplifier (Zurich Instruments) demodulated the

filtered signal at um and the signal was acquired by a commercial data-acquisition system (National Instruments, PXIe-4464). The commercial

instruments used in the experiment can only test the performance of one OPM. Therefore, a four-channel electronic control system devel-

oped by the authors was also employed, which enabled two OPMs to operate simultaneously. The control system integrated the functions

of temperature control, magnetic field compensation, modulation, and demodulation. Moreover, the residual magnetic field in the propa-

gation axis of the laser of each OPM was adjusted using the host computer of the control system.38 As the response signals of each OPM

are processed by a signal processing system with identical models and configurations, the phase delay introduced by the signal processing

system remains the same for each OPM. The impact of the signal processing system on the results of gradient difference can be ignored.
QUANTIFICATION AND STATISTICAL ANALYSIS

The random static magnetic fields with Gaussian distribution along the laser propagation axis are generated by MATLAB, and the gradient

error mean values are calculated by Microsoft Excel.
16 iScience 27, 109250, March 15, 2024
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