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Abstract

Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton.
The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia
are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report
the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants
from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia
or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation
approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a
pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known
annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized
microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated
by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium.
Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken
together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to
promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that
insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of
pathogenicity genes in this important cotton pathogen.
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Introduction

Cotton wilt disease, caused by the phytopathogenic fungus

Verticillium dahliae Kleb., is one of the most widespread, damaging

diseases in most cotton-growing countries, including China [1], the

Americas [2,3] and Mediterranean regions [4]. Cotton wilt disease

is a major threat to cotton production [5]. Colonization of cotton

roots by V. dahliae in soil naturally leads to colonization of vascular

tissues in cotton [6,7]. Fungal hyphae grow from the root surface

toward the cortical tissue that is adjacent to the stele [7] and

subsequently attack the aerial parts of the plant. Vascular

discoloration is a key diagnostic symptom of V. dahliae infection.

V. dahliae-infected cotton plants also show symptoms including leaf

vein browning and chlorosis, wilting, premature defoliation, and

most severely, plant death [1,8].

Of the two major plant-pathogenic Verticillium species, V. dahliae

and V. albo-atrum., V. dahliae is especially difficult to control because

it persists in soil as resting structures, called microsclerotia, for

several years in the absence of a host plant [9]. V. dahliae is the

agent of verticillium wilt diseases of hundreds of herbaceous and

woody crops [10,11]. The dormant microsclerotia are the primary

infectious propagules; they germinate when they are stimulated by

root exudates [9]. Recent studies in determination of infection and

colonization of lettuce roots by a GFP-expressing lettuce isolate of

V. dahliae showed that germ tube emergence from the infected root

surface following inoculation extended longitudinally along root

epidermal cells, and distinct appressoria formed within cell

junctions and directly penetrated adjoining cells [10,12]. As

colonization progressed, elaborate hyphal networks were produced

in cortical and vascular tissues and led to the eventual collapse of

the infected root tip, and the mycelia advanced systemically

through xylem vessels towards the taproot [12]. Phytotoxins

produced by V. dahliae cause vascular discoloration and wilt

symptoms associated with disease development [13–17].

Recently, screening an expressed sequence tag (EST) library

from a cultured mycelium of a cotton isolate strain of V. dahliae
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revealed a cDNA that encodes a necrosis- and ethylene-inducing

protein (VdNEP). This protein has been shown to play an

important role in promoting vascular wilt symptoms specific to

cotton leaves, by dipping cotton leaves into E. coli-expressed

VdNEP protein solution [8]. Genes of potential importance in

pathogenic growth and microsclerotial development have also

been investigated via two EST libraries from cultures of a tomato

isolate strain of V. dahliae, grown either in simulated xylem fluid

medium (SXM) or under conditions that induce near-synchronous

development of microsclerotia [18]. Dobinson and colleagues [19]

subsequently testified that Agrobacterium tumefaciens-mediated trans-

formation (ATMT) [20] could be applied in targeted gene

disruption in V. dahliae tomato isolate. Thereafter, using ATMT

and the EST databases [18], several genes involved in micro-

sclerotial development of V. dahliae tomato isolate have been

identified and disrupted. VMK1, a mitogen-activated protein

kinase gene, was identified to have a role in formation of

microsclerotia in V. dahliae [21]. Plants inoculated with vmk1

mutants did not show vascular discoloration, suggesting that

VMK1 is essential for pathogenicity [21]. VDH1, a hydrophobin

gene, was also confirmed to be involved in microsclerotial

development but not required for pathogenicity [22,23].

In addition to targeted gene disruption by homologous

recombination, ATMT has been successfully exploited for large-

scale forward genetic screens to create insertional mutants in

several pathogenic species, including Magnaporthe grisea, Cryptococcus

neoformans, Colletotrichum lagenarium, C. higginsianum and Leptosphaeria

maculans [24–32]. Pathogenicity mutants and pathogenicity genes

from C. higginsianum, C. acutatum, M. grisea and L. maculans have been

successfully identified via ATMT [26–28,32,33].

In the present study, we report the first application of ATMT

for insertional mutagenesis of V. dahliae. We established a

laboratory unimpaired root dip-inoculation method to detect

insertional mutants with altered pathogenicity in cotton. Se-

quence analysis of the tagged genes led to the isolation of five

different putative pathogenicity genes. The tagged gene in one

pathogenicity mutant, with a single-copy insertion and greatly

delayed formation of melanized microsclerotia on PDA agar

medium, is a glutamic acid-rich protein 1 (VdGARP1); it shared no

significant similarity to any known annotated gene. Over-

expression of the VdGARP1 genomic DNA sequence restored

the vdgarp1 mutant growth morphology and pathogenicity. The

expression of VdGARP1 in wild type V529 strain was induced or

inhibited by different stress agencies and conditions, and it was

induced by cotton root extract in liquid culture medium. Overall,

our findings indicate that insertional mutagenesis by ATMT,

together with our unimpaired root dip-inoculation approach, is a

valuable tool for the genome-wide analysis of gene function and

identification of pathogenicity genes in this important cotton

pathogen.

Results

ATMT mutant morphologies and insertion identification
Strain V592 of V. dahliae, isolated from cotton in Xinjiang,

China, was used to create T-DNA insertional mutants yielding

2,323 primary hygromycin-resistant mutants. Changes in growth

rate and pigmentation traits of these mutants were observed

directly on Potato Dextrose Agar (PDA) medium. Most mutant

colonies (92.80%) showed no distinct differences in growth and

pigmentation traits when compared to wild type V592 (Figure 1A,

a). Some mutants (4.18%) showed normal mycelial growth but

reduced microsclerotial development, described as the intermedi-

ate type (Figure 1A, b). Some mutant (2.67%) colonies exhibited a

total loss of melanized development but had rapid growth and a

denser appearance than that of V592, as hyphal type (Figure 1A,

c). Other mutants (2.2%) displayed ‘‘unwettable’’ dipcoat-like

phenotype, as velum type (Figure 1A, d). One mutant showed

diffuse red pigment (Figure 1A, e), and three displayed slow

development of mycelia but normal formation of microsclerotia

(Figure 1A, f). The transformants appeared to be mitotically stable

because mono-conidial cultures from one hundred randomly

selected transformants retained hygromycin resistance and mutant

phenotypes after being subcultured three times on PDA medium.

Over 85% of the 100 transformants were estimated, by DNA blot

analysis, to have a single copy of the T-DNA integrated into the

genome (Figure 1B). The multiple and various degrees of mutant

traits indicated that mutant phenotypes resulted from V. dahliae

genes affected by T-DNA random insertion.

Pathogenicity mutant screen
Among the multiple mutant phenotypes, pathogenicity-defec-

tive mutants were our primary focus in this study. The regular

procedure for infection of plants with the soil-borne pathogen is to

uproot soil-grown plants, incubate the roots in a conidial

suspension, and then replant the plants in fresh soil. To avoid

damaging the roots and better to mimic natural infection

conditions, we first developed a laboratory unimpaired root dip-

inoculation method to assess the insertional mutant pathogenicities

in cotton (see Materials and Methods). Twelve, two-week-old

cotton seedlings were root dip-inoculated with spores from wild

type V592. Leaf wilt was first visually apparent on leaves at two

weeks post-inoculation (wpi), and the whole leaf was dried out,

epinastic and scorched by 3 wpi. At this time, cotyledons were lost

and roots became brown and slimy. By 4 wpi, whole seedlings

dried out and completely collapsed (Figure 2A). Disease symptoms

did not occur on cotton seedlings with mock inoculation during

the whole two-month experiment period (Figure 2A). Our results

suggested that the unimpaired root dip-inoculation appeared

accurately to reflect the disease progress of a natural infection of

cotton by V. dahliae.

Next, we examined the effects of about 500 mutations on

pathogenicity. For each mutation, twelve cotton seedlings were

inoculated. At approximately 4 wpi, symptoms produced by most

(98%) insertional mutants were indistinguishable from those

caused by V592. Five mutants caused delay and reduced

induction of symptoms, with reduced rates of wilting and loss

of cotyledons. Some late-growth (upper layer) leaves of infected

seedlings maintained normal developmental phenotypes. Two

mutants showed great reduction of infection (Figure 2A, vdgarp1,

see section below); no disease symptoms developed during the

early growth stages of cotton seedlings inoculated with these

mutants. By 4 wpi, a reduced degree of leaf wilting was observed

in some old leaves of these seedlings (Figure 2A, arrow), which

grew vigorously with biomasses and heights similar to those of

seedlings with mock inoculation. One mutant infection caused

rapid leaf wilt (named as raw) and complete leaf drying at 2 wpi,

almost two weeks earlier than observed in wild type V592

infection (Figure 2A). These eight mutant colonies were subjected

to thermal asymmetric interlaced (TAIL) PCR [34] and

sequencing. We identified different sequences flanking the T-

DNA border sequences in these mutants (Figure 2B), consistent

with their T-DNA insertion DNA blot analysis (Figure 1B),

indicating that change in infectivity of the mutants was the result

of insertional knockout rather than the integrated T-DNA itself.

Detailed analysis of one of the mutants in gene cloning and

functional complementarity is described below.

Functional Study of VdGARP1 Gene
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Disruption of a glutamic acid-rich protein gene causes
significantly delayed development of melanized
microsclerotiain of V. dahliae

The two mutants that displayed great reduction of infectivity

(Figure 2A) were verified as pathogenicity mutants after two

rounds of testing in a secondary screen of cotton seedlings. One of

these was confirmed to have a single copy of the T-DNA

(Figure 3B) integrated in the promoter of a hypothetical protein

gene (Figure 3A), by comparison to sequences of VdLs.17,

a V. dahliae isolate from lettuce (http://www.broadinstitute.org/

annotation/genome/verticillium_dahliae/Blast.html). The growth

rate of the mutant colony showed no significant difference from

that of V592; however, the mutant colony exhibited a denser

appearance with greatly delayed and reduced microsclerotial

development on PDA agar medium (Figure 3D).

To confirm further the transcript RNA that encoded the

predicted protein in V592, 59RACE and 39RACE were

performed. These revealed a 526-bp cDNA sequence, with

131 bp upstream of the predicted translation start site and a

polyadenylation site 119 bp downstream of the translation stop

codon, encoding a polypeptide of 91 amino acids (enriched with

31% glutamic acid) that was predicted (Figure 3D), using the signal

peptides prediction program [35], to be non-secretory. Neither

nucleotide nor amino acid sequences shared any similarity to any

annotated gene in GenBank. This glutamic acid-rich sequence

that contains a 1076-bp intron sequence in V592 was confirmed to

be single-copy by DNA blot analysis and PCR sequencing

(Figure 3B and 3E).

The expression of the hypothetical protein-coding mRNA in

V592 was verified by RNA blot analysis with total RNA extracted

from hyphae and spores collected from liquid Czapek-Dox

medium, as well as from mycelia collected from PDA agar

medium, but not from microsclerotia collected from the infertile

nutrient agar medium [18] (Figure 3C). These results indicate that

expression of the transcript is organ-specific. There was no

corresponding RNA signal detected in the mutant hyphae sample,

confirming that it is a null mutant (Figure 3C). The hypothetical

protein contained thirty-one glutamic acid residues; therefore, it

was named glutamic acid-rich protein 1 (VdGARP1), with the

mutant named vdgarp1.

Ectopic over-expression of VdGARP1 rescues melanized
microsclerotial formation and pathogenicity of the
vdgarp1 mutant

To examine the severe inhibition of melanized microsclerotial

development and defective pathogenicity that resulted from the

loss of VdGARP1 function, we introduced a copy of the VdGARP1

genomic sequence of wild type V592, including the upstream

1600-bp putative promoter region, into the mutant vdgarp1 by

ATMT. Twenty individual hygromycin-resistant transformants,

purified by single-spore isolation, were obtained. Among them,

seven colonies displayed melanized microsclerotial development

Figure 1. T-DNA insertion mutant morphologies of V592 and insertion identification. (A) Colony morphologies of wild type V592 (a) and
T-DNA insertion mutants (b to f), classified as intermediate type (b), hyphal type (c) and velum type (d), as well as special types such as red pigment
(e) and slow-growing rate (f) mutants. (B) Identification of T-DNA insertional copy numbers. Genomic DNA isolated from one hundred randomly
selected transformants was digested with XbaI for DNA gel blot analysis. Representative result with twenty mutants is shown. Hybridization was
performed with 32P-labeled EGFP-specific DNA probe as shown at right.
doi:10.1371/journal.pone.0015319.g001

Functional Study of VdGARP1 Gene
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comparable to that of V592 (Figure 4A). This frequency (35%) of

ectopic integration suggests operability in complementation of this

mutant phenotype. Lower frequency (4.3%) has been reported for

the VDH1 gene in ectopic integration into the vdh1 mutant in V.

dahliae [23]. Four complementary colonies (garp1/GARP1) were

assayed for infectivity. All of them recovered infectivity compa-

rable to that of wild type V592 (Figure 4B). DNA gel blot analysis

confirmed that the transformants contained ectopic insertions of

the VdGARP1-complementing construct and the original T-DNA

insertion of the vdgarp1 background (Figure 4C). RNA gel blot

analysis also confirmed expression of VdGRP1 RNA (Figure 4C).

There is no gene to the 59 side of the VdGRP1 gene confirmed in

wild type V592 by RNA gel blot analysis using the promoter

sequence of the VdGRP1 gene as probe (data not shown). Taken

together, these results indicate that specific knock-out the

VdGARP1 gene indeed results in severe inhibition of melanized

microsclerotial development and lost infectivity of V592.

Analysis of expression of VdGARP1 transcript under stress
condition

One striking phenotype of the vdgrp1 mutant was its enhanced

hyphal development (Figure 3D). This suggested that knocking out

the VdGARP1 gene resulted in reducing sensitivity of V592 to

normal growth conditions to develop microsclerotia. We then

directed our efforts to determine whether stress could stimulate

expression of VdGARP1. For this purpose, a patch of colony on

agar medium was picked to culture in liquid medium for three

days; different stress conditions were then applied by adding

sorbitol or NaCl, or by transfer to liquid medium lacking glucose

or nitrate, and the cells were cultured for an additional eight hours.

Figure 5A shows that accumulation of VdGARP1 mRNA increased

by incubation with sorbitol and NaCl, as well as in a medium

lacking glucose (Figure 5A). However, accumulation of VdGARP1

mRNA decreased in a medium lacking nitrate (Figure 5A). These

results suggested that drought and salt as well as a lack of

saccharides stimulated expression of VdGARP1 mRNA, while a

lack of nitrate inhibited expression of VdGRP1 mRNA.

To examine whether induction of VdGRP1 mRNA was also

stimulated by cotton, cotton root extract was added to three-day-

old V592 liquid culture, which then continued to culture for four

to eight hours. Northern blot analysis showed that VdGARP1

mRNA accumulation increased with time of co-culture with

cotton root extract (Figure 5B). This suggests that the VdGARP1

gene may play a role in inducing infection and promoting

microsclerotial development in infected cotton roots, wherein

some host component(s) might stimulate VdGARP1 expression.

Figure 2. Disease symptoms and T-DNA border sequences of pathogenicity mutants. (A) Disease symptoms of wild type V592 and
pathogenicity mutants, vdgarp1 and raw, on cotton plants. Arrows indicated a reduced degree of wilting leaf in some old leaves of vdgarp1-infected
seedlings. Photographs were taken at four weeks post-inoculation. (B) Different sequences flanking T-DNA border sequences in pathogenicity
mutants.
doi:10.1371/journal.pone.0015319.g002

Functional Study of VdGARP1 Gene
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Correlation between expression of VdGARP1 mRNA and
formation of melanized microsclerotia under near-UV
light

Near-UV light has been reported to inhibit microsclerotial

formation [23]. We therefore assessed the effects of near-UV light

on microsclerotial development and VdGARP1 mRNA expression.

Increased accumulation of VdGARP1 mRNA was detected when

V592 colonies on PDA agar medium were exposed to near-UV

light for 14 days (Figure 6B). However, vigorous mycelial grown

with some patches of melanized microsclerotial production was

observed compared to that from normal dark-growth conditions

(Figure 6A). To enable more precise detection of effects of near-

UV light on expression of VdGARP1 mRNA, a three-day-old

liquid culture containing hyphae and spores was poured into

plates and kept under continuous exposure to near-UV light.

Time course RNA gel blot analysis showed that accumulation of

VdGARP1 mRNA decreased in the first 30 minutes and began to

increase under near-UV light (Figure 6B), suggesting dynamic

regulation of VdGARP1 mRNA expression by near-UV light.

Reduced expression of VdGARP1 mRNA in response to near-UV

Figure 3. Characterization of VdGARP1 gene. (A) Schematic diagrams of T-DNA and VdGARP1 genomic DNA construct. T-DNA insertional position
upstream 358 bp from initiation codon in VdGARP1 genomic was shown. (B) DNA gel blot analysis of T-DNA insertional copy number from vdgarp1
mutant (left panel), and VdGARP1 DNA copy number from V592 (left panel) with 32P-labeled T-DNA-specific or VdGARP1-specific DNA probe shown in (A).
(C) Identification of expression of VdGARP1 mRNA in spores, hyphae, mycelia and microscleotia of V592, as well as in mycelia of V592 and vdgarp1
mutant, with 32P-labeled VdGARP1-specific DNA probe shown in (A). rRNAs stained with methylene blue trihydrate were used as a loading control. (D)
Morphology of V592 and vdgarp1 colony. vdgarp1 mutant displayed denser appearance mycelia with great delayed and reduced microsclerotial
development on PDA agar medium compared to that of V592. (E) Full length VdGARP1 cDNA sequence obtained by 59-rapid amplification of cDNA end
(59RACE) and 39RACE, revealing VdGARP1 gene encodes an glutamic acid-rich protein from a gene with a 1076 bp intron sequence.
doi:10.1371/journal.pone.0015319.g003

Functional Study of VdGARP1 Gene
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light at early time points may be partially responsible for the

vigorous mycelial growth on agar media (Figure 6A). To

investigate the effect of near-UV light on development of

melanized microsclerotia in infertile nutrient conditions, conflu-

ent spores of V592 were grown on cellulose membranes overlaid

on basal agar medium supplemented with 20 mM sodium nitrate

[18], a condition that simulated infertile nutrients and induced

near-synchronous development of melanized microsclerotia.

Near-synchronous development of melanized microsclerotia was

observed at 4 days post culture (dpc) in dark-grown conditions

but not in cultures exposed to near-UV light, in which more

mycelia growth was observed (Figure 6C). At 5 to 6 dpc,

melanized microsclerotial production was also clearly observed in

cultures exposed to near-UV light, with less extension than that in

dark-grown culture (Figure 6C). These results indicated that near-

UV light slightly delayed but did not inhibit melanized

microsclerotial development of V592 under infertile nutrient

conditions.

Finally, we examined the melanized microsclerotial produc-

tion of the vdgarp1 mutant under infertile nutrient conditions.

The same amounts of V592 and vdgarp1 mutant spores were

grown in either infertile nutrient agar medium or liquid Czapek-

Dox medium. Melanized microsclerotial formation was ob-

served for both wild type V592 and vdgarp1 mutant spores in

infertile nutrient agar medium, with vigorous mycelial growth in

the vdgarp1 mutant but not in V592 (Figure 6D and 6E).

Figure 4. Analysis of ectopic over-expression of VdGARP1 in vdgarp1 mutant. (A) Seven individual hygromycin-resistant transformants
(garp1/GARP1) shown rescued melanized microsclerotial formation similar to that of V592. (B) garp1/GARP1 recovered infectivity comparable to that
of V592. Representative of garp1/GARP1-3 was shown. (C) DNA and RNA gel blots analysis confirmed that the transformants containing different
ectopic insertions of the VdGARP- complementing construct and the original T-DNA insertion vdgarp1 background, as well as ectopic over-expression
of VdGARP1 RNA. DNA and RNA extracted from V592 and vdgarp1, respectively, were used as controls, rRNAs stained with methylene blue trihydrate
were used as a loading control.
doi:10.1371/journal.pone.0015319.g004

Figure 5. RNA gel blot analysis of expression of VdGARP1
transcript under different conditions. (A) Expression of VdGARP1
transcript under stress conditions by adding sorbitol or NaCl to three-
day-old V592 liquid culture, or by transfer three-day-old V592 liquid
culture to liquid medium lacking glucose or nitrate. (B) Expression of
VdGARP1 mRNA stimulated by cotton, by adding cotton root extract to
three-day-old V592 liquid culture. Co-culture times are as indicated.
rRNAs stained with methylene blue trihydrate were used as a loading
control. Hybridization was performed with 32P-labeled VdGARP1-specific
DNA probe as shown in Figure 3A.
doi:10.1371/journal.pone.0015319.g005

Functional Study of VdGARP1 Gene
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However, melanized microsclerotial production was observed

for V592 but not for vdgarp1 mutant in liquid Czapek-Dox

medium at 6 to 9 dpc (Figure 6D and 6E). These results

suggested that VdGARP1 transcript was required for sensing

circumstances, such as nutrient-limitation, to develop melanized

microsclerotia. However, under extreme infertile nutrient

conditions, VdGARP1 was not necessary for melanized micro-

sclerotial formation and development; this was consistent with

the fact that no VdGARP1 mRNA was detected in melanized

microsclerotia (Figure 3C).

Discussion

In this report, we constructed a T-DNA insertional mutagenesis

library of a virulent defoliating isolate of V. dahliae, from cotton

that originated in Xinjiang, China. Different morphologies in

growth rates and pigmentation traits of mutants were obtained

(Figure 1A). The transformants were mitotically stable, and most

transformants were estimated to have a single copy of the T-DNA

integrated into the genome (Figure 1B). This result was desirable

because multiple T-DNA insertions could not be separated

Figure 6. Analysis of expression of VdGARP1 mRNA and formation of melanized microsclerotia under near-UV light. (A) Mycelial
growth and melanized microsclerotial production under normal dark-grown conditions and near-UV light, photos were taken at 14 days post-culture
on PDA agar medium. (B) RNA gel blot analysis of VdGARP1 mRNA expression of V592 on PDA agar medium (left panels) and time course from liquid
culture (right panels) exposure to near-UV light. rRNAs stained with methylene blue trihydrate were used as a loading control. Quantification of
VdGARP1 mRNA relative to total RNA is shown below of the panel. The value of 0 hour treatment was arbitrarily designated as 1. (C) Development of
melanized microsclerotia of V592 in infertile nutrient conditions. Photographs were taken at 4-, 5- and 6-dpc. (D, E) Melanized microsclerotial
production of V592 and the vdgarp1 mutant spores were grown in either liquid Czapek-Dox medium or infertile nutrient agar medium. Melanized
microsclerotia under 400x microscope (E).
doi:10.1371/journal.pone.0015319.g006

Functional Study of VdGARP1 Gene
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through genetic segregation because V. dahliae lacks a sexual stage.

Single site insertion in the genome also facilitated the recovery of

tagged genes from such fungi [36]. Our results suggested that

ATMT could be further used to create a large-scale V. dahliae

library of insertional mutants for genome-wide functional analysis,

as was done for M. oryzae [28], though manipulation of infection

with this soil-borne V. dahliae would be much more difficult.

The infection assay for M. oryzae and other foliar pathogens is

normally carried out using conidial suspensions to drop onto cut

leaves or spray directly onto plants [37]. For infection with the soil-

borne pathogen, plants normally need to be up-rooted from the

soil and replanted into fresh soil after co-incubation of roots with

conidial suspensions. This process can hardly avoided damage to

roots and could not accurately reflect real functions of the genes of

the pathogen of interest, particularly their pathogenicity. In this

study, we established a laboratory unimpaired root dip-inoculation

method for inoculation and found that it accurately reflected the

progress of a natural infection of cotton by V. dahliae V592

(Figure 2A). This greatly facilitates the manipulation of infection

with soil-borne V. dahliae.

Using the T-DNA insertional mutagenesis library of V592 and

the unimpaired root dip-inoculation method, we detected several

insertional mutants with altered pathogenicity in cotton. One

glutamic acid-rich protein 1 (VdGARP1), which shared no

significant similarity to any known annotated gene. It plays a role

in pathogenicity, presumably stimulated by cotton root compo-

nent(s) in response to changes in infection environment, to induce

formation of melanized microsclerotia. The fact that expression of

VdGARP1 in V529 was induced by drought and salt stress as well

as in low-carbohydrate conditions (Figure 5A) suggests that

VdGARP1 mRNA plays an important role in stress responses in

the infected cotton roots under certain conditions to promote

melanized microsclerotial formation. The formation of micro-

sclerotia is beneficial in the life cycle of the fungus by transferring

from a saprophytic to dormant state for long term survival. At later

time points in infection, development of melanized microsclerotia

in extreme infertile nutrient conditions in infected roots was no

longer required as was found in infertile nutrient conditions

(Figure 6D). We could not rule out the possibility that cotton root

component(s) might reduce expression of VdGARP1 mRNA early

in infection to favor vigorous hyphal growth, as was observed with

near-UV light treatment (Figure 6B). This would accelerate hyphal

penetration of host roots in the initiation of the parasitic stage of

the life cycle of V. dahliae.

From V. dahliae tomato isolate, two genes, VMK1 and VDH1,

involved in microsclerotial development have been identified.

VMK1 encodes a mitogen-activated protein (MAP) kinase that is

essential for pathogenicity, suggesting that the MAP kinase-

mediated signaling pathway has a conserved role in fungal

pathogenicity [21]. VDH1 is not required for pathogenicity

[22,23]. VDH1 is a hydrophobin gene that contains eight cysteine

residues with a conserved spatial distribution [22]; nutrient

starvation, such as a lack of nitrate or glucose, increases its

expression, while near-UV light shows no effect on its expression

[23]. Unlike VDH1, VdGARP1 accumulation is greatly induced in

media lacking glucose but inhibited in media lacking nitrate

(Figure 5A). Near-UV light also shows dynamic regulation of

VdGARP1 expression. Hydropathicity analysis (http://www.

expasy.org/tools/protscale.html) [38] suggests VdGARP1 to be

a hydrophilic protein. A significant surplus of negative charges is

localized in this protein, which contains 31 glutamate and 17

aspartate residues (Figure 3E). The protein contains only two

arginine and two lysine residues, which are far from being able to

compensate for the negative charge. Together with hydropathicity

analysis, we reason that VdGARP1 belongs to the class of

intrinsically unstructured proteins. Such proteins, for example

glutamic acid-rich proteins (GARPs) in vertebrate rod photore-

ceptors, were suggested to be loose coils with low-affinity but high-

capacity Ca2+ binding [39]. Further investigation is necessary to

determine whether the high-charge-density VdGARP1 protein

also possesses Ca2+ binding capacity and the effect of this capacity

on response to nutrient attenuation in infected plant cells to

promote melanized microsclerotial formation.

Materials and Methods

Fungal isolates and culture conditions
A virulent defoliating V.dahliae isolate V592 from cotton

originated in Xinjiang, China, was used in this study. This isolate

and its transformants were stored at -80uCin the form of

microconidial suspension in 20% glycerol. Cultures were reacti-

vated on Potato Dextrose Agar (PDA) medium (Becton, Dickinson

and Company). Microsclerotial formation assays were performed

on infertile nutrient medium, that overlayed a cellulose membrane

on basal agar medium supplemented with 20 mM sodium nitrate

to create a condition simulated near-synchronous development of

melanized microsclerotia [18]. Conidia production for infection

assays and germination tests were cultured in liquid Czapek-Dox

medium (30 g/L Sucrose, 3 g/L NaNO3, 0.5 g/L MgSO4-7H2O,

0.5 g/L KCl, 100 mg/L FeSO4-7H2O, 1 g/L K2HPO4, pH 7.2).

DNA cloning and sequencing
A thermal asymmetric interlaced PCR (TAIL-PCR) protocol

[40] was used for cloning genomic DNA flanking inserted T-DNA

from the insertion mutants. The right border primers (RB-1, -2,

and -3) and the left border primers (LB-1, -2, and -3) was used as

previously described [40]. Eleven arbitrary degenerate primers

were designed such that their melting temperatures (Tm’s) would

ensure maximum thermal asymmetric priming and ensure cloning

and sequencing of genomic DNA flanking T-DNA:

AD1: (AGCT)TCGA(GC)T(AT)T(GC)G(AT)GTT;

AD2: (AGCT)GTCGA(GC)(AT)GA(AGCT)A(AT)GAA;

AD3: (AT)GTG(AGCT)AG(AT)A(AGCT)CA(AGCT)AGA;

AD4: TG(AT)G(AGCT)AG(AT)A(AGCT)CA(GC)AGA;

AD5: AG(AT)G(AGCT)AG(AT)A(AGCT)CA(AT)CA(AT)AGG;

AD6: CA(AT)CGIC(AGCT)GAIA(G/C)GAA;

AD7: TC(GC)TICG(AGCT)ACIT(AT)GGA;

AD8: GC)TTG(AGCT)TA(GC)T(AGCT)CT(AGCT)TGC(;

AD9: (AT)CAG(AGCT)TG(AT)T(AGCT)GT(AGCT)CTG;

AD10: TCTTICG(AGCT)ACIT(AGCT)GGA;

AD11: TTGIAG(AGCT)ACIA(AGCT)AGG;

A thermal cycler (MJ Research/Bio-Rad) was used for the

TAIL-PCR. The tertiary TAIL-PCR product of each transfor-

mant showing the highest intensity was purified using QIAquick

columns (Qiagen) and sequenced (Invitrogen). The innermost

specific primer, either RB-3 or LB-3, was used as the sequencing

primer. By comparing sequences of VdLs.17, a V. dahliae isolate

from lettuce (http://www.broadinstitute.org/annotation/genome/

verticillium_dahliae/Blast.html), the T-DNA insertion site was

detected.

For obtaining the full-length cDNA sequence, 59 RACE and 39

RACE was performed according to the manufacturer’s instruc-

tions (Ambion, First Choice RLM-RACE Kit). The 59 RACE

gene specific primer (5GSPout:59-TCATCGCCGTCCTCG-

CCTTC-39 and 5GSPinner:59-CTCCTCTTCCTCGTCGTCC-

T-39) and the 39 RACE gene specific primer (3GSPout:59-

TGATGACACGGAGCCTGAG-39 and 3GSPinner:59-AAGG-
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CGAGGACGGCGATGA-39) were designed based on the

predicted sequence.

To generate the VdGARP1 complementation construct, a 3.7-kb

VdGARP1 genomic DNA sequence containing the predicted

promoter was amplified from V592 DNA, with primers

VdGARP1DNA-s (59-GTCTAGATATGCCTTGATGACGAG-

GTT-39, XbaI site is underlined) and VdGARP1DNA-a (59-C-

GGATCCCTGCTTGTTCGGTTCTTCGTTT-39, BamHI site

is underlined), and then ligated into the pGEM-T easy

vector(Tiangen) to generate pGEM-VdGARP1. BamHI-XbaI

fragment of pGEM-VdGARP1 was then cloned into pSULPH-

EGFP [41] digested with BamHI and XbaI to give pSULPH-

VdGARP1 for complementary transformation.

Nucleic Acid extraction and blotting
Fungal isolates were grown in the liquid Czapek-Dox medium

for 3–5 days with shaking at 200 rpm, 28uC, dark condition, and

the resulting mycelium was harvested by centrifugation at

12000 rpm for 1 min. The collected mycelium was stored at

280uC until DNA and RNA was extracted.

For genomic DNA isolation, a CTAB protocol was used as

previously described [42]. Twenty mg of genomic DNA was

completely digested and separated by electrophoresis on an

agarose gel and transferred onto a nitrocellulose membrane.

DNA gel blots were performed according to as previously

described [43] with specific probes labeled with 32P using the

Random Prime Labeling System Redi PrimeTMII (GE Healthcare,

Piscataway, NJ, USA). The EGFP probe (for detection of T-DNA

insertion) was amplified from the vector pSULPH-GFP [41], with

primers EGFP-s (59-ATGGTGAGCAAGGGCGAGGAG-39) and

EGFP-a (59-TTACTTGTACAGCTCGTCCATGCCG-39). The

ToxA probe (for detection of complementing DNA) was amplified

from the vector pSULPH-GFP, with primers ToxA-s (59-

CTATATTCATTCATTGTCAGCTATC-39) and ToxA-a (59-

GATTGGAATGCATGGAGGAGTTC-39).

Total RNA was isolated as previously described [43]. Fifteen mg

total RNA was used for RNA gel blot analysis. Hybridization was

carried out as described [43] with VdGARP1-specific DNA probe,

amplified by reverse transcription-PCR (RT-PCR). The first

strand of cDNA was synthesized with 1 mg of total RNA in a 20-ml

RNA PCR mixture (TaKaRa). After a 10-fold dilution, 1 ml of the

RT products was used as a template in PCR amplification with

primers VdGARP1-s (59-ATGCCGCCCAAAAAGCCCTCAC-

CCG-39) and VdGARP1-a (59-TTAATCACTGTCATTGCCA-

TCCAGC-39).

Agrobacterium tumefaciens-mediated transformation
(ATMT)

ATMT was used as previously described [40] with some

modifications. A. tumefaciens strain EHA105, containing an

appropriate binary vector (PLL16, constructed by cloning a SacI-

KpnI fragment from pCX12 [44] containing the EGFP-TtrpC

construct into pBHT2 [40]; pSULPH-VdGARP1), was grown at

28uC for 2 days in LB Medium (Luria-Bertani Medium)

supplemented with kanamycin (50 mg/ml). The A. tumefaciens cells

were diluted to (optical density) OD600 = 0.2 in induction

medium (IM) [40], in the presence of 200 mM acetosyringone (AS)

(BioDee). The cells were grown for an additional 6 hours before

mixing them with an equal volume of a conidial suspension of

V592 (16107 conidia per ml). The mix (200 ml per plate) was

plated on a 0.45-mm pore, 45-mm diameter nitrocellulose filter

(Whatman) and placed on cocultivation medium (same as IM

except that it contains 5 mM glucose instead of 10 mM glucose) in

the presence of 200 mM AS and 40 mM MES (pH 5.3) (BioDee).

After co-incubation at 26uC for 36–48 hours, the cultures were

washed with 2 ml sterile water per plate, and then transferred to

Defined complex medium (1.70 g/L Yeast Nitrogen Base without

amino acids, 2 g/L Asparagine, 1 g/L NH4NO3, 10 g/L Glucose,

pH to 6.0 with Na2HPO4) containing hygromycin B (for PLL16,

75 mg/ml) (Roche) or Chlorimuron-ethy1 (for pSULPH-

VdGARP1, 100 mg/ml) (Wuhan Xinhuayuan, China) as a

selection agent for transformants and cefotaxime (200 mg/ml)

(BioDee) and carbenicillin (200 mg/ml) (BioDee) to kill the

Agrobacterium tumefaciens cells. Individual transformants were

transferred into PDA medium containing hygromycin B or

Chlorimuron-ethy1and incubated until conidiogenesis. Conidia

of individual transformants were suspended with sterile water and

plated on PDA medium. Spores from these monoconidial cultures

were stored in 20% glycerol at 280uC until further analysis.

Infection assays
Cotton plants (cv. Xinluzao NO. 16) were used in infection

assays to evaluate the effect of V.dahliae isolate V592 mutation on

virulence. Mutants generated from V592 were evaluated for their

virulence on cotton (cv. Xinluzao NO. 16), using our ‘‘laboratory

unimpaired root dip-inoculation method’’. To prepare inocula,

fungal cultures grown for 5 days in the liquid Czapek-Dox

medium were passed through several layers of cheesecloth (to

remove mycelia), and the conidial concentration was adjusted to

approximately 16107 conidia per ml. 12 Seedlings per pot were

planted in MS liquid medium (Murashige and Skoog medium) in

an environmentally controlled growth room at 2661uC, 60–70%

relative humidity, on a 16-h light/8-h dark cycle, for about two

weeks. At the third true leaf stage, the seedlings were then

inoculated by immersing their roots into the conidial suspension

for 50 minute. The seedlings were then put back to the 1/10 MS

liquid medium. Disease progress was recorded over time for two

months of experiment period. Disease severity was counted by the

percent of leaves that showed wilting symptom at each time point.

Infection assay for each mutant colony was repeated at least three

times.

Acknowledgments

We thank Jin-Rong Xu for the PLL16 construct.

Author Contributions

Conceived and designed the experiments: HSG GYL FG. Performed the

experiments: FG BJZ PSJ HL YLZ PZ. Analyzed the data: HSG FG BJZ.

Contributed reagents/materials/analysis tools: GYL GXX. Wrote the

paper: HSG BJZ.

References

1. Xia Z, Achar PN, Gu B (1998) Vegetative compatibility groupings of Verticillium

dahliae from cotton in mainland China. Euro J Plant Path 104: 871–876.
2. Bowman D (1999) Public cotton breeders - do we need them? J Cotton Sci 3:

139–152.
3. Schnathorst WC, Mathre DE (1966) Host range and differentiation of a severe

form of Verticillium albo-atrum in cotton. Phytopathology 56: 1155–

1161.

4. Koroleva OV, Stepanova EV, Gavrilova VP, Biniukov VI, Pronin AM (2001)

Comparative characterization of methods for removal of Cu(II) from the active
sites of fungal laccases. Biochemistry 66: 960–966.

5. James C (2002) Global Review of Commercialized Transgenic Crops: 2001
Feature: Bt Cotton. ISAAA Briefs 26.

6. Garber RH, Houston BR (1966) Penetration and development of Verticillium albo-

atrum in the cotton plant. Phytopathology 56: 1121–1126.

Functional Study of VdGARP1 Gene

PLoS ONE | www.plosone.org 9 December 2010 | Volume 5 | Issue 12 | e15319



7. Gerik JS, Huisman OC (1988) Study of field-grown cotton roots infected with

Verticillium dahliae using an immunoenzymatic staining technique. Phytopathol-
ogy 78: 1174–1178.

8. Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, et al. (2004) VdNEP, an elicitor

from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol 70:
4989–4995.

9. Schnathorst WC (1981) Verticillium wilt. In: Watkins GM, eds. St. Paul, MN:
Compendium of cotton disease. American Phytopathological Society. pp 41–44.

10. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity,

pathogenicity, and management of verticillium species. Annu Rev Phytopathol 47:
39–62.

11. Bhat RG, Subbarao KV (1999) Host Range Specificity in Verticillium dahliae.
Phytopathology 89: 1218–1225.

12. Vallad GE, Subbarao KV (2008) Colonization of resistant and susceptible
lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae.

Phytopathology 98: 871–885.

13. Buchner V, Nashmias A, Burstein Y (1982) Isolation and partial characterization
of a phytotoxic glycopeptide from a protein-lipopolysaccharide complex

produced by a potato isolate of Verticillium dahliae. FEBS Lett 138: 261–264.
14. Keen NT, Long M, Erwin DC (1972) Possible involvement of pathogen-

produced protein-lipopolysaccharide complex in Verticillium wilt of cotton.

Physiol Plant Pathol 2: 317–331.
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