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The concept of immunogenic cancer cell death (ICD), as
originally observed during the treatment with several
chemotherapeutics or ionizing irradiation, has revolutionized
the view on the development of new anticancer therapies.
ICD is defined by endoplasmic reticulum (ER) stress response,
reactive oxygen species (ROS) generation, emission of
danger-associated molecular patterns and induction of
antitumor immunity. Here we describe known and emerging
cancer cell death-inducing physical modalities, such as
ionizing irradiation, ultraviolet C light, Photodynamic Therapy
(PDT) with Hypericin, high hydrostatic pressure (HHP) and
hyperthermia (HT), which have been shown to elicit effective
antitumor immunity. We discuss the evidence of ICD induced
by these modalities in cancer patients together with their
applicability in immunotherapeutic protocols and anticancer
vaccine development.

Introduction to Immunogenic Cell Death

The contribution of the immune system to the therapeutic
outcome of cancer treatment regimens involving surgery,
radiotherapy (RT) or chemotherapy has been mostly neglected
as the development of new therapies had primarily focused on
tumor-cell killing for a long time. Of note, only in the case of
RT, there was some early circumstantial evidence of contribu-
tion of immune system toward positive therapeutic response

in the form of “abscopal effects.”1 Reported for the first time
in 1953,2 abscopal effect was described as a phenomenon
wherein RT could reduce tumor growth at distant sites outside
the field of radiation possibly through anticancer immunity.1

However, the immunological mechanism behind these absco-
pal effects and its reliability, or therapeutic reproducibility,
remained controversial for a long time thereby impeding its
establishment as a therapeutically-exploitable paradigm. Over-
time though, it became evident that an antitumor immune
response plays a major role in the therapeutic success of cancer
treatment in general, and mediates long-term survival of exper-
imental animals.3-7

Many chemotherapeutic agents exert their cytotoxic effects by
the induction of tumor cell apoptosis which has been historically
regarded as a non-inflammatory, immunologically silent or even
tolerogenic mode of cell death.8 This was challenged by a series
of observations made more than a decade ago which showed that
DCs can engulf apoptotic tumor cells and cross-present internal-
ized antigens on MHC class I molecules to CD8C T cells.9 Apo-
ptotic tumor cells were also shown to elicit an effective antitumor
immune response in mice.10 More recently, owing to a series of
different studies, two morphologically equivalent but immuno-
logically distinct subcategories of apoptosis, i.e., immunogenic
and non-immunogenic apoptosis, were described giving rise to
the new concept of immunogenic cell death (ICD).4,5 Dying the
immunogenic way is, however, not unique to apoptosis. Cells
dying by other cell death pathways such as necrosis/necroptosis
or pyroptosis also induce cell death associated with immunoge-
nicity.11,12,13 In fact, immunogenicity and inflammation associ-
ated with necrosis/necroptosis or pyroptosis was discovered
before apoptotic ICD was characterized. In spite of this, it is not
yet completely clear to what extent the molecular nature of the
danger signals, which are mainly passively exposed by necrotic
dying cancer cells, overlaps with that of immunogenic apoptosis.
In this respect, it is even less clear whether during caspase-1
driven pyroptosis, a cell death pathway reported to occur pre-
dominantly in bacterially infected macrophages and dendritic
cells, results in the release of similar immunogenic signals. Thus
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in this review we will focus on the mediators of immunogenic
apoptosis.

The first immunogenic inducer doxorubicin, which belongs to
the anthracycline family, was identified in 2005 by the group of
Guido Kroemer and Laurence Zitvogel.4 The subsequent impor-
tant discoveries in the field of ICD are shown in a timeline in
Fig. 1. Later, it was found that murine tumor cells treated not
only with doxorubicin, but also with mitoxantrone, oxaliplatin
or ionizing irradiation underwent ICD and elicited strong anti-
cancer immune responses in mice in the absence of any adju-
vants. The authors also showed that the capacity of dying tumor
cells to generate immune response is dependent on the cell death
– inducing stimulus as tumor cells treated with some other cyto-
toxic agents like mitomycin C, cisplatin, thapsigargin or etopo-
side failed to induce ICD.4,5,14

Several conditions must be fulfilled in order to define tumor
cell death as immunogenic. ICD has been found to depend on
the concomitant generation of ROS and activation of ER stress
(either resulting from or accentuated by this ROS produc-
tion).15-17 Stressed tumor cells undergoing ICD start to expose
on their cell surface, and release or secrete into their vicinity, a
variety of damage-associated molecular patterns (DAMPs)18,19

which under physiological conditions have mostly non-immuno-
logical functions inside the cell. Only when exposed or emitted

through complex and elaborate danger signaling trafficking mod-
ule20 these molecules act as danger signals thereby determining
the immunogenicity of a dying tumor cell in a context-dependent
fashion.21 The list of DAMPs crucial for ICD includes (1) the
pre-apoptotic surface exposure of calreticulin (CRT),5,22-24 (2)
the pre-apoptotic or blebbing stage-associated secretion of adeno-
sine triphosphate (ATP),25,26 (3) surface-exposure of heat shock
protein 70 and 90 (HSP70 and HSP90)27 and (4) the release of
high mobility group box 1 (HMGB1) or other toll-like receptor
(TLR) agonists like HSP70.6,28 Moreover, it seems that not only
the amount or diversity of immunogenic signals but also the
defined spatiotemporal pattern of their emission determines the
immunogenicity of dying tumor cells.29 Interestingly, autophagy
was shown to be indispensable for anticancer immune response
induced by anthracycline-chemotherapy in mice.30 On the other
hand, the induction of autophagy in dying cancer cells sup-
pressed anticancer immune effector mechanisms and ICD after
photodynamic therapy with hypericin (Hyp-PDT).31

The cell surface exposure of CRT or the release ATP from
dying tumor cells during ICD seems to be an active process and
involves the participation of several intracellular pro-
teins.15,22,26,32 Interestingly, the molecular signaling pathways
which lead to CRT exposure or ATP release seem to involve an
overlapping and also unique set of signaling proteins depending

Figure 1. Timeline of the most important discoveries in the field of immunogenic cell death. Abbreviations: ATP, Adenosine triphosphate; CRT, calreticu-
lin; DC, dendritic cell; HMGB1, high mobility group box 1; HSP90, heat shock protein 90; Hyp-PDT, photodynamic therapy with hypericin; ICD, immuno-
genic cell death; LRP, lipoprotein receptor-related proteins; MyD88, myeloid differentiation primary response gene 88; TLR, toll like receptor; UVC,
ultraviolet light C.
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on the ICD inducer.33,34 The release of other DAMPs such as
HMGB1 seems to be rather a passive event due to the disintegra-
tion of plasma membrane of the dying tumor cells.29,35 However,
little is known about the intracellular mechanism of cell surface
exposure or release of other danger molecules such as HSP70/90
proteins in cancer cells undergoing ICD. The immunogenic
DAMPs bind to respective immune receptors e.g. pattern recog-
nition receptors (PRRs) (TLRs for HMGB1/HSP70), phagocy-
tosis or scavenger receptors (CD91 for surface exposed CRT/
HSP90) and purinergic receptors such as P2X7R or P2Y2R (for
ATP). This leads to the recruitment of innate immune cells to
the tumor bed.33,36 The interaction of DAMPs with their cog-
nate immune receptors facilitates the engulfment of tumor anti-
gens and their cross-presentation to T cells. These processes lead
to a potent IL-1b- and IL-17-dependent, IFNg-mediated
immune response involving gd T cells/cytotoxic ab T lympho-
cytes and tumor eradication.36 Interestingly, it has been reported
that gd T cells, in contrast to ab T cells, may themselves possess
TLRs.37 However, it has not yet been analyzed whether the ICD-
associated TLR-binding of DAMPs might be directly activating
gd T cells thereby partly bypassing the DC-T cell interaction
route. This represents an attractive possibility that needs further
analysis.

From this point of view, cancer cell death can be further
defined as immunogenic provided that the tumor-rejecting
immunity is elicited in mice after immunization with synge-
neic dying tumor cells in the absence of any adjuvant. Thus,
ICD inducer must exert, at least in part, the therapeutic effi-
cacy in vivo leading to a reduction or eradication of the
tumor mass.36

The growing list of the ICD inducers, exhibiting all the
major checkpoints determining the immunogenicity of cell
death as described above, have been recently divided into two
groups. These groups are based on their ability to trigger both
cancer cell death as well as danger signaling as a consequence
of direct induction of ER-stress (Type II inducers), or whether
the inducer evokes ER stress-based danger signaling and apo-
ptosis/cell death through convergent, but mechanistically sepa-
rate targets (Type I inducers).33,38 Type I inducers of ICD
such as anthracyclines,4,39 oxaliplatin,40 shikonin,41 7A7
(murine EGFR-specific antibody),42 cyclophosphamide,43 bor-
tezomib,27 cardiac glycosides,44 septacidin,45 bleomycin,46

ultraviolet C light (UVC),14 wogonin,47 vorinostat,48 g-irradi-
ation14 and newly described HHP49,50 target mainly cytosolic
proteins, plasma membrane channels or proteins, or DNA rep-
lication and repair machinery, rather than primarily targeting
the ER.33 On the other hand, Type II inducers which specifi-
cally target the ER include PDT with Hypericin (Hyp-
PDT),51 and various different oncolytic viruses. Oncolytic
viruses such as adenovirus, coxsackievirus B3,33,38 measles
virus, vaccinia viruses, herpes simplex virus or Newcastle dis-
ease virus13 have been shown to induce various modes of
ICD,11 however, the underlying molecular mechanisms
remains to be determined. Of note, the Newcastle disease virus
is the only oncolytic virus shown so far to induce both ICD13

as well as “abscopal effect”-like antitumor immunity as the

localized intratumoral therapy with Newcastle disease virus
leads to lymphocyte infiltration and antitumor effect in distant
tumors without direct contact between the latter tumors and
this virus.52 In Table 1, we summarize scarce data available on
the induction of anticancer immunity in patients by Type I
and Type II inducers as evidenced by ICD determinants or by
eliciting tumor-antigen specific T cell responses. More clinical
trials showing the impact of immunogenicity on the prognosis
of cancer patients are awaited.

Chemotherapeutics and targeted drug classes have received
maximal clinical attention compared to most physical anti-
cancer modalities baring RT and to a certain extent, PDT.
However, the emergence of ICD and re-emergence of thera-
peutic relevance of immunotherapy has paved the way for the
development of autologous or allogeneic cancer cell-based
immunotherapy exploiting physical modality-induced immu-
nogenic tumor cell death. Of note, physical anticancer
modalities-based ICD might be preferable over the chemo-
therapeutically induced ICD for preparing cell-based immu-
notherapeutics since the former does not leave behind active
drug residues. The main aim of this review is to discuss in
detail the molecular and cell signaling properties of physical
modalities inducing ICD such as RT, UVC-light, HHP,
Hyp-PDT or HT. These cell death-inducing modalities are
of a particular interest for designing or generating in situ can-
cer vaccines, whole cell- or DC-based vaccines for cancer
immunotherapy.53 We discuss the evidence of ICD induced
by the physical modalities in cancer patients together with a
few clinical trials exploiting the whole cell or DC-based can-
cer vaccines using tumor cells killed by an ICD.

Physical Modalities Inducing Tumor
Immunogenicity

RT is estimated to be used as a treatment modality with cura-
tive or palliative intent in at least 50% of cancer patients.54 The
anti-neoplastic activity of irradiation (X- or g-rays) was believed
to lie in its capacity to damage DNA and induce apoptosis of
tumor cells. The abscopal effect of RT has been known for 60 y2

and observed in patients with various types of tumors. This sug-
gests that RT induces ICD in situ55,56 and stimulates T cell-
mediated anticancer effect. RT has been shown to induce the sur-
face exposure of CRT14,57 and HSP70,58 and HMGB1
release.57,59 Irradiated tumor cells stimulate DC maturation60

and induce IFNg-producing T cells in vitro and in vivo.38,61,62

Moreover, mice vaccinated with DCs loaded with irradiated can-
cer cells are immune to the challenge with live syngeneic cells.63

Even though RT was reported to decrease the number of T regu-
latory cells in some settings,62 regulatory T cells have been
described to be more resistant to cytotoxic effect of ionizing radi-
ation.64 The latter is supported by the observation that depletion
of regulatory T cells potentiates the anti-neoplastic effect of RT
in murine models.54,64,65 Interestingly, beside X- or g-irradia-
tion, vaccination with a-irradiated (bismuth-213) murine adeno-
carcinoma MC-38 also induces long-lasting protective antitumor
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response in mice which depends on tumor-specific T cells.66

MC-38 cells treated with213¡Bi are capable of releasing DAMPs
and stimulating dendritic cells in vitro.

The evidence for ICD induction in human cancer patients
undergoing RT is scarce. Frey et al.,67 showed that chemotherapy
treatment in combination with X-ray caused ICD in human
colorectal tumor cell lines. Recently, Suzuki et al.57 have shown
that chemoradiotherapy induces ICD in patients with esophageal
squamous cell carcinoma which triggers tumor antigen-specific T
cell responses. Here, HMGB1 was significantly upregulated
within the tumor microenvironment and positively correlated
with patient survival. As RT improves the clinical outcome of
other treatment modalities such as surgery and chemotherapy, it
is likely to enhance antitumor effect of various immunotherapeu-
tic agents such as monoclonal antibodies, whole-cell or DC-based
vaccines or TLR agonists.54,68,69 For example, a case of the absco-
pal effect in patient with melanoma treated with ipilimumab and
RT has been reported.71 Current clinical studies in anticancer
radioimmunotherapy have been recently extensively summarized
in Vacchelli et al.54 Interestingly, in a recent review Frey at al.68

have described the combination of RT and HHP-generated
whole cell tumor vaccine with the application of IL-12 in an
immunotherapeutic protocol. Similarly, Sipuleucel-T�, the cur-
rently only FDA-approved antigen presenting cell-based cancer
vaccine for the treatment of asymptomatic metastatic castration
resistant prostate cancer71 is being evaluated in clinical trial
together with RT54 (Table 2).

Ultraviolet C light
Ultraviolet light (UV) refers to electromagnetic radiation with

a wavelength shorter than visible violet light but longer than X-
and g-rays. According to the wavelength range, UV light can be
divided into UVA (400–320 nm), UVB (320–280 nm) and
UVC (280–200 nm).72 In cells UV light affects mainly DNA
which leads to the apoptosis or necrosis depending on the cell
type.14,59,72 However, only UVC-light treatment at 10–120 nm,
technically with properties of ionizing radiation, was shown to
induce ICD in tumor cells which was accompanied by the pre-
apoptotic exposure of CRT14 on the cell surface and HSP70 and
HMGB1 release into the cell culture medium at later time
points.59 Various molecular determinants and pathways of
UVC-light-mediated ICD await further elucidation. The ability
of UVC but not UVA or UVB light to induce ICD has been an
enigma which remains unexplored. UVA, UVB, and UVC are all
capable of stimulating ROS production73 as well as overlapping
stress response pathways74 including ER stress.75 Which particu-
lar subtle difference distinguishes between ICD and non-ICD is
an avenue worth investigating.

UVC-light has been known for more than 30 y to induce an
inflammatory response in skin.76 In 1991 Begovic et al.77

showed that vaccination of immunocompetent mice with UVC-
irradiated tumor cells conferred immunity to subsequent re-chal-
lenge with live tumor cells in contrast to immunodeficient mice
which developed tumors. This tumor-growth inhibiting effect
was mediated by CD8C T cells and NK cells. UVC-treated
tumor cells were shown to stimulate phagocytosis and DC

maturation which in turn lead to the stimulation of IFNg pro-
ducing CD8C T cells.59 Moreover, DCs stimulated with UVC-
treated cancer cells upregulated genes connected to antigen proc-
essing and proinflammatory cytokines.38,59 The effect of UVC
irradiation on tumor cells has recently been tested in a model of
superficial brain cancer and metastasis.78 UVC irradiation,
beamed through the craniotomy open window, induced apopto-
sis in tumor cells which led to a significantly extended survival of
experimental animals. In humans, there are no clinical studies
involving UVC treatment of tumors, possibly due to a high pro-
tumorigenic mutation rate induced by UVC light.38

High hydrostatic pressure
HHP between 1 and 100 megapascal (MPa) is considered to

be physiological, and it induces reversible morphological changes
and a mild stress response. HHP between 100–150 MPa induces
apoptosis of murine cells, HHP between 150–250 MPa affects
the viability of human cells, whereas HHP treatment between
300–400 MPa (dependant of the cell type) leads to cell necro-
sis.79-81 HHP treatment causes cell rounding, cytoplasmic gelifi-
cation, the inhibition of enzymatic functions and synthesis of
cellular proteins. However, DNA does not seem to be affected by
HHP below 1000 MPa.81 In biotechnology, HHP is applied to
sterilize food, human transplants and pharmaceuticals.81,82 The
use of HHP as a cancer treatment modality was described in
1972 for the treatment of bladder carcinoma.83 The hydrostatic
bladder dilatation method was subsequently tested in cancer
patients in a small clinical trial.84 Later the group of Shinitzky
showed that vaccination by HHP-killed tumors cells treated with
a chemical crosslinker adenosine dialdehyde alone and in combi-
nation with a reducing agent N-acetyl-L-cysteine induced antitu-
mor immunity in mice85,86 and exhibited immunogenicity in
vitro.87,88 The cell death induced by HHP was investigated in
greater detail by the group of Udo Gaipl who suggested that
HHP might be a promising technique for a generation of whole
cell-based anticancer vaccines.79-81 Apoptotic cells treated with
HHP were shown to release HSP70 and HMGB1 and possess
immunogenicity in vivo which was determined by tumor-specific
antibodies.49,80 Recently, Fucikova et al.89 have shown that
HHP is a potent inducer of ICD of human prostate and ovarian
cancer cell lines as well as in acute lymphocytic leukemia cells
which leads to the exposure of CRT, HSP70 and HSP90 mole-
cules on the cell surface and the release of HMGB1 and ATP
from the dying cells. More importantly, DCs loaded with HHP-
killed tumor cells displayed an enhanced phagocytic capacity,
expressed high levels of co-stimulatory molecules, and stimulated
high numbers of tumor-specific T lymphocytes without inducing
T regulatory cells in the absence of any additional immunostimu-
lants.89 HHP-induced tumor cell death was shown to fulfill all
currently described molecular criteria of ICD, including the acti-
vation of analogous intracellular signaling pathways similar to
anthracyclines15 and Hyp-PDT (see below).26 Accordingly, an
increased production of ROS, phosphorylation of eIF2a, the
activation of caspase-8 and caspase-8-mediated cleavage of
BAP31 was detected.89 The immunogenicity of HHP-killed
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tumor cells in vivo is currently being evaluated in therapeutic as
well as prophylactic settings in mouse cancer models.

HHP treatment of tumor cells can be easily standardized and
performed in GMP conditions to allow its incorporation into
manufacturing protocols for cancer DC-based immunotherapy
product. Multiple clinical trials for prostate and ovarian cancer90

have now been initiated to evaluate the potential of DC-based
cancer vaccine loaded with HHP-treated cancer cells to induce
tumor cell-specific immune responses and modify the clinical
course of the disease (Table 2). A schematic representation of
DC-based vaccine preparation using immunogenic HHP-treated
tumor cells which could be applied to other physical tumor cell
death-inducing modalities is shown in Fig. 2.

Photodynamic therapy
Over the last decades, PDT has been explored as a promising

anticancer treatment due to its relative specificity as well as the
absence of harmful side effects usually associated with chemo-
therapy and RT. PDT has a two-step modus operandi involving
administration of mainly tumor-localizing photosensitizer fol-
lowed by its activation with a light of specific wavelength, which
ultimately leads to the photochemical production of ROS,
thereby causing oxidative stress-based cell death. The most attrac-
tive attribute of PDT is that, this oxidative stress can be directed
toward a particular subcellular organelle or locale within the can-
cer cells, due to the tendency of a given photosensitiser to exhibit
a certain degree of “tropism” toward a particular subcellular site
e.g., Hypericin tends to be reticulotropic since it mainly localizes
in the ER membrane.91 The extent of PDT-induced damage is
multifactorial depending on, among others, the type of tumor
cell, photosensitizer type and its subcellular localization, and the
cellular oxygen levels as well as light irradiation fluency. PDT-
induced antitumor effects include cytotoxicity toward tumor
cells, tumor-infiltrating cells and vasculature as well as the activa-
tion of the complement cascade and recruitment of immune cells

like DCs or neutrophils to the tumor site.92,93 The molecular
mechanisms of PDT-mediated cell death depend strongly on the
subcellular localization of the photosensitizer and the PDT dos-
age.94 At high fluence PDT in general tends to induce necrosis
while high to medium fluence induce either a mixture of apopto-
sis and necrosis or predominantly apoptosis in a dose-dependent
fashion.91

It is noteworthy though, that due to the essential involvement
of a chemical component, namely a photosensitizer/pro-drug,
PDT unlike RT or HHP, cannot be considered as an exclusively
physical modality but rather a physicochemical anticancer
modality. However, since in the absence of the physical compo-
nent (i.e., specific wavelength of light used for activating a partic-
ular photosensitizer), PDT would be unable to exert its bona fide
anticancer effects (i.e., high cancer cell death, ICD or antitumor
immunity in general),26,93 we have included a discussion of the
relevant immunogenic features of this physicochemical antican-
cer modality along with the actual physical procedures, like RT
and HHP.

Since early work in 1970s, there have been over 200 clinical
trials involving PDT alone or in combination with other treat-
ment modalities of various cancers.93 However, very little is
known about the impact of PDT on the human immune system.
It has been shown that local tumor PDT can enhance systemic
antigen-specific immune responses against tumors in patients95

and can also induce clinical abscopal effect-like immune response
against distant non-treated tumors.96 Importantly, Garg
et al.26,51 have recently shown that specifically Hyp-PDT induces
ICD in murine and human systems. Hyp-PDT is the first Type
II ICD inducer to be characterized, and it is by far the most effec-
tive inducer of ROS-based ER stress among all the known ICD
inducers.51 Since Hypericin localizes prevalently in the ER, its
light-activation causes ROS-based ER stress that culminates into
mitochondrial apoptosis.97 Hyp-PDT has been observed to
induce signatures of ER stress in a treated bladder carcinoma

Figure 2. A schematic representation of DC-based vaccine preparation using immunogenic HHP-killed tumor cells. Tumor cells treated with HHP (or
other physical ICD-inducing modalities) expose various danger signals, so called DAMPs, in different stages of apoptosis. These DAMPs include calreticu-
lin (CRT), heat shock proteins 70/90 (HSP70/90), HMGB1 and ATP. These molecules bind to respective cognate receptors like CD91 (for CRT/HSPs), TLR2/
TLR4 (for HMGB1 or HSP70), P2RX7/P2RY2 (for ATP), respectively, on the cell surface of DCs. This leads to an enhanced engulfment of tumor cells and DC
maturation characterized by upregulation of costimulatory molecules such as CD80, CD83, CD86 and HLA-DR, and by a distinct pro-inflammatory cyto-
kine pattern. Activated DCs efficiently present tumor-specific antigens in the context of MHC class I and II molecules to T cells, inducing antitumor CD4C

and CD8C T cell responses. Abbreviations: ATP, Adenosine triphosphate; CRT, calreticulin; CTL, cytotoxic T lymphocytes; DAMPs, danger-associated
molecular patterns; DC, dendritic cell; HHP, high hydrostatic pressure; HMGB1, high mobility group box 1 HSP70, heat shock protein 70; HSP90, heat
shock protein 90; ICD, immunogenic cell death; P2RX7, P2X purinoceptor 7; P2RY2, P2Y purinoceptor 2; RAGE, receptor for advanced glycation endprod-
ucts; TLR, toll like receptor.
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tumor in vivo.98 Moreover, Hyp-PDT has been applied in clini-
cal trials with some success for the treatment of patients with
non-melanoma skin cancer,99 cutaneous T-cell lymphoma100

mesothelioma101 and basal or squamous cell carcinoma.102

Hyp-PDT induces all the major molecular and immunologi-
cal hallmarks of ICD. Uniquely, Hyp-PDT induces pre-apopto-
tic active emission of four crucial DAMPs i.e., surface exposed
CRT, surface exposed HSP70, surface exposed HSP90 and
secreted ATP26,51,103 (Dudek et al. unpublished results). This is
followed by passive, late apoptotic, release of chaperokines like
HSP70/HSP90. Hyp-PDT-treated cancer cells are preferentially
phagocytosed in a surface CRT-dependent fashion by various
innate immune cells including murine and human DCs which
undergo efficient phenotypic and functional maturation.26 These
fully mature DCs thereafter induce efficient proliferation and
clonal expansion of human IFNg-producing CD4C and CD8C

T lymphocytes104 – an important sign of activation of anticancer
immune effector mechanisms. In line with this, Hyp-PDT eli-
cited ICD has been found to be capable of mediating efficient
tumor rejection in vivo in murine prophylactic as well as thera-
peutic/curative vaccination models.16,91

PDT, in general, has been shown to be suitable for vaccine
generation, as immunization with PDT-killed tumor cells or cell
lysate induces strong antitumor immunity in mice105,106 also in
the absence of any adjuvants.107 In addition, photoimmunother-
apy with DCs loaded with PDT-treated tumor cells has been
shown to stimulate the cytotoxicity of T and NK cells toward
tumors in mice108 suggesting its clinical potential. However,
despite some clinical success in using PDT in cancer treatment,
there are no clinical data on the use of PDT-based cancer vac-
cines in immunotherapy. There is currently a clinical trial in
preparation for application of PDT-based vaccines (Table 2). Of
note, Hyp-PDT-induced ICD based DC vaccines are currently
being tested in preclinical trials for glioblastoma and ovarian can-
cer (Garg et al. unpublished data; Immunotherapy Platform
Leuven or ITPL, UZLeuven, Belgium). The success of such pre-
clinical trials and preclinical optimizations would define the pos-
sible clinical translation of PDT-based immunotherapy in the
near future.

Hyperthermia
HT refers to the administration of heat locally as well as sys-

temically (whole-body HT). Since the 1970s numerous pre-clini-
cal studies on the effects of heat on tumor cells have been
performed in vitro as well as in experimental animal models. In
clinical oncology, HT has been shown to be a potent sensitizer
for the conventional chemo- or RT-treatment and improved
patient’s survival in various clinical trials.109 Clinical HT was
shown to affect innate and adaptive immunity; stimulating anti-
gen presentation, maturation and migration of DCs, as well as
homing of T lymphocytes to lymph nodes thereby facilitating T
cell priming. The efficiency of heat-induced killing of tumor cells
depends mainly on the applied temperature (ranging in most
studies from 41�C to 44�C), the duration of heat treatment,
tumor cell type and the cell cycle phase. Malignant cells are capa-
ble of thermotolerance induced by heat-shock response which is

accompanied by the expression of HSPs and other post-transla-
tional adaptation processes.109 HT was shown to cause apoptosis
mainly at lower temperatures (41–43�C) (and predominantly
necrosis at higher temperatures (>43�C).110 Increased immuno-
genicity of mouse and human tumor cells subjected to HT as
well as the induction of tumor-antigen specific T cell responses
in vitro and in vivo has been well documented.111-113 The major
technical problem with HT application is the difficulty to heat
specifically only the tumor region without inducing damage to
the normal tissue. In recent years, the development of new tech-
niques based on magnetic nanoparticles114 allowed the induction
of such tumor-specific HT. The group of Kobayashi has devel-
oped a HT system based on liposomes containing magnetic
nanoparticles which caused necrotic tumor cell death and the
release of HSP70, thereby stimulating an antitumor immune
response in vivo.115,116 Recently, magnet-mediated HT at high
therapeutic temperatures (50–55�C) was shown to induce absco-
pal antitumor immune effects on Walker-256 carcinosarcomas in
rats.117

Currently, it is unclear, whether HT treatment alone can
induce bona fide ICD. HT-treatment (<43�C) was shown to
induce ER stress.118 Also HMGB1 release was detected after HT
treatment of tumor cells lines at high temperature of 56�C.59

The current paradigm of the immunogenicity of HT lies in the
action of HSP70 and/or other released heat shock proteins which
via TLR4 signaling play the main role in the initiation of tumor-
specific immune responses.111,112,119,120 It has been shown that
the combination of HT and RT (X-rays or UVC) induces an
inflammatory necrotic tumor death which can be monitored by
the release of HMGB1 and HSP70121,122 and stimulation of DC
maturation and release of pro-inflammatory cytokines.59,123 Cur-
rently there are no clinical data on the use of HT-killed tumor
cells alone in clinical protocols.

Conclusion

Malignant diseases represent a major challenge in human
medicine. Combined therapeutic regimens like surgery, RT and
chemotherapy can efficiently reduce the tumor volume and ren-
der cancer cells visible for immune attack, thereby improving the
prognosis of cancer patients. However, the occurrence of meta-
static disease and the reservoir of cancer stem cells still remain the
greatest challenge in combating cancer. Therefore the combina-
tion of the cancer cell killing with the concomitant help of the
host immune system to mount a competent anticancer immune
response is an attractive therapeutic aim. Physical cell death-
inducing modalities like PDT or HT have been proven to be
able to act as in situ vaccines, and to aid in inducing antitumor
immunity in human patients; PDT most likely via ICD induc-
tion. Moreover, these modalities, especially HHP which is a
potent inducer of ICD in tumor cells, might have a great poten-
tial in the development of new whole cell-based or DC-based
vaccines. More research is however needed on the molecular
mechanism of ICD induction by PDT, HHP and possibly by
HT, as well as by the currently used chemotherapeutic agents
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and irradiation to optimize the therapeutic approaches. Efforts
should also be made to incorporate the design of new modern
immunotherapeutic strategies based on ICD inducers into cur-
rent multimodal therapeutic protocols.
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