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Abstract

Single-cell technologies allow measuring chromatin accessibility and
gene expression in each cell, but jointly utilizing both layers to map
bona fide gene regulatory networks and enhancers remains challeng-
ing. Here, we generate independent single-cell RNA-seq and single-
cell ATAC-seq atlases of the Drosophila eye-antennal disc and
spatially integrate the data into a virtual latent space that mimics
the organization of the 2D tissue using ScoMAP (Single-Cell Omics
Mapping into spatial Axes using Pseudotime ordering). To validate
spatially predicted enhancers, we use a large collection of enhancer–
reporter lines and identify ~ 85% of enhancers in which chromatin
accessibility and enhancer activity are coupled. Next, we infer
enhancer-to-gene relationships in the virtual space, finding that
genes are mostly regulated by multiple, often redundant, enhancers.
Exploiting cell type-specific enhancers, we deconvolute cell type-
specific effects of bulk-derived chromatin accessibility QTLs. Finally,
we discover that Prospero drives neuronal differentiation through
the binding of a GGG motif. In summary, we provide a comprehen-
sive spatial characterization of gene regulation in a 2D tissue.
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Introduction

Cellular identity is defined by Gene Regulatory Networks (GRNs), in

which transcription factors bind to enhancers and promoters to

regulate target gene expression, ultimately resulting in a cell type-

specific transcriptome. Single-cell technologies provide new oppor-

tunities to study the mechanisms underlying cell identity. Particu-

larly, single-cell transcriptomics allow measuring gene expression in

each cell, while single-cell epigenomics, such as single-cell ATAC-

seq (Assay for Transposase-Accessible Chromatin using sequenc-

ing), serves as a read-out of chromatin accessibility (Fiers et al,

2018). Although these technologies and computational approaches

are recently evolving to include spatial information (Karaiskos et al,

2017; Eng et al, 2019; Nitzan et al, 2019; Rodriques et al, 2019;

Thornton et al, 2019), most approaches currently target single-cell

transcriptomes. It remains a challenge how to exploit single-cell

epigenomic data for resolving spatiotemporal enhancer activity and

GRN dynamics, both experimentally and computationally.

In addition, while ATAC-seq is a powerful tool for predicting

candidate enhancers, not all accessible regions correspond to func-

tionally active enhancers (Shlyueva et al, 2014). For example,

accessible sites can correspond to ubiquitously accessible promoters

or binding sites for insulator proteins (Xi et al, 2007); to repressed

or inactive regions due to binding of repressive transcription factors

(Gary & Levin, 1996; Li & Arnosti, 2011; Arnold et al, 2013;

Shlyueva et al, 2014); or to primed regions that are accessible across

a tissue, but become only specifically activated in a subset of cell

types (Jacobs et al, 2018). Importantly, single-cell ATAC-seq has

not been fully exploited to explore these aspects yet. While most

scATAC-seq studies have been carried out in mammalian systems,

in which enhancer testing is not trivial, Cusanovich et al (2018)

evaluated 31 cell type-specific enhancers predicted from scATAC-

seq in the Drosophila embryo, finding that ~ 74% showed the

expected activity patterns.
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Another current challenge in the field of single-cell regulatory

genomics is how to integrate epigenomic and transcriptomic infor-

mation. Although some experimental approaches have been devel-

oped for profiling both the epigenome and the transcriptome of the

same cell (Cao et al, 2018; Chen et al, 2019b; Liu et al, 2019),

currently either the quality of the measurements, or the throughput,

is still significantly lower compared to each independent single-cell

assay. For example, sci-CAR (Single-cell Combinatorial Indexing

Chromatin Accessibility and mRNA) or SNARE-seq (Single-Nucleus

Chromatin Accessibility and mRNA Expression sequencing) on

human cells achieved a median of 1,000–4,000 UMIs (Unique Mole-

cular Identifiers) and 1,500–3,000 fragments per cell, while the

coverage with non-integrative methods, such as 10x, is around

20,000 UMIs and 10,000 fragments per cell for scRNA-seq and

scATAC-seq, respectively (Cao et al, 2018; Chen et al, 2019b;

preprint: Pervolarakis et al, 2019). Methods that achieve high sensi-

tivity, such as scCAT-seq (single-cell Chromatin Accessibility and

Transcriptome sequencing) (Liu et al, 2019), are based on microw-

ell plates rather than droplet microfluidics, making their throughput

limited.

Given the current limitations of combined omics methods, the

computational integration of independent high-sensitivity assays

provides a valuable alternative. For example, Seurat (Stuart et al,

2019) and Liger (Welch et al, 2019) have been used to integrate

independently sequenced single-cell transcriptomes and single-cell

epigenomes. Nevertheless, these methods require the “conversion”

of the genomic region accessibility matrix into a gene-based matrix,

and how to perform such a conversion is an unresolved issue. Some

studies have used the accessibility around the Transcription Start

Site (TSS) as proxy for gene expression (Bravo González-Blas et al,

2019); others aggregate the accessibility regions that are co-acces-

sible (i.e., correlated) with the TSS of the gene in a certain space

(Pliner et al, 2018). However, promoter accessibility is not always

correlated with gene expression. Furthermore, enhancers can be

located very far from their target genes—upstream or downstream,

up to 1 Mbp in mammalian genomes, or up to 100–200 kb in Droso-

phila, often with intervening non-target genes in between—and rela-

tionships between enhancers and target genes are often not one-to-

one (i.e., an enhancer can have multiple targets, and a gene can be

regulated by more than one enhancer) (Shlyueva et al, 2014).

Enhancer–promoter interactions can also be predicted using Hi-C

approaches at the bulk level (Ghavi-Helm et al, 2019); however,

these methods have limited sensitivity at single-cell resolution

(Nagano et al, 2015).

The Drosophila third-instar larval eye-antennal disc provides an

ideal biological system for the spatial modeling of gene regulation at

single-cell resolution. The eye-antennal disc comprises complex,

dynamic, and spatially restricted cell populations in two dimensions.

The antennal disc consists of four concentric rings (A1, A2, A3, and

arista), each with a different transcriptome and different combina-

tions of master regulators. For example, both Hth and Cut regulate

the outer antennal rings (A1 and A2), with additional expression of

Dll in A2, while Dll, Ss, and Dan/Danr are key for the development

of the inner rings (A3 and arista), among others (Dong et al, 2002;

Emerald et al, 2003). On the other hand, a continuous cellular dif-

ferentiation process from anterior to posterior occurs in the eye disc,

in which progenitor cells differentiate into neuronal (i.e., photore-

ceptors) and non-neuronal (i.e., cone cells, bristle, and pigment

cells) cell types. This differentiation wave is driven by the morpho-

genetic furrow (MF). Posterior to the MF, R8 photoreceptors are

specified first, and then, they sequentially recruit R2/R5, R3/R4, and

R7 photoreceptors and cone cells to form hexagonally packed units

called ommatidia (Roignant & Treisman, 2009; Fig 1A). In summary,

the heterogeneity of cell types and differentiation trajectories results

in diverse—static and dynamic—GRNs, which can be modeled with

a combination of experimental and computational approaches.

In this work, we first generate a scRNA-seq and a scATAC-seq

atlas of the eye-antennal disc. Second, taking advantage of the fact

that the disc proper is a 2D tissue, we spatially map these single-cell

profiles on a latent space that mimics the eye-antennal disc, called

the virtual eye-antennal disc. Next, by exploiting publicly available

enhancer–reporter data (Jory et al, 2012), we assess the relationship

between enhancer accessibility and activity. Third, we use these

virtual cells, for which both epigenomic and transcriptomic data are

available, to derive links between enhancers and target genes using

a new regression approach. Fourth, we use a panel of 50 bulk ATAC-

seq profiles across inbred lines to predict cell type-specific caQTLs

(chromatin accessibility QTLs). Finally, we use our findings to char-

acterize the role of Prospero in the accessibility of photoreceptor

enhancers. In summary, we provide a comprehensive characteriza-

tion of gene regulation in the eye-antennal disc, using a strategy that

is applicable to other tissues and organisms. Our results can be

explored as a resource on SCope (Davie et al, 2018) (http://scope.ae

rtslab.org/#/Bravo_et_al_EyeAntennalDisc) and the UCSC Genome

Browser (http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAnte

nnalDisc), and we provide an R package, called ScoMAP (Single-Cell

Omics Mapping into spatial Axes using Pseudotime ordering), to

spatially integrate single-cell omics data and infer enhancer-to-gene

relationships (https://github.com/aertslab/ScoMAP).

Results

A single-cell transcriptome atlas of the eye-antennal disc

First, we set out to identify the different cell populations in the eye-

antennal disc and obtain their transcriptomes. We profiled 3,531

high-quality cells using scRNA-seq on three runs of the 10x Geno-

mics platform, with a median of 20,761 UMIs and 3,094 expressed

genes per cell, respectively (see Materials and Methods,

Appendix Fig S1A and B). Analysis with Seurat (Stuart et al, 2019)

revealed 17 clusters, most of which map to spatially located cell

types (Fig 1B). Importantly, the structure in the tSNE (t-distributed

Stochastic Neighbor Embedding)—and UMAP (Uniform Manifold

Approximation and Projection) (Appendix Fig S1C), reveals two

main branches, one corresponding to the antennal disc, in which

clusters represent the antennal rings from outer to inner; and one

corresponding to the eye disc, in which progenitors differentiate into

ommatidial (i.e., photoreceptors and cone cells) and interomma-

tidial cell types. We verified that cell clustering was driven by cell

identity and not affected by batch effects (Appendix Fig S1D). We

also found a subset of ommatidial cells with a high number of UMIs

and genes expressed, which was annotated as doublets by

DoubletFinder (McGinnis et al, 2019; Appendix Fig S1E–G). The

higher proportion of doublets in this group is not unexpected, since

ommatidia are tightly packed and are more difficult to dissociate.
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To annotate these 17 cell clusters, we combined two approaches.

First, we used known marker genes from literature (Fig 1C,

Appendix Fig S1H). For example, we find Dfd expressed in the

peripodial membrane clusters, with dpp expressed in the lateral

peripodial membrane (Stultz et al, 2012) and oc as key marker of

the head vertex (Blanco et al, 2010). In the eye disc, we find a gene

expression gradient starting from Optix expression in progenitors

and precursors, to ato expression in the MF, and then gl expression

in the ommatidial and interommatidial cells. Importantly, we find

Gasp as key marker of the interommatidial cells (Fig 1C), which

plays a role in extracellular matrix integrity and assembly (Tiklová

et al, 2013). Indeed, Gene Ontology (GO) enrichment of the genes

differentially expressed in this group reveals terms related to cell–

cell junction assembly and organization (P-val: 10�16). Meanwhile,

in the ommatidial groups we observed a gene expression gradient of

markers from early photoreceptors (R8, sens), to intermediate

(R3-4, svp), and late-born PRs and cone cells (R7 and cone cells, sv)

(Mlodzik et al, 1990; Frankfort et al, 2001; Charlton-Perkins et al,

2011). In fact, semi-supervised analysis of these populations (see

Materials and Methods) subdivides the ommatidial classes into the

different photoreceptor types and cone cells (Appendix Fig S2),

largely finding R8, R3/R4, and R1/R6 in the early-born PR cluster,

and R7 and cone cells in the late-born photoreceptors and cone cells

cluster (only 26 R2/R5 cells are detected). On the other hand, mark-

ers of the antennal rings form a gradient along the antennal cell

types, from ct (A1 and A2), to Dll (A2, A3 and arista), and ss (A3 &

arista) (Emerald et al, 2003). Interestingly, within A2, we find a rare

subpopulation of cells expressing ato and sens (0.93%),
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Figure 1. scRNA-seq recapitulates cellular diversity and GRNs in the eye-antennal disc.

A Experimental approach. scRNA-seq was performed in eye-antennal discs using 10x Genomics, resulting in a data set with 3,531 high-quality cells. Main spatial
compartments in the eye-antennal disc are annotated.

B tSNE representation of the scRNA-seq data (with 3,531 cells).
C tSNE colored by the standardized gene expression of known cell type markers in the eye-antennal disc. In each plot, three marker genes are shown, using RGB

encoding.
D tSNE annotated by label transfer with Seurat v3 (Stuart et al, 2019) using the scRNA-seq eye disc data set from Ariss et al (2018).
E Cell-to-regulon heatmap showing the standardized enrichment or area under the curve (AUC) from SCENIC (Aibar et al, 2017) for each selected regulon based on RSS

in each cell. Top enriched motifs for representative regulons are shown below. Regulons marked with * are based on ChIP-seq track enrichment.

Data information: AMF: anterior to the morphogenetic furrow. Ar: arista. CC: cone cells. EPR: early photoreceptors. Hemo: hemocytes. HV: head Vertex. INT:
interommatidial cells. LPR/CC: late photoreceptors and cone cells. MF: morphogenetic furrow. PG: perineurial glia. PMF: posterior to the morphogenetic furrow. PML:
peripodial membrane lateral. PMM: peripodial membrane medial. PR: photoreceptors. PRPre: photoreceptor precursors. PRPro: photoreceptor progenitors. SMW: second
mitotic wave. SPG: subperineurial glia. WG: wrapping glia.
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corresponding to the Johnston Organ Precursors (JOPs) (Nolo et al,

2000; Eberl & Boekhoff-Falk, 2007), which represent only 0.25–

0.6% of the eye-antennal disc cell population (Sen et al, 2010). We

also identify a population of glial cells, based on the enrichment of

the transcription factor repo (Yuasa et al, 2003); a cluster of hemo-

cytes, enriched for pnr (Minakhina et al, 2011); and a small group

of cells with high expression of the transcription factor twi (1.5%),

corresponding to adepithelial cells (mesodermal myoblasts), which

are known to reside in most imaginal discs (Furlong et al, 2001;

Beira & Paro, 2016). Accordingly, GO term enrichment using the dif-

ferentially expressed genes in this group reveals terms related to

mesoderm development (P-val: 10�4). Finally, we find a population

of 299 cells coming from the brain expressing Oli (Oyallon et al,

2012), which represent contaminating cells from the brain due to

the dissections.

To validate and further extend our cell type annotations, we

used a publicly available Drop-seq data set from the eye disc

containing 11,500 single-cell profiles with ~ 1× cellular coverage

(Ariss et al, 2018) and a median of 517 genes detected per cell

(Appendix Fig S3A and B). Using Seurat’s label transferring, we

mapped the cell types annotated by Ariss et al to our data set (and

vice versa) and found that both annotations agreed (Fig 1D,

Appendix Fig S3C–E). These labels permitted to subdivide our glial

cell cluster into wrapping glia, subperineural glia, and perineural

glia, and to annotate a small population of cells just posterior to the

MF as the second mitotic wave (SMW), which is a round of

synchronous cell division that occurs right after cells exit the MF.

On the other hand, no twi+ cells are found in the Drop-seq data set.

This is likely due to the fact that these cells are located in the anten-

nal disc, which is missing in the Drop-seq data set. Indeed, the

activity of a twi enhancer (Appendix Fig S3F) is observed in the

antennal disc rather than in the eye disc (Jory et al, 2012). Alto-

gether, despite the fact that stringent cell filtering across three 10x

Genomics runs resulted in only 3.5K cells (Appendix Fig S4A–D),

we find that the data set forms a representative sample of all the

known cell types in the tissue.

Next, we used SCENIC (Single-Cell rEgulatory Network Inference

and Clustering) to identify master regulators and gene regulatory

networks in the eye-antennal disc (Aibar et al, 2017), finding 175

regulons (159 motif-based regulons and 16 regulons based on ChIP-

seq (Chromatin Immunoprecipitation Sequencing) tracks; see Mate-

rials and Methods). Briefly, SCENIC infers co-expression modules

between transcription factors (TFs) and candidate target genes using

machine learning regression techniques (e.g., random forest or

gradient boosting machines), which are pruned based on the enrich-

ment of the TF motif around the TSS of the potential target genes,

resulting in regulons. While some regulons are enriched across the

entire tissue [such as Grh (Jacobs et al, 2018)], many are cell type-

specific (Fig 1E). For the antennal rings, we find Lim1 (A1), TfAP-2

(A1, A3 and arista), and Ss (arista and A3), in agreement with litera-

ture (Ahn et al, 2011; Emmons et al, 2007; Tsuji). In the eye disc,

regulons recapitulate the GRN dynamics during the differentiation

process, with Optix and Ey in the progenitor and precursor cells,

Ato in the morphogenetic furrow (Appendix Fig S5A–C), So in

photoreceptors, and B-H2 in interommatidial cells (Higashijima

et al, 1992; Bessa et al, 2002). We further validated the Ato regulon

using GeneMANIA associations (Warde-Farley et al, 2010), as well

as previously published RNA-seq data from Ato gain-of-function

and loss-of-function mutants (Aerts et al, 2010; Appendix Fig S5B,

D and E). Indeed, genes included in the Ato regulon are significantly

upregulated in the Ato gain-of-function (NES: 2.44) and downregu-

lated in the ato mutant (NES: �2.57), respectively, and include

known Ato target genes in the MF, such as sens and sca.

In conclusion, using scRNA-seq we have identified the different

populations in the eye-antennal disc and the interplay of GRNs that

underlie the developmental program of this system. We provide this

data as loom files that can be explored in SCope at http://scope.aert

slab.org/#/Bravo_et_al_EyeAntennalDisc.

A single-cell ATAC-seq atlas of the eye-antennal disc

Next, we performed scATAC-seq to explore the chromatin accessi-

bility landscape of the eye-antennal disc. Using 10x chromium in

two independent biological replicates, we obtained a ~ 1× coverage

of the eye-antennal disc, with 15,766 scATAC profiles (Fig 2A,

Appendix Fig S4E and F). We assessed the quality of the data set

based on the relative enrichment of fragments around the TSS and

the correlation with bulk ATAC-seq on the same tissue

(R2 = 0.9615; Fig 2B and C), among other quality control measures,

and filtered out a total of 379 cells based on the number of frag-

ments within bulk peaks (< 20%) and the total number of fragments

(< 100 or > 10,000, Appendix Fig S6; see Materials and Methods).

This resulted in a data set with 15,387 single-cell epigenomes.

Since this tissue comprises differentiating continuous rather than

discrete populations, we used cisTopic (Bravo González-Blas et al,

2019), currently the best performing clustering method on dynamic

populations (Chen et al, 2019a). Briefly, cisTopic exploits a topic

modeling technique, Latent Dirichlet Allocation (LDA), to simultane-

ously classify regulatory regions into regulatory topics and cluster

cells based on their regulatory topic enrichment. In other words,

topics are sets of co-accessible regulatory regions across cells, where

each region has a probability to belong to each topic (region-topic

distribution), and the topic-cell distribution represents the overall

accessibility of regions in a topic in a cell. Compared to other meth-

ods [such as SnapATAC (preprint: Fang et al, 2019) or Latent

Semantic Indexing (Cusanovich et al, 2018)], cisTopic does not

require defining discrete cell clusters (which is not trivial in dynamic

populations) to identify cell type-specific accessible regions, because

region and cell clustering are performed simultaneously. In addition,

thanks to its probabilistic nature, cisTopic also works as a drop-out

imputation method through the estimation of the probability of each

region in each cell [by multiplying the region-topic and topic-cell

probabilities (Bravo González-Blas et al, 2019)].

As recent studies have shown a higher accuracy of scATAC-seq

clustering when using genomic bins compared to bulk or aggregate

peaks (Chen et al, 2019a), we ran cisTopic (Bravo González-Blas

et al, 2019) using three different sets of regulatory regions: (i)

narrow peaks as called by MACS2 from the bulk ATAC-seq profile

of the wild-type Drosophila eye-antennal disc; (ii) bulk peaks

defined by extending �250 bp from the summits called by MACS2;

and (iii) cisTarget regions, defined by partitioning the entire non-

coding Drosophila genome based on cross-species conservation,

resulting in more than 136,000 bins with an average size of 790 bp

(Herrmann et al, 2012). Accordingly, we found that the cisTopic

analysis performed with cisTarget regions resulted in the highest reso-

lution compared to using bulk peaks or summits (Appendix Fig S7).
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For example, small subpopulations such as brain and twi+ cells

could be revealed, which were otherwise mixed with ommatidial

and glial cells, respectively. Hence, we used this model, with 49

topics, for further analysis.

Clustering on the topic-cell distributions (i.e., the contribution of

each regulatory topic to each cell) resulted in 22 clusters, most of

which map to spatially located cell types (Fig 2D). Despite the fact

that cell clustering is not driven by read coverage, we find two

groups that likely correspond to doublets based on read depth and

percentage of reads in peaks (Appendix Fig S8A–C). Annotation of

cell types from scATAC-seq is not as straightforward as for scRNA-

seq, because the cluster markers now represent regulatory regions

instead of genes. To address this, we exploit four different

approaches: (i) motif (and ChIP-seq track) enrichment on the regu-

latory topics; (ii) enrichment of epigenomic signatures of FAC-sorted

cell types; (iii) a novel method for deriving gene activity scores from

cisTopic distributions; and (iv) label transferring from our previ-

ously annotated scRNA-seq data set.

Of the 49 predicted topics, two represent a batch effect of the

run, and one represents a female sex-specific topic (Appendix Fig

S8D–I), but these topics do not influence cell clustering

(Appendix Fig S8J). The remaining topics represent general, cell

type-specific and low contribution topics (Fig 2E and F,

Appendix Figs S9 and S10A). Among the cell type-specific topics,

we find a topic for each antennal ring (topics 19, 26, 40, and 22;

respectively), with a subdivision of A2 into two groups (A2a and

A2b, respectively). Regions in these topics, from the outer to the

inner ring, are enriched for motifs (and/or ChIP-seq tracks) linked

to known master regulators, such as Hth in A1, Dll in A2, and Ss

in A3 and arista (Appendix Fig S9). Additionally, we identify a

subpopulation of cells in A2b with accessible regions controlled by

Ato, which correspond to the Johnston Organ Precursors (JOPs).

Similarly, retinal developmental topics recapitulate the dynamic

changes in chromatin during differentiation, with the Optix motif

enriched in regions specific to the domain anterior to the MF; the

Ato motif in MF-specific regions; the Glass, Sine oculis (So), and

Onecut motifs in the clusters representing ommatidial cells; and the

Glass, So, and Lozenge motifs in interommatidial cell types

(Fig 2G). Furthermore, we find a new, highly enriched GGG motif

in the genomic regions specific to ommatidial development, which

can be linked to a relatively large set of candidate TFs based on

motif-to-TF mappings, as will be discussed further below. We

discovered generally accessible topics as well, highly enriched for

promoters (Appendix Fig S10B), some of which decrease in accessi-

bility during ommatidial development. These epithelial topics are

represented by genomic regions bound by the pioneer transcription

factors Trl and Grh, based on motif and ChIP-seq enrichment

(Appendix Fig S10C). Indeed, Grh has been shown to be expressed

and promote chromatin opening in all epithelial cells, decreasing

upon neuronal differentiation (Jacobs et al, 2018), which is also

supported by our scRNA-seq data set (Appendix Fig S10D).

Furthermore, we identify other cell type-specific topics for other

subpopulations, such as a topic enriched for the Twist motif that

identifies the twi+ adepithelial cells; a topic enriched for the

Serpent (Srp) motif, corresponding to hemocytes; and a topic

enriched for the Repo motif, corresponding to glial cells. Finally,

we distinguish two small subpopulations with topics enriched for

Stripe (Sr, homologous to human neuronal activation factor EGR4),

which correspond to brain cells likely attached during the dissec-

tion. Overall, despite the experimental and thresholding bias that

lead to different sizes of the scRNA-seq atlas (3.5K cells) and the

scATAC-seq atlas (15K cells), both data sets reveal the same popu-

lations and in similar proportions (Appendix Fig S10E).

To further validate the cell type annotations in the scATAC-seq

atlas, we used our previously published ATAC-seq data from FAC-

sorted cells located specifically anterior to the morphogenetic

furrow, based on the activity of the Optix2/3 enhancer driving GFP

(Optix-GFP+; Fig 2H; Ostrin et al, 2006; Jacobs et al, 2018). We

find that regions specifically accessible in these cells compared with

the rest of the eye are accessible in the precursor cell cluster in the

scATAC-seq data, and also show enrichment for the motif of the

transcription factor Optix, in agreement with the topic specific to

this population. We also re-used our previous single-cell ATAC-seq

data, obtained on the Fluidigm C1, of Optix-GFP+ FAC-sorted cells

(Jacobs et al, 2018), and we performed an additional Fluidigm C1

run with cells FAC-sorted based on the activity of the sens-F2

enhancer (Pepple et al, 2008) (sens-GFP+), which correspond to the

intermediate groups in the MF and R8 photoreceptors, respectively.

When mapping these cells into the topic space, we find that they

cluster within the correct cell types of the 10x sc-ATAC-seq data

(Appendix Fig S11A). Accordingly, we also find that the activity of

the Optix 2/3 enhancer and the sens-F2 enhancer agrees with the

accessibility of these regions in the matching cell types

(Appendix Fig S11B and C).

◀ Figure 2. scATAC-seq recapitulates cell diversity in the eye-antennal disc.

A Experimental set up. 15,387 nuclei were profiled using 10x scATAC-seq.
B Correlation between the accessibility of regions in the bulk ATAC-seq and the aggregated single-cell profiles.
C Comparison of bulk ATAC profiles, scATAC-seq aggregate with 10x and 400 individual cells, where each row represents a cell and fragments are shown in black. The

number of cells in the aggregate is indicated between brackets.
D cisTopic cell tSNE (15,387 nuclei) colored by annotated cell type.
E Topic-cell enrichment heatmap with selected topics.
F Aggregate profiles per cell type in the top region of the indicated topic.
G Topic modeling recapitulates the dynamic chromatin changes during differentiation in the eye disc. Top: cisTopic cell tSNE colored by topic enrichment. Middle:

cisTopic region tSNE colored by topic enrichment. Bottom: Selected enriched motifs in each topic.
H Bulk ATAC was performed on Optix-GFP+ and Optix-GFP� FACS sorted cells (based on the activity of the Optix2/3 enhancer). cisTopic cell tSNE and region tSNE are

colored based on the enrichment of regions that are differentially accessible between Optix-GFP+ and Optix-GFP�. Motifs enriched in the regions differentially
accessible in Optix-GFP+ cells are shown. Scale bar, 100 lm.

Data information: Ar: arista. EPR: early photoreceptors. Hemo: hemocytes. HV: head vertex. INT: interommatidial cells. JOP: Johnston organ precursor. LPR/CC: late
photoreceptors and cone cells. MF: morphogenetic furrow. PML: peripodial membrane lateral. PMM: peripodial membrane medial. PRPre: photoreceptor precursors.
PRPro: photoreceptor progenitors.
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Next, we developed a new approach for deriving a “gene activity

matrix” from the topic-cell and region-topic distributions

(Appendix Fig S12A). Briefly, we first multiply the region-topic and

topic-cell distributions to obtain a region-cell distribution, which

indicates the probability of accessibility of each region in each cell.

Then, for each gene, we aggregate the probabilities of the surround-

ing regions (in this case, 5 kb around the TSS plus introns), result-

ing in a gene activity score. This new matrix, which contains

scATAC-seq cells as columns and gene activities as rows, can be

analyzed as a gene expression matrix. For example, we used it to

score SCENIC regulons on the scATAC-seq cells to validate the

master regulators found in the topics (Appendix Fig S12B). We find

the Optix regulon enriched anterior to the morphogenetic furrow,

the Ato regulon enriched in the MF, Onecut enriched in late omma-

tidial cells, and Grh enriched across all cell types except late omma-

tidial cells. Furthermore, we also used DoubletFinder (McGinnis

et al, 2019), developed for scRNA-seq data, and labeled a group of

cells enriched in both ommatidial and interommatidial topics as

doublets (Appendix Fig S12C). In addition, we used this matrix for

label transferring with our scRNA-seq data set using Seurat v3 (Stu-

art et al, 2019), finding a strong agreement between our indepen-

dent RNA and ATAC-based annotations (Appendix Fig S12D and E).

Importantly, we find regions enriched for a specific motif that are

located in the surroundings of genes (learned from the scATAC-seq

data) that are co-expressed with the corresponding transcription

factor (learned from the scRNA-seq data), likely representing bona

fide functional enhancers. For example, we find 2,769 regions

enriched for the Optix/So motif, out of which 505 and 894 are in the

surroundings of genes co-expressed with Optix and so, respectively.

Similarly, out of the 1,859 and 1,128 regions enriched for the Atonal

and the Glass motifs, 285 and 452 are close to co-expressed genes

(Dataset EV1).

In summary, we provide a thorough characterization of the chro-

matin accessibility landscape of the eye-antennal disc, corroborated

by our scRNA-seq data set. This data can also be explored at SCope

(http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc) and UCSC

(http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc).

Spatiotemporal mapping of single-cell omics couples enhancer
accessibility with functionality

Since most of the cell types in the eye-antennal disc map to locally

restricted populations, we developed a strategy to map the scRNA-

seq and scATAC-seq profiles to their putative position of origin in

the tissue using a template of the eye-antennal disc with 5,058

virtual cells (between the scRNA-seq and the scATAC-seq coverage,

see Materials and Methods), corresponding to the 5,058 pixels in

our eye-antennal disc representation (Figs 1A, 2A and 3A). The

number of pixels was chosen as a middle ground between the sizes

of the scRNA-seq and scATAC-seq data sets, but we also evaluated

smaller and larger maps (Appendix Fig S13), and this size can be

easily changed using the R package ScoMAP (Single-Cell Omics

Mapping into spatial Axes using Pseudotime ordering) available at

https://github.com/aertslab/ScoMAP.

To place cells in this map, we first order antennal and eye

cells based on their transcriptome or epigenome into one-dimen-

sion (i.e., pseudotime), which correspond to the proximal-distal

and anterior–posterior axes in the antenna and the eye,

respectively (Appendix Fig S14). For each cluster, we divide real

and virtual cells into bins based on pseudotime and position in

the corresponding axis, respectively. Finally, we map real cells

onto the virtual cells in the matching bin in the virtual eye-

antennal disc, with a 1-to-1 matching. When there are fewer real

cells than virtual cells in the bin, real cells are sampled randomly

more than once; and when more real cells are available than

virtual cells, N real cells are sampled, where N is the number of

virtual cells in that bin.

Using the mapped scRNA-seq data, we can visualize previously

known gene expression patterns (Fig 3B). For example, our spatial

map recapitulates expression of hth, salm, danr, ct, Dll, and ss in

the antennal rings, as shown by Emerald et al (2003). In the eye

part, patterns from anterior to posterior, with the expression of oc in

the head vertex, Optix and toy anterior to the MF, ato and dpp in the

MF, and gl posterior to the MF, agree with literature (Bessa et al,

2002).

To validate the scATAC-seq mapping, we used image data of

more than 700 enhancer–reporter lines from the Janelia FlyLight

project (Jory et al, 2012). In short, in each line a specific enhancer

controls the expression of GAL4, and when crossed with a UAS-GFP

reporter line, the activity of the enhancer is recapitulated by the GFP

signal. These enhancer activity patterns were registered onto the

virtual eye-antennal disc using a custom landmark-based pipeline

(see Materials and Methods). Importantly, Janelia enhancers are

wide regions (with an average size above ~ 3,000 bp) in which the

functional enhancer part can often be defined by the scATAC-seq

peak (Appendix Fig S15A). However, ~ 75% of the Janelia enhan-

cers include more than one regulatory region, for whose activity

correlates either with all or some of the regulatory regions within

the enhancer (Appendix Fig S15B and C). Here, we defined the

accessibility of a Janelia enhancer as the aggregate accessibility of

all regulatory regions that it contains. By comparing the predicted

accessibility pattern for each Janelia region (based on the ATAC-

seq) with its activity (based on the GFP reporter), we find that

accessibility and activity are correlated in 77% of the enhancers

(Fig 3C); however, there are cases in which accessibility and activ-

ity are uncoupled (Fig 3D).

To assess the cell type-specificity of chromatin accessibility, we

calculated an accessibility gini index for each enhancer. The gini

index has been widely used in economics to assess income inequal-

ity and has been previously used in single-cell transcriptomics for

the selection of cell type-specific genes (Jiang et al, 2016; Torre

et al, 2018). In this context, a gini coefficient of zero means that the

region is equally accessible across all cells, while a gini index of 1

means that a region is uniquely accessible in one cell. We find that

specific enhancers (with a high gini score) tend to agree in their

accessibility and activity, while ubiquitously accessible enhancers

(with a low gini score) do not show corresponding accessibility and

activity patterns (Fig 3E, Appendix Fig S16). In addition, motifs

linked to transcription factors with a restricted expression, such as

Glass (posterior to the MF) and Ocelliless (head vertex), are found

in the specifically accessible enhancers, while motifs linked to

Grainyhead, an epithelial transcription factor, are found in the

generally accessible regions. Indeed, Jacobs et al (2018) showed

that Grh is a pioneer transcription factor which directly promotes

opening of all its target regions throughout the epithelial tissue of

the eye-antennal disc, while their activity is restricted to certain cell
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types. Our data confirm that Grh binding results in a ubiquitous

ATAC-seq signal, but not necessarily in activity. For example,

among 20 Atonal target enhancers found earlier (Aerts et al, 2010),

six are bound by Grh and are ubiquitously accessible, yet activated

only in Ato-positive cells, while the other 14 enhancers are not

bound by Grh and show cell type-specific accessibility and activity

(Appendix Fig S17).

Thus, the scATAC-seq data corroborate a model consisting of

two classes of enhancers: (i) primed enhancers, with general acces-

sibility (e.g., by Grh binding) but specific activity based on the pres-

ence of other transcription factor/s (e.g., Ato) and (ii) unprimed

regions, in which accessibility (e.g., by binding of a TF/s, as Ato)

and activity are coupled (Fig 3F). Most of the enhancers of the first

class belong to the general topics (with a total of 4,500 binarized

regions on the representative general topics), while regions from the

second class are spread across the cell type topics (with a total of

26,500 regions classified in cell type specific topics). In summary,

accessibility can be used as a proxy for enhancer activity for the

majority of enhancers, but there are ~ 15% of enhancers that form

an exception.

Exploiting the latent space to link enhancers to target genes

The virtual eye-antennal disc acts as a latent space in which both

transcriptomic and epigenomic profiles are available in the same

virtual cell. Hence, we developed a computational strategy to infer

enhancer-to-gene relationships, which is also included in the

ScoMAP package. Particularly, we investigated to what extent

enhancers in a large space around the TSS of a gene (i.e., �50 kb

from the TSS plus introns) can predict the expression of a target

gene (Fig 4A). For each gene, we calculated the following: (i) the

correlation between gene expression and the accessibility probabil-

ity of each candidate region across all the virtual cells and (ii) the

importance of each candidate region for predicting the expression of

the gene using random forest regression models, accounting for

non-linear relationships. Briefly, for each gene we build a number of

regression decision trees, in which the accessibility of the regions is

used in the decision nodes and the gene expression is the value to

predict; and the importance of each region is calculated based on

how much the variance on the gene expression is reduced based on

the split (Huynh-Thu et al, 2010). While the random forest impor-

tance reflects the strength of the link between the region and the

gene, the sign of the correlation score indicates whether the relation-

ship is positive (> 0) or negative (< 0). Importantly, negative rela-

tionships between features tend to be noisier due to the sparse

nature of the single-cell data, as not observing accessibility or gene

expression may reflect drop-out events. After pruning low confi-

dence links (see Materials and Methods), we obtained a total of

183,336 enhancer-to-gene relationships (with 95,484 and 87,229

positive and negative links, respectively).

To verify these predicted enhancer-to-gene links, we used vali-

dated associations from literature. For example, we predict sens

expression to be exclusively regulated by one enhancer, sens-F2,

in agreement with Pepple et al (2008) (Fig 4B, Appendix Fig

S18A). In other cases, we find that gene expression is a result of

combinations of enhancers. For instance, dac expression is mainly

controlled by two redundant enhancers (3EE and 5EE), as shown

by Pappu et al (2005). Both enhancers are accessible in the precur-

sor cells, where dac is expressed (Fig 4C, Appendix Fig S18B). As

a more complex example, gl expression is regulated by a combina-

tion of 14 enhancers, out of which three enhancers have been

experimentally tested by Fritsch et al (2019) (Fig 4D, Appendix Fig

S18C). While gl is expressed in all cell types posterior to the MF

(both in ommatidial and interommatidial cells), some of these

regions are exclusively accessible and active in interommatidial

cells (i.e., subregion in enhancer 3), while others are only accessi-

ble and active in photoreceptors (i.e., enhancer 2, subregion in

enhancer 3, and enhancer 4), suggesting that different enhancer

combinations are involved in ommatidial cells versus interomma-

tidial cells (Appendix Fig S19). Overall, there is a median of 22

enhancers linked to each gene (with a median of 11 positive links

and 11 negative links, respectively) and only 2.4% of all genes are

regulated by one enhancer (Fig 4E). These results indicate that

gene expression is regulated by an intricate network of enhancer

interactions. Further corroborating our predicted enhancer-to-gene

associations, we find that ~ 62% of the Janelia enhancers for

which accessibility and activity are coupled are positively linked

(with a correlation > 0.2) to a target gene.

◀ Figure 3. Spatiotemporal mapping of single-cell RNA-seq and single-cell ATAC-seq data.

A Computational approach for mapping single-cell RNA or single-cell ATAC-seq data into the virtual eye-antennal disc. Briefly, cells are ordered by pseudotime,
corresponding to the proximal-distal axis in the antennal disc and the anterior–posterior axis in the eye disc. For each cluster, real and virtual cells are divided into
the same number bins based on pseudotime and axis position, respectively. Finally, cells are mapped into the virtual cells in the matching bin.

B Gene expression correspondence between the Seurat tSNE and the virtual eye. The expression of three genes is shown per plot, using RGB encoding.
C Correspondence between region accessibility and activity for 12 Janelia-Gal4 enhancers. Top row: cisTopic cell tSNE colored by the accessibility probability of each

region in each cell. Middle row: Virtual eye colored by the accessibility probability of each region in each cell. Bottom row: Confocal images showing the activity (GFP,
green) of each region in eye-antennal discs. Scale bar, 100 lm.

D Discordance between region accessibility and activity for 2 Janelia-Gal4 enhancers. Top row: cisTopic cell tSNE colored by the probability of each region in each cell.
Middle row: Virtual eye colored by the probability of each region in each cell. Bottom row: Confocal images showing the activity (GFP, green) of each region in
eye-antennal discs. Scale bar, 100 lm.

E Relationship between the correlation between the accessibility and the activity of the regions and their distribution (as gini score). Below, representative motifs
enriched in generally and specifically regions, with low (< 0.2) and high (> 0.4) gini score, respectively, are shown.

F Model describing the two classes of enhancers found. On the one hand, some enhancers (such as Grh targets) are generally accessible, but only become functional
with a specific co-factor(s) binds; on the other hand, for other enhancers, accessibility is more specific and is couples with activity (based on the binding of one or
more TFs). Histograms shown the average topic score for enhancers of both classes are shown.

Data information: Ar: arista. EPR: early photoreceptors. Hemo: hemocytes. HV: head vertex. INT: interommatidial cells. JOP: Johnston organ precursor. LPR/CC: late
photoreceptors and cone cells. MF: morphogenetic furrow. PML: peripodial membrane lateral. PMM: peripodial membrane medial. PRPre: photoreceptor precursors.
PRPro: photoreceptor progenitors.
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Figure 4. Enhancer-to-target links unveil a complex multi-level regulation of gene expression.

A Computational approach for linking enhancer to target genes.
B Inferred links for senseless. The promoter of the gene is highlighted in grey, and the validated enhancer sens-F2 is highlighted in blue.
C Inferred links for dacshund. The promoter of the gene is highlighted in grey, and the validated enhancers 3EE and 5EE are highlighted in blue.
D Inferred links for glass. The promoter of the gene is highlighted in grey, the validated enhancers by Fritsch et al (2019) are highlighted in blue, and the glass gene is

highlighted in red.
E Number of enhancer-to-gene links per gene.
F Number of links with genes in the ranked position based on distance from the enhancer.
G Number of positive and negative links, with representative enriched motifs in each category with Normalized Enrichment Score (NES).
H Link-based regulon for Atonal built using GRNBoost co-expression modules and motif enrichment on the regions linked to each potential target gene. Left: Cytoscape

view of the link-based regulons. Color scale indicates the average importance of the regions enriched in the transcription factor motif for each gene. Known targets of
Atonal (Aerts et al, 2010) are highlighted in black and grey and with a bigger font. Middle: Examples of target genes, showing the enhancer-to-region links (top),
cisTarget regions (middle), and gene annotation. cisTarget regions in which the motif for the transcription factor is enriched are shown in red. The area highlighted in
yellow corresponds to the motif enrichment search space used in SCENIC (Aibar et al, 2017). Right: GSEA (Gene Set Enrichment Analysis) plots comparing the
link-based regulons with differentially expressed genes in both gain and loss of function mutants described in Aerts et al (2010).
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Interestingly, TF genes are regulated by slightly, but significantly,

more enhancers compared with non-TF genes (H0: average number

of positive links for TF genes (13) ≤ Average number of positive

links for non-TF genes (11); P-value: 2 × 10�4; Appendix Fig S20A).

This is further supported by Gene Ontology analysis with GOrilla

(Genes ordered by decreasing number of links, P-value: 5 × 10�4;

Appendix Fig S20B and C). Indeed, it has been hypothesized that TF

genes require a tighter regulation because abnormalities in their

expression can cause more dramatic effects compared with defects

in the expression of terminal effector genes (Barolo, 2012). In addi-

tion, we find enhancer–enhancer pairs linked to the same gene with

a high correlation in accessibility (with a median of 4 enhancer–

enhancer pairs with a correlation > 0.8; equivalent to 3–4 redundant

enhancers), being significantly higher between enhancers linked to

a TF gene compared with those linked to a non-TF gene (H0: aver-

age number of enhancer–enhancer pairs with a correlation above

0.8 for TF genes (13) ≤ Average number of enhancer–enhancer

pairs with a correlation above 0.8 for non TF genes (7); P-value:

0.006; Appendix Fig S20D). In agreement, ~ 73% of the enhancer–

enhancer pairs involving Janelia enhancers also show correlation

between their activity patterns (Appendix Fig S21).

The multiplicity of enhancers with the same function, known as

shadow enhancers, has an evolutionary basis and has been

suggested to provide robustness during development (Osterwalder

et al, 2018). In addition, redundant enhancers can compensate

when an enhancer is affected by a loss-of-function mutation or dele-

tion (Frankel et al, 2010; Perry et al, 2010). Contrary to our expecta-

tion, shadow enhancers are not less conserved than isolated

enhancers (Appendix Fig S20E) and do not show more genomic

variation compared to isolated enhancers (Appendix Fig S20F).

Based on the 183K enhancer-to-gene associations, we investi-

gated the distance between regions and their predicted genes, the

genomic annotation and the motif composition of the enhancers

involved in these networks. Firstly, we found that enhancers do

not necessarily act on their closest gene, although the nearest gene

is overall the most likely target (Fig 4F). Secondly, most regions

linked to a target gene fall in non-promoter regions (75%)

(Appendix Fig S20G). Indeed, for genes that show cell type-specific

expression (with adjusted P-value < 0.05 and average log FC > 1),

the accessibility of the promoter is poorly correlated with the

expression of the gene (median correlation 0.15), as promoters

tend to ubiquitously accessible (H0: Proportion of promoters in

generally accessible topics (0.54) ≤ Proportion of promoters across

all topics (0.36), P-value < 2.2 × 10�16). Interestingly, enhancer

accessibility can be positively (95,484, of which 13,125 are

uniquely positive with a correlation > 0.1) or negatively (87,229,

of which 2,927 are uniquely negative with a correlation < �0.1)

correlated with target gene expression (Fig 4G). Negative correla-

tion is suggestive of gene repression, whereby a repressor binds to

the enhancer, creating an accessible region, only in the cells where

the gene is not expressed.

The “activating” enhancers show enrichment for motifs of the

factors Lola-T/K, AP-1 and Onecut, as well as the GGG motif that

we previously found in the ommatidial enhancers. On the other

hand, among the “repressive” enhancers, we identified motifs

linked to So/Optix, Lz, and Blimp-1. While Blimp-1 and Lz can act

as repressors in Drosophila (Daga et al, 1996; Agawa et al, 2007), so

and Optix have been suggested to act as either activators or co-

repressors (anterior to the morphogenetic furrow) during eye devel-

opment (Anderson et al, 2012). For instance, by looking at

enhancer-to-gene links related to hth, a gene potentially repressed

by so (Lopes & Casares, 2015), we find a repressive enhancer

(chr3R:10563160-10564462) with a so binding site (based on ChIP-

seq) that is also enriched in the Optix-GFP+ FAC-sorted cells

(Appendix Fig S22). In fact, this enhancer is specifically accessible

in the cells in which both Optix and so are expressed, while hth is

repressed in these cells. This suggests that Optix and So may cooper-

ate to repress hth in the eye precursor cells via this regulatory

region. In addition, within the glass locus we also observe a repres-

sive enhancer with accessibility in the antenna and progenitors,

losing accessibility as cells approach the morphogenetic furrow as

activating glass enhancers become accessible (Appendix Fig S18C).

Next, we used the inferred enhancer-to-target genes in an

attempt to improve the inference of a “gene activity matrix” from

the scATAC-seq data (i.e., predicting gene expression from ATAC-

seq peaks). Briefly, instead of aggregating the probability of all the

regions around a certain space around the TSS (i.e., 5 kb upstream

the TSS and introns as used above) of the gene of interest, we calcu-

late the gene activity score by the weighted sum (weighted by

importance) of the accessibility probabilities of the enhancers linked

to each gene. We were able to recapitulate previously observed gene

expression patterns (Fig 1C, Appendix Fig S20H), supporting the

robustness of the inferred and binarized links. For instance, we

found the expression gradient of ct, Dll, and ss from outer to inner

antennal rings, and a gradient from Optix, to ato, and to gl driving

differentiation in the eye (Bessa et al, 2002; Emerald et al, 2003).

We then exploited these enhancer-to-gene associations to create

new regulons, now being able to extend the search space for motif

discovery around each gene. Particularly, in comparison to the

SCENIC workflow (Aibar et al, 2017), in which after deriving co-

expression modules per TF the target genes are selected based on

the enrichment of the motif/s linked to the TF in the entire sequence

space around the TSS (i.e., 5 kb upstream the TSS and introns); we

evaluated motif enrichment restricted to the regions that are linked

to each potential target gene. Out of the 161 regulons predicted in

this manner, 91 have a canonical SCENIC counterpart and have

average size 2.6 times smaller than the SCENIC regulons

(Appendix Fig S23A). In addition, this approach identifies new regu-

lons that were not found with SCENIC, such as Toy and Zld, which

are involved in differentiation of ommatidial cell types; Salm in

ommatidial cell types; Ct in R7 and cone cells and A1; Dll in A2, A3,

and arista; and Dfd in the peripodial membrane (Bessa et al, 2002;

Emerald et al, 2003; Domingos et al, 2004; Stultz et al, 2012; Hamm

et al, 2017; Appendix Fig S23B and C). We further validated the

link-based regulons using differential expression rankings from Ato

gain and loss-of-function mutants (versus WT), GMR-GFP+ cells

(versus GMR-GFP�), and a loss-of-function mutant of onecut (versus

WT). We found that the predicted genes in the Ato regulon are

upregulated in the GOF mutant and downregulated in the LOF

mutant; Glass predicted target genes are enriched in GMR-GFP+

cells; and the predicted Onecut regulon is downregulated in the

onecut LOF (Fig 4H; Appendix Fig S23D). In addition, we find an

overlap of 24% when comparing the predicted Glass binding sites

with Glass ChIP-seq binding sites in the embryo (Davis et al, 2018).

In summary, we provide a new method to infer GRNs involving

distal enhancers, and a resource of enhancer-to-gene relationships
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that can be exploited to validate basic principles of gene regulation

and infer detailed gene regulatory networks.

Cell type-specific caQTL analysis reveals key transcription factor
binding sites that impact chromatin accessibility

Having established a gene regulatory landscape at single-cell resolu-

tion, we next asked whether it can be exploited to interpret the

effects of cis-regulatory variation on enhancer function. To this end,

we identified chromatin accessibility quantitative trait loci (caQTLs)

using a cohort of bulk eye-antennal disc ATAC-seq profiles across

inbred lines (Jacobs et al, 2018; Fig 5A). While 21 of these samples

were profiled by Jacobs et al (2018), we performed 29 additional

bulk ATAC-seq experiments, resulting in a resource of 50 samples

with highly robust ATAC-seq profiles (correlation between samples:

0.5–1; Fig 5B).

To identify caQTLs (i.e., SNPs or indels that correlate with ATAC-

seq signal), we used a generalized linear model (GLM) on all the

456,893 SNPs present in the 38,179 accessible regions, finding 10,969

SNPs (2.4%) that correlate significantly with accessibility changes in

the regions where they are located (adjusted P-val < 0.05). These

~ 10K caQTLs are found across 4,853 genomic regions (Fig 5C).

Compared to the reference allele, 6,781 of these caQTLs promote

chromatin closure, while the remaining 4,188 result in chromatin

opening (Fig 5C). Next, we evaluated whether these caQTLs either

create or break a TF motif, using a collection of more than 24,000

transcription factor motifs (Herrmann et al, 2012; Imrichová et al,

2015). Particularly, for each motif we compared the motif score

between the reference enhancer sequence and the enhancer carrying

the SNP, obtaining a Delta score for each caQTL and each motif. In

agreement with Jacobs et al (2018), we found that the motif linked to

Grh is significantly more associated with caQTLs than to control

SNPs (adjusted P-val: 10�29 by Fisher’s exact test) and directly

explains the accessibility of 158 regions (with abs(delta) > 2,

Appendix Fig S24A). However, in Jacobs et al we failed to detect any

additional enriched motifs that are significantly affected by caQTLs.

Here, we exploited our cell type-specific topics to perform the

motif enrichment analysis for each topic separately. This effectively

changes the null model and aims to detect motifs that are

significantly more altered in caQTLs in cell type-specific regions,

compared to SNPs in cell type-specific regions. This strategy of

using cell type-specific null models revealed 33 additional motifs

(log(Fisher test adjusted P-value) > 8, in at least one topic), which

explain 2,061 extra caQTLs genome wide (with abs(delta) > 2)

compared with the bulk analysis.

Cell type-specific motif enrichment permits to infer in which cell

types certain caQTLs are relevant. For example, caQTLs found within

accessible regions anterior to the morphogenetic furrow and interom-

matidial cells significantly affect Optix and so binding sites (adjusted

P-val: 10�2 by Fisher’s exact test), while caQTLs in photoreceptor and

cone cell regions mainly impact the GGG motif (adjusted P-val: 10�4

by Fisher’s exact test) (Fig 5D, Appendix Fig S24B), among others,

suggesting that transcription factors linked to these motifs play a role

in chromatin accessibility in these specific cell types. Vice versa,

when evaluating the caQTLs that affect the motifs of Grh (158),

Optix/So (53), Glass (49), and the GGG motif (29), we observe that

they are located in accessible regions of the matching cell type (with

abs(delta) > 2; Fig 5E and F, Appendix Fig S24C).

In summary, cell type-specific signatures derived from single-cell

ATAC-seq can be exploited to assess cell type-specific effects of

caQTLs derived from a panel of bulk ATAC-seq profiles, providing a

higher resolution and sensitivity compared with a bulk data analysis.

A TF perturbation screen to identify GGG motif binders

While the GGG motif plays an important role in regions specifically

accessible in photoreceptor neurons, the transcription factor/s that

bind to it are currently unknown. In fact, this motif is enriched in

regions specifically accessible in photoreceptors (Fig 2); the accessi-

bility of regions with this motif is tightly correlated with their activ-

ity (Fig 3); these regions are related to gene activation rather than

repression (Fig 4); and caQTLs affecting this motif are enriched in

photoreceptor-specific enhancers (Fig 5).

To find potential transcription factors that bind to this motif, we

first collected candidate TFs that are expressed in photoreceptors

and that have a GGG-like motif, based on the Drosophila motif, or

the motif of orthologous factors in other species. We also analyzed

the entire modERN collection of ChIP-seq data by motif enrichment

▸Figure 5. Cell type-specific caQTL analysis reveals key transcription factor binding sites that model the chromatin landscape during the development of the
eye disc.

A Approach for the identification of genome-wide caQTLs using bulk ATAC-seq profiles of 50 inbred Drosophila melanogaster lines. Briefly, after identifying the SNPs
among the lines, a generalized linear model (GLM) is used to assess whether the presence of the SNP has an effect in chromatin accessibility. Once these caQTLs are
identified, we estimate the effect they have on transcription factor binding sites by comparing the motif score with the reference and alternative SNP (i.e., delta
score). A positive delta score indicates that the presence of the motif is related to chromatin opening, while a negative delta score reflects that the motif cause
chromatin closeness.

B Bulk chromatin profiles of the 50 inbred lines. While 21 of these ATAC-seq experiments were performed by Jacobs et al (2018), we generated 29 additional profiles.
Peak calling defined regions are shown in black on the top.

C Examples of caQTLs linked to openness (left) and closeness (right) compared to the reference genome.
D Adjusted P-value by Fisher’s exact test comparing the proportion of caQTLs versus random SNPs affecting each motif and aggregated delta score per topic and bulk

regions.
E cisTopic cell tSNE colored by the enrichment of regions whose accessibility is affected by caQTLs that alter the highlighted binding sites.
F Examples of caQTLs in regions that belong to different topics and affect a certain binding site. Top: Motif with delta score. Middle: Representative bulk ATAC-seq

profile on lines with the reference and the alternative allele. Bottom: cisTopic cell tSNE colored by the accessibility of the region affected by the caQTL. The caQTL
coordinates are, from left to right: chr3L:17392596, chr3R:14076593, chr2R:18674001 and chr2R:18674002, and chr3R:29376820.

Data information: Ar: arista. EPR: early photoreceptors. Hemo: hemocytes. HV: head vertex. INT: interommatidial cells. JOP: Johnston organ precursor. LPR/CC: late
photoreceptors and cone cells. MF: morphogenetic furrow. PML: peripodial membrane lateral. PMM: peripodial membrane medial. PRPre: photoreceptor precursors.
PRPro: photoreceptor progenitors.
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and identified three TFs, namely Pros, Nerfin-1, and l(3)neo38, that

have a very strong GGG motif enriched in their ChIP-seq peaks

(cisTarget Normalized Enrichment Score (NES) of 10.40, 5.93, and

5.61, respectively). In total, we selected 14 candidate TFs, particu-

larly Pros, Lola (isoforms L and T), Nerfin-1 (FlyORF constructs CC

and HA), l(3)neo38, Sp1, Ttk (isoforms Ttk88 and Ttk69), Lz, Lov,

Psq, and Fru (alleles EY09280 and E0Y2366). Next, we overex-

pressed each of these 14 TFs in the posterior part of the eye disc

using GMR-GAL4 as driver, and for each TF, we analyzed pheno-

typic changes as well as bulk ATAC-seq. As our screen is based on

bulk ATAC-seq, we favored TF overexpression versus RNAi because

some of these TFs are expressed in a small subset of cells, and their
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removal would result in only very small changes in a bulk ATAC-

seq signal.

We assessed whether overexpression of these TFs in the poste-

rior part of the eye disc resulted in an adult eye phenotype, which

was the case for 9 of the 14 TFs (Appendix Fig S25). Of these, over-

expression of Pros and Lola-T had the most severe phenotype,

resulting in lethality in the early pupa stage. Overexpression of l

(3)neo38, Nerfin-1, and Sp1 caused a rough eye phenotype and

provoked by defects in the development of photoreceptors (Iyer

et al, 2016); the overexpression of Ttk69 gave rise to a small eye

and loss of photoreceptors; and overexpression of Lz and Lola-L led

to loss of pigment and rough eye phenotype.

To assess the changes caused in the chromatin landscape by the

overexpression of these TFs and to investigate whether GGG regions

are affected, we performed bulk ATAC-seq on the eye-antennal disc

for each TF gain of function. We clustered all ATAC-seq data across

all TFs using cisTopic (on bootstrapped data, see Materials and

Methods), revealing two topics whose regions are highly enriched in

the GGG motif, namely topics 4 and 18 (Fig 6A and B). Both topics

represent regions that become highly accessible upon overexpres-

sion of Pros, with regions in topic 18 also weakly increasing in

accessibility upon overexpression of other TFs, including Nerfin-1

and l(3)neo38 (Appendix Fig S26A and B).

Only Pros overexpression results in a strong opening of both

early and late-born photoreceptor GGG enriched regions, while

overexpression of other TFs has a weak effect (Fig 6C, Appendix Fig

S26C and D). On the other hand, topic 4, which contains regions

uniquely accessible upon Pros overexpression, is more strongly

enriched in the late-born photoreceptor regions found in the

scATAC-seq data compared with regions in topic 18, which contains

regions that slightly increase in accessibility upon overexpression of

other TFs, such as Nerfin-1 and l(3)neo38 (Appendix Fig S26E and

F). These results agree with the phenotype observed in the third-

instar larvae eye disc: Pros overexpression has a strong impact

throughout photoreceptor development, while the effects of Nerfin-1

and l(3)neo38 are milder and largely affect the structure of early

ommatidia (Appendix Fig S26G).

In the wild-type eye-antennal disc, Nerfin-1 and l(3)neo38 are

expressed in early and late-born photoreceptors, while Pros expres-

sion is limited to late-born photoreceptors (Fig 6D). This suggests

that Nerfin-1 and l(3)neo38 could be the early openers of the GGG

enriched regions, while Pros would act in late-recruited photorecep-

tors. In fact, the embryonic ChIP-seq profiles of these transcription

factors support their binding to the photoreceptor GGG enriched

regions, especially for Pros and Nerfin-1 (Appendix Fig S26H).

When comparing the GGG regions bound by these factors in the

embryo, we find that 50–65% of the sites are shared by the three

transcription factors (Fig 6E). Differential motif enrichment analysis

between shared and transcription factor-specific binding sites

reveals that the shared sites are highly enriched for GGG motifs (ad-

justed P-value: 10�14), meaning that the three TFs can bind to

regions with strong GGG motifs. On the other hand, regions specifi-

cally bound by l(3)neo38 are enriched for the canonical l(3)neo38

binding site (adjusted P-value: 10�17); regions uniquely bound by

Pros are enriched for a GATC motif, previously reported as being

associated with Prospero binding sites and linked to Lola-N

(Southall et al, 2014) (adjusted P-value: 10�10); and regions

uniquely bound by Nerfin-1 are enriched for the Ara/Caup/Mirr

motif (adjusted P-value: 10�5). Indeed, both Nerfin-1 and Mirr have

been reported to be involved in axon guidance (Kuzin et al, 2005;

Karim & Moore, 2011).

In summary, given the high enrichment of the GGG motif within

Pros ChIP-seq peaks in the embryo, the strong opening of GGG

enriched regions upon Pros overexpression, and its expression in

late photoreceptors, we propose Prospero as a key regulator of late-

born photoreceptors (R7) and cone cells through the binding of the

GGG motif. In addition, our data suggest that in early photorecep-

tors, in which Pros is not expressed, Nerfin-1 and l(3)neo38 can be

weaker binders of GGG enriched regions.

Discussion

Single-cell technologies provide unprecedented insights into the

dynamics of gene regulation across all cell types within a tissue.

However, these techniques require the dissociation of the tissue,

resulting in the loss of spatial information. While new experimental

techniques are arising to preserve spatial information while profiling

single cells, these mainly target single-cell transcriptomics and

methods that profile genome-wide transcription are limited in reso-

lution (Ståhl et al, 2016; Burgess, 2019; Thornton et al, 2019). Alter-

natively, new computational approaches have been developed, such

as novoSpaRc (Nitzan et al, 2019); however, de novo spatial rela-

tionships are only possible on one-dimensional tissues and other-

wise require of a gene expression reference map (Karaiskos et al,

2017). In this work, we present a semi-supervised approach to map

omics data into a virtual template by extracting axial information

via pseudotime ordering, available as an R package called ScoMAP

(https://github.com/aertslab/ScoMAP). The main limitations of this

approach are that (i) it can be currently only applied to 1D or 2D

tissues, (ii) it requires a priori information about at least one land-

mark between the real and the virtual cells and the direction of the

axis, and (iii) it assumes symmetry around the axes, meaning that

other gradients may be lost as cells are spread randomly in each

▸Figure 6. Prospero mediates terminal photoreceptor differentiation by binding the GGG motif.

A cisTopic topic-cell heatmap, based on a model with 21 topics. For running cisTopic, 50 single-cell profiles were bootstrapped from the 15 bulk ATAC-seq profiles of the
GMR-GAL4 UAS-TF and wild-type lines included in the screen.

B Highlighted topics showing a representative topic region (top) and representative enriched motifs with their Normalized Enrichment Score (NES).
C Heatmaps showing the normalized coverage of the early photoreceptor GGG enriched regions and late GGG enriched photoreceptor regions on the selected GMR-

GAL4 UAS-TF lines.
D Seurat cell tSNE colored by the expression of l(3)neo38, Nerfin-1, and Prospero.
E Venn diagram showing the overlap between the GGG enriched binding sites of Prospero, Nerfin-1, and l(3)neo38. Differentially enriched motif in each class is shown

with their adjusted P-value.
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bin. Nevertheless, the spatial gene expression atlas resulting from

the mapping of scRNA-seq accurately recapitulates known gene

expression patterns and allows to generate virtual gene expression

profiles for any gene, at a resolution comparable with novoSpaRc

(Nitzan et al, 2019).

Whereas spatial inference has been reported based on scRNA-seq

data, in this work we generate the first spatial map of a tissue from

scATAC-seq data. This accessibility atlas effectively predicts

enhancer–reporter activity for more than 700 enhancers from the

Janelia FlyLight Project, with ~ 85% of enhancers showing match-

ing accessibility and activity patterns. The remaining enhancers

(~ 15%) are binding sites of the epithelial pioneer transcription

factor Grainyhead (Jacobs et al, 2018), which primes these regions

in all the epithelial cells without resulting in enhancer activity.

Indeed, pioneer transcription factors are able to displace nucleo-

somes, resulting in an ATAC-seq signal; and despite that they are

necessary, their binding is not sufficient for activity (Jacobs et al,

2018). Thus, enhancer accessibility can be achieved either by the

binding of pioneer factors or through the cooperative binding of

multiple TFs. These results highlight both the power of using

scATAC-seq as a proxy of enhancer activity and the need for caution

when dealing with pioneer factors.

The virtual map also acts as a latent space in which scATAC-seq

and scRNA-seq data are available for each virtual cell. While experi-

mental approaches for the simultaneous profiling of epigenome and

transcriptome are emerging (Cao et al, 2018; Chen et al, 2019b; Liu

et al, 2019), these do not achieve the same throughout and sensitiv-

ity compared with the independent assays yet. Computationally,

Granja et al (2019) have taken a similar approach, in which cells

are mapped into the same latent space and for each single-cell tran-

scriptome, the aggregate scATAC-seq profile of the closest neighbors

is assigned. The resulting integrated profiles allow inferring relation-

ships between enhancers and target genes. While Pliner et al (2018)

have tackled this problem uniquely using scATAC-seq data, Granja

et al (2019) used Pearson correlation between the chromatin acces-

sibility and gene expression. In this work, we extend this approach

by also using random forest models to assess non-linear relation-

ships. Of note, these approaches are not robust to pioneer sites,

whose accessibility and activity are unpaired. For example, in our

approach a validated intronic enhancer of Atonal and Grainyhead in

sca (Aerts et al, 2010) is missed, as the enhancer is ubiquitously

accessible while only functional in the morphogenetic furrow,

where the gene is expressed. Nevertheless, for the remaining 85%

of the enhancers in which accessibility and activity are coupled, in

this system, we have been able to reconstruct novel and validated

enhancer-to-target gene links.

The predicted links between enhancers and target genes support

that (i) the probability of an enhancer regulating a gene decreases

exponentially with the distance and the number of non-intervening

genes in between, as also reported by others (Sanyal et al, 2012; de

Laat & Duboule, 2013; Shlyueva et al, 2014); and (ii) genes are regu-

lated by several—and in some cases, redundant—enhancers, with a

median of 22 enhancers linked to each gene. Indeed, Cannavò et al

(2016) reported in the Drosophila embryo that ~ 64% of the meso-

dermal loci have redundant (or shadow) enhancers, of which

~ 60% contain more than one pair of shadow enhancers. In agree-

ment, we find that ~ 80% of the genes are regulated by shadow

enhancers (6,937 out of 8,307 genes), out of which ~ 72% are

regulated by at least three shadow enhancers (4,900 out of 6,937

genes). Transcription factors are more tightly regulated, being

linked with a higher number of enhancers (with an average of 13

positive links per gene) and having almost twice the number of

redundant enhancers compared with non-TFs genes. As abnormali-

ties in the expression of transcription factor genes can have more

severe phenotypes compared with final effector genes, having more

—and redundant—enhancers may provide evolutionary robustness.

In addition, the majority of shadow enhancers are partially redun-

dant, meaning that they can be uniquely essential on other develop-

mental stages or tissues, or under adverse environmental conditions

(Frankel et al, 2010; Lam et al, 2015; Cannavò et al, 2016).

Of note, almost ~ 50% of the inferred links are negatively corre-

lated with their target genes. While polycomb-mediated repression

has been shown to reduce region accessibility (Fitzgerald & Bender,

2001), other studies suggest that, although repressed enhancers are

less accessible than active enhancers, they still show accessibility

compared with the non-regulatory genome (Bozek et al, 2019). Such

effect can be observed in the embryonic eve stripe 2 enhancer, which

is active (and more accessible) in the second embryonic stripe, while

repressed (and less accessible) in the rest (Small et al, 1992). Mean-

while, in the eye-antennal disc, where it is not active nor repressed,

there is no accessibility (Appendix Fig S27). Thus, accessible regions

do not only correspond to primed or active enhancers, promoters,

and insulators, but also to repressed enhancers.

Several works have focused on the inference of GRNs from

single-cell data, mostly exploiting scRNA-seq to infer co-expression

patterns between TFs and potential target genes (Chen & Mar,

2018). In an attempt to reduce the number of false-positive targets

due to activating cascade effects, we introduced SCENIC (Aibar

et al, 2017), which additionally evaluates the enrichment of binding

sites for the TF around the TSS of the putative target genes. On the

other hand, other studies have exploited single-cell ATAC-seq to

find target enhancers with binding sites for specific TFs. For exam-

ple, chromVAR (Schep et al, 2017) aggregates regulatory regions

based on motif enrichment and then evaluates these modules on

single-cell ATAC-seq data, while cisTopic (Bravo González-Blas

et al, 2019) performs motif enrichment on sets of co-accessible

enhancers inferred from scATAC-seq profiles (i.e., topics) to find

common master regulators. However, none of these approaches

incorporates knowledge about the TF nor target gene expression.

Here, we aim for the first time to integrate all these layers—tran-

scription factor binding sites, chromatin, and gene expression—to

infer GRNs, by deriving co-expression modules between genes and

transcription factors (from the scRNA-seq data) and pruning them

based on the enrichment of the TF motif in the enhancers that regu-

late these genes (based on the enhancer-to-target gene links derived

from the integration of scATAC and scRNA-seq data). Such

networks de facto have enhancers, rather than genes, as nodes (i.e.,

TF-Enhancer-Gene networks).

As bulk profiles may mask true biological signal (due to the

proportions of the different cell types), single-cell data have been

used to deconvolute cell type-specific signals from bulk RNA-seq

data (Baron et al, 2016), permitting to exploit large cohorts with

bulk omics data, complemented with only one single-cell reference

atlas. Here, we investigated the impact of genomic variation on cell

type-specific enhancers. For example, we revealed the relevance of

Atonal binding sites for opening Johnston’s organ precursor-specific
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regions and the GGG motif, previously unlinked to any transcription

factor, for opening photoreceptor regions. Interestingly, Atonal has

been shown to be a key transcription factor for the specification of

sensory neurons (Eberl & Boekhoff-Falk, 2007) and bHLH proteins

have been proposed to act as pioneer transcription factors in certain

contexts (Soufi et al, 2015), such as the mammalian family member

Ascl1 (Pataskar et al, 2016).

The importance of the GGG motif in neuronal enhancers was

evident in most of our analyses; however, its interpretation was a

challenge because the binding TFs were unknown. While yeast one-

hybrid (Y1H) experiments have been previously used to reverse-

engineer which transcription factors can bind a motif of interest,

lowly expressed TFs may be underrepresented in the cDNA library

and interactions that occur in vivo may be missed (such as those

dependent of post-transcriptional modifications) (Southall et al,

2014; Fuxman Bass et al, 2016). Here, we have used a novel in vivo

approach, in which we identify the changes that overexpression of

potential TF candidates causes in chromatin accessibility at the bulk

ATAC-seq level. Although this strategy allows to characterize the

effects of TF overexpression directly on the tissue of interest, it also

has limitations, such as the limited throughput of in vivo genetic

screens (one TF per experiment, compared to dozens of TFs that

can be tested by Y1H or Perturb-ATAC (Rubin et al, 2019) in vitro).

This requires making a stringent selection of potential candidates

that can be further bounded by the existence of compatible tools,

such as UAS-TF lines. In addition, the changes in chromatin may

not be direct, but these effects can be partially ruled out using exter-

nal data available, such as ChIP-seq.

We found that the neuronal precursor transcription factor Pros-

pero acts as the strongest binder of the GGG motif, followed by

Nerfin-1 and l(3)neo38. In fact, overexpression of each of them,

but especially Prospero, results in the opening of GGG regions;

and all three transcription factors, especially Pros and Nerfin-1,

can bind to the GGG motif. Based on the expression of these

transcription factors, we hypothesize that Nerfin-1—and l(3)neo38

—are the early binders of the GGG motif, while Pros can bind to

these regions in the late-born photoreceptors, where it is

expressed. In fact, Pros and Nerfin-1 have been reported to share

direct targets during CNS differentiation (Froldi et al, 2015) and

have been found to be key regulators during the photoreceptor

and retinal differentiation in other organisms, such as zebrafish,

chicken, and mammals (Dyer et al, 2003; Edqvist et al, 2006;

Nelson et al, 2007; Forbes-Osborne et al, 2013).

In summary, we provide a comprehensive and user-friendly

single-cell resource of the Drosophila’s eye-antennal disc. We envi-

sion that our computational strategies and enhancer resource will

be of value not only to the Drosophila community, but also to the

field of single-cell regulatory genomics in general.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

Hybrid of DGRP-551, DGRP-360, DGRP-907 and DGRP-913 In-house –

Transgenic line with P{Optix-EGFP.2-3} Graeme Mardon –

w;F2-B/CyO (ato-targeted intronic sens enhancer) Graeme Mardon –

w[1118]; P{y[+t7.7] w[+mC]=GMR45E09-GAL4}attP2 Bloomington Drosophila Stock Center 49564

w[1118]; P{y[+t7.7] w[+mC]=GMR24C12-GAL4}attP2 Bloomington Drosophila Stock Center 49076

w[1118]; P{y[+t7.7] w[+mC]=GMR35E01-GAL4}attP2 Bloomington Drosophila Stock Center 45619

w[1118]; P{y[+t7.7] w[+mC]=GMR55H04-GAL4}attP2 Bloomington Drosophila Stock Center 39134

w[1118]; P{y[+t7.7] w[+mC]=GMR18C05-GAL4}attP2 Bloomington Drosophila Stock Center 47330

w[1118]; P{y[+t7.7] w[+mC]=GMR30D05-GAL4}attP2 Bloomington Drosophila Stock Center 49534

w[1118]; P{y[+t7.7] w[+mC]=GMR16H11-GAL4}attP2 Bloomington Drosophila Stock Center 47473

w[1118]; P{y[+t7.7] w[+mC]=GMR30D11-GAL4}attP2 Bloomington Drosophila Stock Center 48098

w[1118]; P{y[+t7.7] w[+mC]=GMR91E06-GAL4}attP2/TM3,
Sb[1]

Bloomington Drosophila Stock Center 47166

w[1118]; P{y[+t7.7] w[+mC]=GMR25F01-GAL4}attP2 Bloomington Drosophila Stock Center 49127

w[1118]; P{y[+t7.7] w[+mC]=GMR87C06-GAL4}attP2 Bloomington Drosophila Stock Center 40482

w[1118]; P{y[+t7.7] w[+mC]=GMR28F08-GAL4}attP2 Bloomington Drosophila Stock Center 45172

w[1118]; P{y[+t7.7] w[+mC]=GMR32F01-GAL4}attP2 Bloomington Drosophila Stock Center 49359

w[1118]; P{w[+mC]=UAS-GFP.nls}8 Bloomington Drosophila Stock Center 4776

DGRP-379 Bloomington Drosophila Stock Center 25189

DGRP-391 Bloomington Drosophila Stock Center 25191

DGRP-437 Bloomington Drosophila Stock Center 25194
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

DGRP-555 Bloomington Drosophila Stock Center 25198

DGRP-712 Bloomington Drosophila Stock Center 25201

DGRP-59 Bloomington Drosophila Stock Center 28129

DGRP-91 Bloomington Drosophila Stock Center 28136

DGRP-101 Bloomington Drosophila Stock Center 28138

DGRP-109 Bloomington Drosophila Stock Center 28140

DGRP-129 Bloomington Drosophila Stock Center 28141

DGRP-350 Bloomington Drosophila Stock Center 28176

DGRP-352 Bloomington Drosophila Stock Center 28177

DGRP-374 Bloomington Drosophila Stock Center 28185

DGRP-382 Bloomington Drosophila Stock Center 28189

DGRP-392 Bloomington Drosophila Stock Center 28194

DGRP-441 Bloomington Drosophila Stock Center 28198

DGRP-584 Bloomington Drosophila Stock Center 28212

DGRP-776 Bloomington Drosophila Stock Center 28229

DGRP-796 Bloomington Drosophila Stock Center 28233

DGRP-802 Bloomington Drosophila Stock Center 28235

DGRP-808 Bloomington Drosophila Stock Center 28238

DGRP-810 Bloomington Drosophila Stock Center 28239

DGRP-853 Bloomington Drosophila Stock Center 28250

DGRP-57 Bloomington Drosophila Stock Center 29652

DGRP-439 Bloomington Drosophila Stock Center 29658

DGRP-32 Bloomington Drosophila Stock Center 55015

DGRP-319 Bloomington Drosophila Stock Center 55018

DGRP-566 Bloomington Drosophila Stock Center 55028

DGRP-627 Bloomington Drosophila Stock Center 55030

wt; GMR-Gal4 LNG flystock –

P{w[+mC]=UAS-pros.L}L3a, w[*] Bloomington Drosophila Stock Center 32244

y[1] w[*]; P{w[+mC]=UAS-lola.4.7}3 Bloomington Drosophila Stock Center 28828

M{UAS-l(3)neo38.ORF.3xHA.GW}ZH-86Fb FlyORF F000093

M{UAS-nerfin-1.ORF.3xHA.GW}ZH-86Fb FlyORF F000461

M{UAS-nerfin-1.ORF-CC}ZH-21F FlyORF F004559

M{UAS-Sp1.ORF.3xHA.GW}ZH-86Fb FlyORF F001783

w[*]; P{w[+mC]=UAS-ttk.p69}2 Bloomington Drosophila Stock Center 7361

w[*]; P{w[+mC]=UAS-lz.B}3 Bloomington Drosophila Stock Center 33836

w[*]; Pin[1]/CyO; P{w[+mC]=UAS-lola.L}3a Bloomington Drosophila Stock Center 28829

w[1118]; P{w[+mC]=EP}lov[EP1162]/CyO Bloomington Drosophila Stock Center 16994

M{UAS-psq.ORF-VN}ZH-86Fb Bloomington Drosophila Stock Center F004846

y[1] w[*]; P{w[+mC] y[+mDint2]=EPgy2}fru[EY09280]/TM3,
Sb[1]

Bloomington Drosophila Stock Center 17551

P{w[+mC]=UAS-ttk.p88}1, w[*] Bloomington Drosophila Stock Center 7360

y[1] w[67c23]; P{w[+mC] y[+mDint2]=EPgy2}fru[EY02366] Bloomington Drosophila Stock Center 15564

Antibodies

Rabbit anti-GFP Invitrogen A11122

Rat anti-elav DSHB 7E8A10

Mouse anti-pros DSHB MR1A
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Goat anti-rabbit Alexa Fluor 647 Invitrogen A32733

Donkey anti-rat Alexa Fluor 488 Invitrogen A21208

Donkey anti-mouse Alexa Fluor 555 Invitrogen A31570

Oligonucleotides and sequence-based reagents

ATAC-seq primers Buenrostro et al (2015) Fwd:-
‘AATGATACGGCGACCACCGAGATCTACACTCG
TCGGCAGCGTCAGATGTG’//Rev:-
‘CAAGCAGAAGACG
GCATACGAGATXXXXXX
GTCTCGTGGGCTCGGAGATGT’

Chemicals, enzymes and other reagents

Dispase Sigma-Aldrich D4818

Collagenase Invitrogen 17100_017

Acridine Orange/Propidium Iodide Stain Logos Bio F23001

Chromium Single Cell 30 Library & Gel Bead Kit v2 10x Genomics PN-120237

Chromium Single Cell A Chip Kit 10x Genomics PN-120236

Chromium i7 Multiplex Kit 10x Genomics PN-120262

Nuclei Isolation Kit: Nuclei EZ Prep Sigma NUC101-1KT

Nextera DNA Library prep kit Illumina FC-121-1030

RNAqueous-Micro Total RNA Isolation Kit ThermoFisher AM1931

Dynabeads mRNA Purification Kit ThermoFisher 61006

TruSeq Stranded mRNA Library Prep Ilumina 20020595

MEGAscript T7 Transcription Kit ThermoFisher AM1333

Chromium Single Cell ATAC Library & Gel Bead Kit 10x Genomics PN-1000110

Chromium Chip E Single Cell ATAC Kit 10x Genomics PN-1000086

Chromium i7 Multiplex Kit N 10x Genomics PN-1000084

MiniElute PCR Purification Kit Qiagen 28004

AMPure XP beads Beckman Coulter A63880

SPRIselect Reagent kit Beckman Coulter B23318

Vectashield Vector Laboratories H-1000-10

Software

CellRanger (v2.0.2) 10x Genomics

pySCENIC (V0.9.1) https://github.com/aertslab/pySCENIC

Cytoscape https://cytoscape.org

Seurat (v2.3.4/v3.0.1) CRAN

ScopeLoomR (v0.4.0) https://github.com/aertslab/SCopeLoomR

Ea-utils (v1.12) https://expressionanalysis.github.io/ea-utils/

FastQC (v0.1) https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

Bowtie2 (v2.2.5) http://bowtie-bio.sourceforge.net/bowtie2/inde
x.shtml

Samtools (v1.2) http://www.htslib.org

Picard https://broadinstitute.github.io/picard/

cisTopic (v0.2.2) https://github.com/aertslab/cisTopic

MACS (v2.1.2.1) https://github.com/taoliu/MACS

Subread (v2.0.0) http://subread.sourceforge.net

Deseq2 (v1.18.1) Bioconductor

CellRanger ATAC (v1.0.0) 10x Genomics
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

RcisTarget (v1.5.0) Bioconductor

Harmony (v1.0) https://github.com/immunogenomics/harmony

AUCell (v1.5.2) Bioconductor

DoubletFinder (v2.0.1) https://github.com/chris-mcginnis-ucsf/Double
tFinder

jpeg (v0.1-8) CRAN

ScoMAP (v0.1.0) https://github.com/aertslab/ScoMAP

destiny (v3.0.0) Bioconductor

lawstat (v3.2) CRAN

GENIE3 (v1.8.0) Bioconductor

fitdistrplus (v1.0-11) CRAN

Binarize (v1.3) CRAN

Gviz (v1.22.3) Bioconductor

GRNBoost (v0.1.5) https://github.com/aertslab/GRNBoost

VCFtools (v0.1.14) https://vcftools.github.io/index.html

Bedtools (v2.28.0) https://bedtools.readthedocs.io/en/latest/

Deeptools (v3.3.1) https://deeptools.readthedocs.io/en/develop/

Fiji https://imagej.net/Fiji

MAST (v1.4.1) Bioconductor

Other

10um pluriStrainer Imtec Diagnostics 435001050

Dounce homogeneizer Sigma-Aldrich D8938

LUNA-FL Dual Fluorescence Cell Counter Logos Bio L20001

C1000 Touch Thermal Cycler Bio-rad 1851148

NextSeq 500 Illumina

Olympus FV1200 confocal microscope Olympus

Methods and Protocols

Fly husbandry and genotypes
A detailed description of the lines used in this work is provided

in Dataset EV2. A wild-type line, hybrid of DGRP-551, DGRP-360,

DGRP-907, and DGRP-913, was used on the single-cell RNA-seq

and single-cell ATAC-seq experiments with 10x Genomics. For cell

sorting (followed by bulk and single-cell ATAC-seq with Fluidigm

C1), we used a sens-F2B-GFP transgenic line (Pepple et al, 2008).

For measuring enhancer activity in a subset of lines from the

Janelia FlyLight Project, we selected the stocks (with Bloomington

number): 49564, 49076, 45619, 39134, 47330, 49534, 47473,

48098, 47166, 49127, 40482, 45172, and 49359 and crossed them

with a UAS-eGFP line (Bloomington number: 4776). For the anal-

ysis of caQTLs, we performed bulk ATAC-seq on 29 lines from

the Drosophila Genetics Reference Panel (with Bloomington

number): 25189, 25191, 25194, 25198, 25201, 28129, 28136,

28138, 28140, 28141, 28176, 28177, 28185, 28189, 28194, 28198,

28212, 28229, 28233, 28235, 28238, 28239, 28250, 29652, 29658,

55015, 55018, 55028, and 55030. For the genetic screen, we used

the following lines from the Bloomington Drosophila Stock Center:

32244, 28828, 7361, 33836, 28829, 16994, 17551, 7360, and 15564

and the following from FlyORF: F000093, F000461, F004559,

F001783, and F004846. These lines were crossed with a GMR-

GAL4 line. All flies were raised and crossed at 25°C on a yeast-

based medium.

Dissociation of eye-antennal discs into single cells
Wandering third-instar larvae were collected, and a total of ~ 30

eye-antennal discs were dissected and transferred into a tube

containing 200 ll of ice-cold PBS. The sample was centrifuged at

800 g for 5 min, and after removing the supernatant, 50 ll of

dispase (3 mg/ml; Sigma-Aldrich_D4818-2mg) and 70 ll of collage-
nase (100 mg/ml; Invitrogen_17100-017) were added. The tissue

was dissociated during 45–60 min at 25°C at 50 rpm, pipetting up

and down every 15 min to disrupt clumps of cells. Cells were

washed with 1 ml of ice-cold PBS and resuspended in 400 ll of PBS
0.04% BSA. The cells were passed through a 10-lm pluriStrainer

(ImTec Diagnostics_435001050), and cell viability and concentration

were assessed by the LUNA-FL Dual Fluorescence Cell Counter.

Single-cell RNA-seq (10x Genomics)
Single-cell libraries were generated using the GemCode Single-Cell

instruments and the Single Cell 30 Library & Gel Bead Kit v2 and

ChIP Kit from 10x Genomics, following the protocol provided by the

manufacturer. Briefly, the eye-antennal disc cells were suspended in
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PBS 0.04% BSA. About 8,700 cells were added in each reaction with

a targeted cell recovery of 5,000 cells. Following the generation of

nanoliter-scale Gel bead-in-EMulsions (GEMs), GEMs were reverse

transcribed in a C1000 Touch Thermal Cycler (Bio-Rad)

programmed at 53°C for 45 min, 85°C for 5 min, and hold at 4°C.

After reverse transcription, single-cell droplets were broken and the

single-strand cDNA was isolated and cleaned with Cleanup Mix

containing DynaBeads (Thermo Fisher Scientific). cDNA was then

amplified with a C1000 Touch Thermal Cycler programmed at 98°C

for 3 min, 12 cycles of (98°C for 15 s, 67°C for 20 s, 72°C for

1 min), 72°C for 1 min, and held at 4°C twice. Subsequently, the

amplified cDNA was fragmented, end-repaired, A-tailed and index

adaptor ligated, with the SPRIselect Reagent Kit (Beckman Coulter)

with cleanup in between steps. The post-ligation product was ampli-

fied with a C1000 Touch Thermal Cycler programmed at 98°C for

45 s, 14 cycles of (98°C for 20 s, 54°C for 30 s, 72°C for 20 s), 72°C

for 1 min, and hold at 4°C. The sequencing-ready library was

cleaned up with SPRIselect beads.

Dissociation of eye-antennal discs into single nuclei
Wandering third-instar larvae were collected, and a total of ~ 30

eye-antennal discs were dissected and transferred into a tube

containing 200 ll of ice-cold PBS. The sample was centrifuged at

800 g for 5 min, and after removing the supernatant, resuspended

in 500 ll of nuclei lysis buffer (10 mM Tris–HCl (pH 7.4), 10 mM

NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P-40, 0.01%

Digitonin, 1% BSA, and water), and transferred to a Dounce

homogenizer (Sigma-Aldrich D8938_2ml). After incubating the

sample for 5 min on ice, 25 strokes were applied with the loose

pestle. The sample was incubated for 10 min on ice and after

applying 25 strokes with the tight pestle, transferred to a 2-ml

tube. The homogenizer and the pestle were rinsed with wash

buffer (10 mM Tris–HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2,

0.1% Tween-20, 1% BSA, and water), and the solution was also

transferred to the 2-ml tube. The sample was washed once with

wash buffer and resuspended on 50 ll of 1× diluted nuclei buffer

(10x Genomics). The nuclei were passed through a 10-lm pluriS-

trainer (ImTec Diagnostics_435001050), and cell viability and

nuclei concentration were assessed by the LUNA-FL Dual Fluores-

cence Cell Counter.

Single-cell ATAC-seq (10x Genomics)
Single-cell libraries were generated using the GemCode Single-Cell

instruments and the Single Cell ATAC Library & Gel Bead Kit and

ChIP Kit from 10x Genomics, following the protocol provided by

the manufacturer. Briefly, the eye-antennal disc nuclei were

suspended in 1× diluted nuclei buffer (10x Genomics). About

8,700 nuclei were added in each reaction with a targeted nuclei

recovery of 5,000 nuclei. The samples were incubated at 37°C for

1 h with 10 ll of transposition mix (per reaction, 7 ll ATAC Buf-

fer, and 3 ll ATAC Enzyme (10x Genomics)). Following the gener-

ation of nanoliter-scale Gel bead-in-EMulsions (GEMs), GEMs were

reverse transcribed in a C1000 Touch Thermal Cycler (Bio-Rad)

programmed at 72°C for 5 min, 98°C for 30 s, 12 cycles of 98°C

for 10 s, 59°C for 30 s, and 72°C for 1 min, and held at 15°C. After

reverse transcription, single-cell droplets were broken and the

single-strand cDNA was isolated and cleaned with Cleanup Mix

containing DynaBeads (Thermo Fisher Scientific). cDNA was then

amplified with a C1000 Touch Thermal Cycler programmed at

98°C for 3 min, 12 cycles of (98°C for 15 s, 67°C for 20 s, 72°C for

1 min), 72°C for 1 min, and held at 4°C twice. Subsequently, the

amplified cDNA was fragmented, end-repaired, A-tailed and index

adaptor ligated, with the SPRIselect Reagent Kit (Beckman Coulter)

with cleanup in between steps. The post-ligation product was

amplified with a C1000 Touch Thermal Cycler programmed at

98°C for 45 s, 14 cycles of (98°C for 20 s, 54°C for 30 s, 72°C for

20 s), 72°C for 1 min, and hold at 4°C. The sequencing-ready

library was cleaned up with SPRIselect beads.

Cell sorting
Wandering third-instar larvae were collected, and a total of 200 eye-

antennal discs were dissected in ice-cold PBS and placed in SF900

medium. For dissociation, the tissue was placed in 400 ll of trypsin
in 0.05% EDTA. The eye-antennal discs were then incubated at

37°C for 1 h with agitation, being mixed every 20 min with a

pipette. After dissociation, cells were centrifuged at 800 g for 5 min

at 4°C and washed with PBS. Finally, the cells were resuspended in

400 ll of PBS, filtered using a 40-lm cell strainer, and stained with

propidium iodide (PI; final concentration 1 lg/ml) to exclude dead

cells. The cells were sorted on a BD Aria I, selecting against the

presence of PI and for the presence of GFP.

As many cells as possible were sorted into a microcentrifuge

tube, pelleted by centrifugation at 800 g for 5 min at 4°C and

resuspended at a concentration of 1,000 cells/ll. Single-cell ATAC-
seq was performed as previously described (Buenrostro et al,

2015; Bravo González-Blas et al, 2019), using 5- to 10-lm Open

App integrated fluidic circuits (IFCs) on the Fluidigm C1 and with

no cell washing step. Briefly, cells were loaded (using a 40:60 ratio

of RGT:cells) on a primed Open App IFC (5–10 lm, the protocol

for ATAC-seq from the C1 Script Hub was used). After cell load-

ing, the plate was visually checked under a microscope and the

number of cells in each of the capture chambers was noted. Next,

the sample preparation was performed on the Fluidigm C1, during

which the cells underwent lysis and ATAC-seq fragments were

prepared. In a 96-well plate, the harvested libraries were amplified

in a 25 ll PCR. The PCR products were pooled and purified on a

single MinElute PCR purification column for a final library volume

of 15 ll. Quality checks were performed using the Bioanalyzer

high sensitivity chips. Fragments under 150 bp were removed by

bead-cleanup using AMPure XP beads (1.2× bead ratio) (Beckman

Coulter).

ATAC-seq
For the DGRP panel lines, we used the ATAC-seq protocol for eye-

antennal discs as previously described (Buenrostro et al, 2015; Davie

et al, 2015). Briefly, ~ 10 eye-antennal discs were dissected and

lysed in 50 ll ice-cold ATAC lysis buffer (10 mM Tris–HCl, pH 7.4,

10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630). Lysed discs were

then centrifuged at 800 g for 10 min at 4°C, and the supernatant was

discarded. The rest of the ATAC-seq protocol was performed as

described previously (Buenrostro et al, 2015; Davie et al, 2015),

using the following primers: Fwd:- “AATGATACGGCGACCACCGAG

ATCTACACTCGTCGGCAGCGTCAGATGTG” and Rev:- “CAAGCAG

AAGACGGCATACGAGATGTCTCGTGGGCTCGGAGATGT” (where X

indicates barcode nucleotides). The final library was purified using a

Qiagen MinElute kit (Qiagen), and Ampure XP beads (Ampure)
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(1:1.2 ratio) were used to remove remaining adapters and was

checked on an Agilent Bioanalyzer 2000 for assessing the average

fragment size. Resulting successful libraries were sequenced with

75 bp, single-end reads on the Illumina NextSeq 500 platform.

Single-end sequencing was chosen for this part of the study because

we were not interested in the fragment contents (i.e., how many

nucleosomes are placed between two insertion sites), rather just the

profile of insertion sites, and also made the comparison with the

previously existing data [i.e., the bulk ATAC-seq DGRP panel and

Optix-GFP from Jacobs et al (2018)] easier.

For the genetic screen samples, we used the Omni-ATAC-seq

protocol, as previously described (Bravo González-Blas et al, 2019).

Briefly, ~ 10 eye-antennal discs were dissected and lysed using 50 ll
of cold ATAC-Resuspension Buffer (RSB) (see Corces et al (2017) for

composition) containing 0.1% NP-40, 0.1% Tween-20, and 0.01%

digitonin, by pipetting up and down three times and incubating the

cells for 3 min on ice. The lysis was washed out by adding 1 ml of

cold ATAC-RSB containing 0.1% Tween-20 and inverting the tube

three times. Nuclei were pelleted at 500 RCF for 10 min at 4°C, the

supernatant was carefully removed, and nuclei were resuspended in

50 ll of transposition mixture (25 ll 2× TD buffer (see Corces et al

(2017) for composition), 2.5 ll transposase (100 nM), 16.5 ll DPBS,
0.5 ll 1% digitonin, 0.5 ll 10% Tween-20, 5 ll H2O) by pipetting

six times up and down, followed by 30 min of incubation at 37°C at

1,000 RPM mixing rate. After MinElute clean-up and elution in 21 ll
elution buffer, the transposed fragments were pre-amplified with

NextEra primers by mixing 20 ll of transposed sample, 2.5 ll of

both forward and reverse primers (25 lM), and 25 ll of 2× NEBNext

Master Mix (program: 72°C for 5 min, 98°C for 30 s and five cycles

of [98°C for 10 s, 63°C for 30 s, 72°C for 1 min] and hold at 4°C). To

determine the required number of additional PCR cycles, a qPCR was

performed (see Buenrostro et al (2013) for the determination of the

number of cycles to be added). The final amplification was done

with the additional number of cycles, samples were cleaned-up by

MinElute, and libraries were prepped using the KAPA Library Quan-

tification Kit as previously described (Bravo González-Blas et al,

2019). Samples were sequenced on an Illumina NextSeq 500 High

Output chip, with 50 bp single-end reads.

Immunohistochemistry
Imaginal eye-antennal discs from third-instar larvae were dissected

and fixed in 4% formaldehyde at room temperature for 30 min.

Next, they were washed in 1× PBT (PBS + 0.3% Triton X-100)

during 15 min for three times and blocked in 3% BSA for 1 h at

room temperature. To test enhancers, tissues were incubated with a

primary antibody mixture (rabbit anti-GFP (Invitrogen) 1:1,000; rat

anti-Elav (DSHB, 7E8A10) 1:50; and mouse anti-pros (DSHB) 1:200)

at 4°C overnight. The samples were then washed three times with

1× PBT for 15 min at room temperature, followed by 2 h of incuba-

tion with secondary antibody mixture (Goat Anti-Rabbit—Alexa

Fluor� 647; donkey anti-rat Alexa Fluor� 488; and donkey anti-

mouse Alexa Fluor� 555) (Invitrogen/Life Technologies) at room

temperature in the dark. The samples were washed again three

times as mentioned above before mounting the eye-antennal discs

on slide with VECTASHIELD (Vector Laboratories). For imaging, an

Olympus FV1200 confocal microscope was used (20× dry). Fiji

(Schindelin et al, 2012) (ImageJ v2.0.0-rc-69/1.52p) was used to

merge and process the images.

Analysis of single-cell RNA-seq data
The 10x eye-antennal disc samples were processed (alignment,

barcode assignment, and UMI counting) with the Cell Ranger (ver-

sion 2.0.2) count pipeline, using the cellranger aggr command with

–normalize=mapped, and building the reference index upon the 3rd

2017 FlyBase release (Drosophila. melanogaster r6.16) (Gramates

et al, 2017). Importantly, using CellRanger’s default parameters,

483, 1,149, and 1,899 cells were selected based on their coverage

(Appendix Fig S4A–C). Lowly expressed genes detected in less than

11 cells (0.3% of the cells) and with less 32 UMI counts across the

data set (3 counts in 0.3% of the cells) were filtered, resulting in a

data set with 8,744 genes and 3,531 cells that was analyzed using

Seurat (v2.3.4). No cells were filtered based on the number of mito-

chondrial reads, as all cells had less than 5% (with a median of

1.69%) mitochondrial reads. Briefly, data were log-normalized with

a scale factor of 104 and latent variables, defined as the number of

UMIs, were regressed out. For further downstream analysis, the

most variable genes (1,495) were selected using FindVariableGenes

() with default parameters. Next, we used PCA to reduce the dimen-

sionality of the original matrix, selecting the first 102 PCs based on

a cross-validation step. These 102 PCs were used as input for the

shared nearest neighbor (SNN) graph method implemented in

Seurat, with a resolution of 1.2, resulting in 17 cell clusters. Dif-

ferentially expressed genes for each cluster were estimated with the

function FindAllMarkers(), using a Wilcoxon rank sum test with a

logFC threshold of 0.25. tSNE and UMAP were performed with

default parameters, using the first 102 PCs. In addition, DoubletFin-

der (McGinnis et al, 2019) (v2.0.1) was run using the first 102 PCs,

with an estimated pK value of 0.04. Assuming a doublet formation

rate of 7.5%, 246 high-confidence doublets were found and were

removed for posterior analyses. For the semi-supervised clustering

of photoreceptor subclasses, singlet cells in the early photoreceptors

and late photoreceptors and cone cells were selected and Seurat

(v2.3.4) was run as previously explained using marker genes for

each photoreceptor subclass and cone cells as listed in FlyBase,

comprising a total of 86 unique genes, using the first 7 PCs based on

a cross-validation step. PySCENIC (Aibar et al, 2017) (v0.9.1) was

run with default parameters, using motif and ENCODE ChIP-seq-

based databases [as in i-cisTarget (Imrichová et al, 2015)], resulting

in 175 regulons (159 motif-based regulons). Regulon Specificity

Scores (RSS) were calculated as described by Suo et al (2018), and

the Atonal regulon was used as input for GSEA analysis using as

rankings the genes ordered by log fold change values calculated by

GEO2R for eye-antennal disc RNA-seq profiles of a gain-of-function

Atonal mutant and a loss-of-function Atonal mutant (versus WT)

(Aerts et al, 2010). A representative gene regulatory network with

regulons enriched in the morphogenetic furrow was built using

Cytoscape.

Seurat (v3.0.1) was also used for transferring cluster labels between

the eye disc data set from Ariss et al (2018) and this data (and vice

versa). Brain cells from our data set were not included in the analysis,

resulting in a data set with 3,232 cells and 8,744 genes, and the eye

disc data set from Ariss et al was filtered to keep cells with more than

1,000 UMI counts and 500 genes expressed, resulting in a data set with

5,630 cells and 7,801 genes. Label transferring was performed with

default parameters and PCA as dimensionality reduction method,

using vst as selection method and 2,000 features for finding the vari-

able features and the first 30 PCs for finding anchors and transfer the
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data. Antennal cell types were not transferred between our data set

and Ariss et al eye disc data set. Loom files with the results of these

analyses were created using SCopeLoomR (Davie et al, 2015) (v0.4.0)

and are available at http://scope.aertslab.org/#/Bravo_et_al_EyeAnte

nnalDisc, and the processed data can be visualized at http://genome.

ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc.

Analysis of FAC-sorted ATAC-seq data
ATAC-seq reads were first cleaned for adapters using fastq-mcf.

(ea-utils v1.12) and a list of sequencing primers. Cleaned reads

(FastQC v0.1) were then mapped to the 3rd 2017 FlyBase release

(D. melanogaster r6.16) genome using Bowtie2 (v2.2.5) with default

parameters, and sorted bam files were produced using SAMtools

(v1.2). Single-cell profiles were aggregated using samtools merge.

Normalized bigwigs were generated using the Kent software

(UCSC).

The single-cell data were deduplicated using picard MarkDupli-

cates. Aggregation plots were produced using in-house scripts avail-

able at: https://github.com/aertslab/ATAC-seq-analysis, and cells

were filtered manually based on the aggregation plot profiles, result-

ing in 74 and 72 Optix-GFP+ and sens-GFP+ single-cell ATAC-seq

profiles (out of 96 and 384 sequenced cells, respectively). Down-

stream analysis was done using cisTopic (v0.2.2) (Bravo González-

Blas et al, 2019).

On the bulk samples, peaks were called on mapped reads using

MACS2 (v2.1.2.1) with the following additional options: –nomodel –

call-summits –nolambda. Peaks in the independent samples were

merged, and fragments per peak (and ctx region) in each sample

were counted using featureCounts (Subread v2.0.0). Deseq2 (v1.18.1)

was used to obtained differentially accessible peaks between positive

and negative cells (with logFC > |1| and P-value < 0.05).

Analysis of ChIP-seq data
ChIP-seq reads were first cleaned for adapters using fastq-mcf. (ea-

utils v1.12) and a list of sequencing primers. Cleaned reads (FastQC

v0.1) were then mapped to the 3rd 2017 FlyBase release

(D. melanogaster r6.16) genome using Bowtie2 (v2.2.5) with default

parameters, and sorted bam files were produced using SAMtools

(v1.2). Single-cell profiles were aggregated using samtools merge.

Normalized bigwigs were generated using the Kent software (UCSC).

Peaks were called on mapped reads using MACS2 (v2.1.2.1) with the

following options: -g dm –nomodel –bdg -t Samples -c Control.

Analysis of single-cell ATAC-seq data
The 10x eye-antennal disc samples were processed (alignment and

barcode assignment) with a customized version of the Cell Ranger

ATAC (version 1.0.0) pipeline, in which the parameter PEAK_MER-

GE_DISTANCE was set to 50 (instead of 500) and the parameter

PEAK_ODDS_RATIO was set to 4 (instead of 1/5), and the remain-

ing parameters were used as default. Importantly, CellRanger ATAC

identified 9,833 and 5,554 high-quality cells (Appendix Fig S4E and

F). In addition, the reference index was built upon the 3rd 2017

FlyBase release (D. melanogaster r6.16) (Gramates et al, 2017). Sex

was assigned to each cell based on the percentage of reads mapped

to the X chromosome, as shown by Cusanovich et al (2018).

Downstream analysis was performed with cisTopic (Bravo

González-Blas et al, 2019) (v0.2.2). Briefly, fragments within

defined regulatory regions (such as ctx regions) were counted,

resulting in a matrix with 129,553 regulatory regions and 15,387

cells, after filtering out a total of 379 cells based on the number of

fragments within bulk peaks (> 20%) and the total number of frag-

ments (between 100 and 10,000). Topic modeling was performed

using 2, 10, 20, 30 to 50 (1 by 1), 60, 70, 80, 90 and 100 topics, and

500 iterations, out of which 250 were used as burn-in. Based on the

highest log-likelihood, the model with 49 topics was selected. The

cell-topic tSNE representation was obtained by using tSNE on the

normalized topic-cell matrix (by Z-Score), without using the PCA

reduction and with a perplexity of 100. Cell clustering was

performed on the normalized cell-topic matrix (by Z-Score) using

the shared nearest neighbor (SNN) graph method implemented in

Seurat (v2.3.4), with a resolution of 1.2, resulting in 22 cell clusters.

For identifying topics potentially related to batch effects (mainly

experimental run and sex), we binarized the cell-topic distributions

and used a proportion test comparing the proportion of cells corre-

sponding to each experimental run or sex versus their proportion in

the entire population. Two topics are significantly related to the

experimental run: topic 46 with run 1 (Bonferroni-adjusted P-value

for topic 46: 10�29) and topic 18 with run 2 (Bonferroni-adjusted P-

value for topic 18: 10�217); and a topic was found to be related to

the female sex (Bonferroni-adjusted P-value for topic 4: 10�21).

On the other hand, region-topic distributions were binarized with

a probability threshold of 0.985. The region-topic tSNE was

performed with similar parameters as before, using a perplexity of

200. The annotation of regions was done with default parameters.

RcisTarget (Aibar et al, 2017) (v1.5.0) and i-cisTarget (Herrmann

et al, 2012; Imrichová et al, 2015) were run to assess motif enrich-

ment on the binarized topics, using a ROC threshold of 0.01, a maxi-

mum rank of 5,000, and the version 8 motif database, containing

more than 20,000 motifs. The probability of each region in each cell

(region-cell) was calculated using the predictiveDistribution() func-

tion, in which the topic-cell and the region-topic matrices are multi-

plied. For the enrichment of epigenomic signatures, region sets were

mapped to the regions in the data set with a minimum overlap of

40% and the enrichment of the signatures in the cells was estimated

using a maximum AUC rank of 12,956 (10% of the total number of

regions) and cell-region rankings based on the region-cell probabil-

ity matrix, while the enrichment of signatures in topics was esti-

mated using a maximum AUC rank of 3,887 (3% of the total

number of regions) and the region-topic distributions as rankings.

Additionally, we projected the FAC-sorted single-cell profiles (Optix-

GFP+ and sens-GFP+) with at least 70% of the fragments within

regulatory regions into the existing topic space. Briefly, the topic-cell

distributions of the new cells were estimated by multiplying the

binary count matrix (cell-regions) by the region-topic distributions

of the existing models. The estimated topic-cell contributions were

merged with the topic-cell distributions of the original cells and

normalized (by Z-Score), and batch effects were corrected with

Harmony (v1.0) (Korsunsky et al, 2019).

Gene activity scores were estimated by aggregating the region

probabilities of the regions surrounding the TSS of each gene

(5 kb upstream and introns), as used for cisTarget enhancer-to-

gene associations (Imrichová et al, 2015), and probabilities were

multiplied by 106 and rounded before creating the loom file. These

gene activity-based matrix was used to assess the enrichment of

the regulons derived from the analysis with pySCENIC (v0.9.1) in

the single-cell RNA-seq data, using AUCell (Aibar et al, 2017)
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(v1.5.2) with default parameters, with a maximum AUC rank of

439 (5% of the total number of genes). In addition, we also used

DoubletFinder (v2.0.1) on this matrix, using the first 102 PCs,

with an estimated pK of 0.27. Assuming a doublet formation rate

of 20%, we find 13,848 high-confidence singlets. Finally, we

performed label transferring between the scRNA-seq and the

scATAC-seq (gene activity-based) data sets (and vice versa) with

Seurat (v3.0.1). Label transferring was performed with default

parameters and CCA as dimensionality reduction method, using

vst as selection method and 3,000 features for finding the variable

features and the first 20 dimensions for finding anchors and trans-

fer the data. Loom files with the results of these analyses were

created using SCopeLoomR (Davie et al, 2015) (v0.4.0) and are

available at http://scope.aertslab.org/#/Bravo_et_al_EyeAntenna

lDisc, and the processed data can be visualized at http://genome.

ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc.

Projection of single-cell omics data into a virtual latent space
The eye-antennal disc representation (Figs 1A and 2A) was used to

generate the virtual eye template coordinates. Importantly, for

representing non-spatially restricted groups (i.e., twi+ cells, hemo-

cytes, glia, peripodial membrane groups) and clarify cell types

posterior to the morphogenetic furrow (i.e., early photoreceptors,

late photoreceptors and cone cells, and interommatidial cells; for

both scRNA-seq and scATAC-seq) or in the antenna and anterior to

the morphogenetic furrow (i.e., antennal rings A2a and A2b and

precursors and progenitors, respectively, on the scATAC-seq analy-

sis), circles were added to the representations. The template was

reduced to a size of 100 × 100 pixels and was split into one image

per cell type (in red color). Each image was read using the jpeg

(v0.1-8) R package, and the background (in white color) was

removed using k-means clustering on the RGB pixel values. Since

interommatidial cells and photoreceptors are mixed posterior to the

morphogenetic furrow, we intercalated photoreceptors and interom-

matidial cells in the early and late compartments posterior to the

morphogenetic furrow. The resulting template coordinates were

annotated per cell type, resulting in 5,058 cells on the eye-antennal

disc representation, and a total of 5,379 and 5,526 cells for the

scRNA-seq and scATAC-seq maps considering the non-spatially

mapped cell types and detailed groups. Importantly, we also gener-

ated a 50 × 50 template (1,265 cells) and a 200 × 200 template

(20,333 cells) finding our results were similar despite the size of the

eye (Appendix Fig S13).

For mapping the scRNA-seq and the scATAC-seq data, antennal

and eye disc cell types were ordered by pseudotime in each data set

using the DPT() function from the destiny (Angerer et al, 2016)

(v3.0.0) R package, using Seurat PCs and topic contributions of the

singlet cells, respectively, as input for estimating the diffusion

components. The pseudotime order represents the distal-proximal

axis for the antennal cells, and the anterior–posterior axis in the eye

cell types. Each cell type was divided into 10 bins based on their

pseudotime order. Similarly in the virtual eye-antennal disc

template, for each spatially located cell type in eye we calculated

the distance to a reference vertical line located in the morphogenetic

furrow (i.e., the distance is calculated on the X axis between the

landmark point on the same Y coordinate); and for each spatially

located group in the antenna, we calculated the distance of each

virtual cell to a reference point in the center of the arista (i.e., the

length of the X-Y vector from the cell and the reference). Each cell

type was then divided into 10 bins based on their distance to the

reference landmark. For each cell type, we assigned a real profile

from the matching bin to each virtual cell randomly (e.g., the cells

in the first bin of a pseudotime ordered cell type are assigned to the

virtual cells in the first bin of that cell type based on the distance to

the landmark in the virtual eye). Progenitors and precursors and

antennal rings A2a and A2b in the scATAC-seq mapping were

assigned together to the anterior to the morphogenetic furrow and

antennal ring A2 compartments based on pseudotime. For non-

spatially located cell types and detailed groups, cells were sampled

randomly without binning. If there are more real cells than virtual

ones, random sampling is done without repetition; if there are more

virtual cells than real ones, real profiles are assigned more than

once. The scRNA-seq (i.e., gene expression) and scATAC-seq (i.e.,

region-cell probabilities) of the virtual cells are those of their match-

ing real cell. This approach is included in the ScoMAP R package,

with detailed tutorials, at https://github.com/aertslab/ScoMAP.

Loom files with the results of these analyses were created using

SCopeLoomR (Davie et al, 2015) (v0.4.0) and are available at

http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc.

Comparison of accessibility and activity profiles in the
virtual latent space
The enhancer activity GFP signal was mapped into the virtual eye

representation using a customized script which leverages

MATLAB’s Image Toolbox for landmark-based image registration

(available at https://github.com/aertslab/Bravo_et_al_EyeAntenna

lDisc/). Briefly, signals in the antenna and the eye were mapped

independently, using projective and polynomial transformations,

respectively, and manually selecting 6–8 landmarks per image. The

GFP channel from the transformed images was read into R using the

jpeg package (v0.1-8) and overlapped with the virtual eye template

coordinates; if GFP signal was detected on a cell a value of 1 was

given, if not, a value of 0 was assigned. After removing images with

low or unclear signals, with signal out of the disc proper (e.g.,

remaining of the peripodial membrane or glial cells), with unsuc-

cessful mapping, and duplicates, we obtained a matrix recapitulat-

ing the activity 390 enhancers, with each enhancer being active in a

median of 106 virtual cells. Since Janelia enhancers are quite broad

(i.e., 1–5 kb) and may include more than one cisTarget region, the

accessibility probability of each Janelia enhancer was calculated by

aggregating the region-cell probabilities of the regions falling within

it. For comparing accessibility and activity in these regions, we

calculated the Spearman correlation between the accessibility proba-

bilities and the activity patterns, and the accessibility gini scores

using the gini.index() function from the R package lawstat (v3.2).

Motif enrichment was performed in the generally accessible regions

(with gini index < 0.2) and specific regions (with gini index > 0.4)

using i-cisTarget (Imrichová et al, 2015). For scoring the Atonal

enhancers validated by Aerts et al, PWMs were scored in the

enhancer sequences using Cluster-Buster (Frith et al, 2003) and

visualized with TOUCAN (Aerts et al, 2005).

Linkage of enhancers to target genes
For each gene, we identified as potential regulatory regions those

included in a genomic space of �50 kb around the TSS of the

gene, including introns, resulting in a median of 54 potential
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regulatory regions per gene. For genes with more than one TSS,

we selected one TSS position randomly. We then combined two

approaches to establish relationships between enhancer and target

genes, (i) a linear strategy by calculating the Pearson correlation

between the enhancer probabilities and gene expression in the

virtual cells and (ii) a non-linear strategy based on random forest

models, using the enhancer probabilities as predictors, the gene

expression as response, and the GENIE3 R package (Aibar et al,

2017) (v1.8.0) to build each—gene specific—model, with 1,000

trees and default parameters. Importantly, we used all virtual cell

profiles except for those representing detailed subgroups, covering

5,253 virtual cells. Correlation-based relationships were filtered to

keep those below �0.181 and above 0.194, corresponding to the

1st and 99th percentiles of the normal distribution fitted to all the

correlations derived with the fitdistrplus R package (v1.0-11).

Random forest-derived relationships, based on the importance

given to each region in each model, were filtered to keep the top

relationships for each gene by binarizing the region importances

per gene using BASC binarization as implemented in the Binarize

R package (v1.3). We classified links as positive if they were posi-

tively correlated with their target genes (> 0) and negative if they

were negatively correlated with their target genes (< 0). This

resulted in a total of 183,336 enhancer-to-gene relationships, with

a median of 22 links per gene. The Gviz R package (v1.22.3) was

used to make figures representing links, and link tracks (with

scores and sign of the relationship) are available at http://genome.

ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc. This approach is

included in the ScoMAP R package, with detailed tutorials, at

https://github.com/aertslab/ScoMAP.

For estimating GO terms related to the genes with the most and

the least links, we used GOrilla (Eden et al, 2009) and visualized

the results with REVIGO (Supek et al, 2011). The list of transcrip-

tion factors for comparing features in TF and non-TF genes was

obtained from the RcisTarget Drosophila database (Aibar et al,

2017). For estimating the number of redundant enhancers, we

considered that two enhancers linked to the same gene were corre-

lated if the Pearson correlation between their region-cell probabili-

ties was above 0.8. For estimating the correlation in activity

between enhancer–enhancer pairs, we evaluated the 63 combina-

tions for which the activity of both enhancers was mapped into the

virtual eye (with correlation > 0.1). For estimating region conserva-

tion, we used the phastCons27way file for dm6 available at UCSC.

Gene activity scores were calculated by aggregating the region-cell

probabilities of the regions linked to each gene, weighted by their

signed (positive or negative effect) random forest importance. For

integrating these links in the pySCENIC pipeline, we use the

modules derived from GRNBoost (Moerman et al, 2019) (Arboreto

v0.1.5) and performed the motif enrichment step (with RcisTarget

(Aibar et al, 2017) (v1.5.0), using a ROC threshold of 0.01 and a

maximum AUC rank of 5,000) on the regions linked to each gene in

the module (using the region-based cisTarget databases) instead of

around the TSS of the gene (using the gene-based cisTarget data-

bases implemented in the original workflow). Genes linked to

regions in which motifs linked to the transcription factor in each

module were enriched (NES > 3) were kept as part of the regulon.

The regulons were evaluated on the cells using AUCell (Aibar et al,

2017) (v1.5.2). For validating the link-based regulons, we used as

input for GSEA the regulons and the genes ordered by decreasing

logFC for (i) Atonal gain-of-function and loss-of-function mutants

(versus WT, using GEO2R), (ii) GMR+ versus GMR� populations,

and (iii) onecutx562 (loss-of-function mutant) versus WT, as

provided by Potier et al (2014). Loom files with the results of these

analyses were created using SCopeLoomR (Davie et al, 2015)

(v0.4.0) and are available at http://scope.aertslab.org/#/Bravo_et_a

l_EyeAntennalDisc.

caQTL analysis
Data preprocessing

Adapter sequences were trimmed from the raw reads using fastq-

mcf (ea-utils v1.1.2, with default parameters and using a list

containing the common Illumina adapters), and the quality of the

cleaned reads was checked with FastQC (v0.1). All experiments

were mapped using Bowtie2 (v2.2.5) to their personalized version

on 3rd 2017 FlyBase release (D. melanogaster r6.16) genome.

Briefly, called variants in this genome assembly were retrieved

from ftp://ftp.hgsc.bcm.edu/DGRP/freeze2_Feb_2013/liftover_da

ta_for_D.mel6.0_from_William_Gilks_Oct_2015/, and for each of

the 50 DGRP lines, we adapted the consensus genome (r6.16)

using seqtk mutfa (seqtk (v1.0)), each time including their SNPs

(previously called from whole genome sequencing). After the first

mapping round, additional SNPs were called on the ATAC reads

using SAMtools (v1.2), with the command samtools mpileup -B –f

r6.16.fasta DGRP_lineX.bam | varscan.sh mpileup2snp –output-vcf

1. Newly called homozygous SNPs (several thousands per line)

were added to the existing vcf files using VCFtools (v0.1.14). The

genomes were again updated to obtain a final personalized genome

for every DGRP line, strongly reducing mapping errors and increas-

ing the sensitivity of subsequent analyses. Cleaned reads were

mapped onto the final genomes using Bowtie2 (v2.2.5) again, and

SAMtools (v1.2) was used for sorting and indexing.

Peaks were called on the mapped reads using MACS2 (v2.1.2.1),

with the command macs2 callpeak -g dm –nomodel–keep-dup all –

call-summits. The narrow peak files (bed format) for all the DGRP

lines were merged into a single file that contained a total of 39,879

regions accessible in at least one DGRP line. After filtering out chrU,

chrUextra, chrHet, and chrM regions and removing regions enriched

in repeats (> 25% of the sequence) using bedtools (v2.28.0) with

the command intersectBed -v -f 0.25, we obtained 38,179 accessible

regions across this DGRP panel. For every ATAC-seq sample, we

counted the number of reads falling into each accessible region

using featureCounts (Subread v2.0.0). Normalized bigwig files were

generated using the Kent software from UCSC.

Determination of caQTLs

Next, 209 regions with a low coverage for every DGRP line were

removed (coverage of the region below 0.2 pb for every DGRP

lines), ending up with 37,990 accessible regions. For each region,

we extracted the normalized ATAC-seq reads for these 50 DGRP

lines and linked each region to the annotated and additionally called

SNPs for these lines. A total of 676,916 SNPs were assigned to their

encompassing region using bedtools.2.26.0 intersectBed on the

extended vcf file.

In this way, we obtained for each region the normalized reads for

each of the 50 lines as one vector and all SNPs called inside this region

as a binary matrix for the 50 lines (present = 1, absent = 0,

unknown = NA). We searched for correlating region-SNP vectors
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using the generalized linear model function in R. The P-values were

adjusted using the Benjamini–Hochberg procedure in R. We identified

10,969 highly correlating SNP-region pairs referred to as caQTLs (Chro-

matin Accessibility Quantitative Trait Loci; adjusted P-value < 0.05).

Delta motif scores

To single out motifs that correlate significantly with the open chro-

matin changes, a Delta motif score was calculated for every of the

24,454 unique motifs in our collection. The sequence for each of the

4,853 variable regions, that contained at least one caQTL, was

extracted using bedtools getfasta (Bedtools v2.28.0). Next, we

mutated these sequences with their encompassing caQTLs according

to their effect on the open chromatin using seqtk mutfa (seqtk

(v1.0)). For each of the 4,853 regions, we obtained two sequences,

one for the accessible chromatin and one for the less accessible/

closed chromatin. We scored every time both sequences with the

24,454 motifs using Cluster-Buster (Frith et al, 2003), with the

options –m 0 –c 0, and retained for every motif the highest CRM

score for each sequence. By subtracting the CRM score of the less

accessible/closed region from the encompassing accessible region,

we obtained a delta motif score for that region.

Motif significance

For the general significance, we summed all delta scores from the

4,853 regions to obtain a cumulative delta score for each motif. We

calculated a Delta motif score, following the same procedure, on

20K random SNPs that were present in an accessible region but had

no effect on chromatin accessibility (GLM FDR > 0.95). We then

calculated for each motif whether it was significantly more affected

(|Delta score| > 3) by caQTLs compared with the non-correlating

SNPs, using a Fisher’s exact test.

Out of the 10K caQTLs, 6,682 caQTLs fall within a topic (60.9%),

having in average 362 caQTLs per binarized topic. For the cell type-

specific analysis, we summed all delta scores from all the regions

containing at least one caQTL per topic to obtain a cumulative delta

score for each motif. We calculated a Delta motif score, following

the same procedure, on the 40K random SNPs that were present in

an accessible region in a topic but had no effect on chromatin acces-

sibility (GLM FDR > 0.95). We then calculated for each motif

whether it was significantly more affected (|Delta score| > 3) by

caQTLs compared with the non-correlating SNPs, using the Fishers

exact test.

Genetic screen data analysis
ATAC-seq reads were first cleaned for adapters using fastq-mcf (ea-

utils v1.12) and a list of sequencing primers. Cleaned reads (FastQC

v0.1) were then mapped to the 3rd 2017 FlyBase release

(D. melanogaster r6.16) genome using Bowtie2 (v2.2.5) with default

parameters, with the single-end option (to compare with the WT

sample, which was single-end sequenced). Sorted bam files were

produced using SAMtools (v1.2). Normalized bigwigs were gener-

ated using the Kent software (UCSC). Peaks were called on mapped

reads using MACS2 (v2.1.2.1) with the following options: -g dm –

nomodel –bdg -t Sample/Control -c Sample/Control (depending on

whether we want to determine upregulated or downregulated

peaks). ChIP-seq bam files were downloaded from ENCODE, and

normalized bigwigs were also generated using the Kent software

(UCSC). Peaks were called on mapped reads using MACS2

(v2.1.2.1) with the following options: -g dm –nomodel –bdg -t

Samples -c Control. Normalized bigwigs are available at http://ge

nome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc.

For each sample, 50 single cells were simulated by bootstrapping

20,000 mapped reads (per cell) from the bulk bam files, resulting in

a data set with 750 simulated single cells. Downstream analyses

were performed with cisTopic (Bravo González-Blas et al, 2019).

Briefly, we determined the number of ctx regions in which at least

one read is mapped, and topic modeling was run using default

parameters, with models including 2, 10 to 60 (one by one), 70, 80,

90, and 100 topics, using a total of 500 iterations, out of which 250

were used as burn-in. Based on the highest log-likelihood, we

selected a model with 21 topics. Motif enrichment analysis was

performed using RcisTarget and i-cisTarget, using a ROC threshold

of 0.01 and maximum AUC rank of 5,000 (Imrichová et al, 2015;

Aibar et al, 2017). The enrichment of epigenomic signatures in cells

was performed using default parameters, using a maximum AUC

rank of 12,320 (10% of the total number of ctx regions), while the

enrichment of epigenomic regions within topics was done with

default parameters. Coverage heatmaps were done using deepTools

(v3.3.1). For identifying differentially enriched motifs between

groups of regions, we first scored the ctx regions in the groups of

interest with the 24,454 PWMs available in the cisTarget motif

collection using Cluster-Buster (Frith et al, 2003), with the options–

m 0 –c. Using this matrix, with ctx regions as columns, motifs as

rows, and the value of the best cis-regulatory module (CRM) as

value, we performed a likelihood ratio test between the region

groups of interest, as implemented in MAST (v1.4.1). P-values were

adjusted using the FDR method.

Publicly available data used in this work
Eye disc Drop-seq data were obtained from GEO, with GEO acces-

sion number GSE115476, while dimensionality reduction coordi-

nates and cell labels were retrieved from the supplementary data

from Ariss et al (2018). Raw data from Optix-GFP+ single-cell and

bulk ATAC-seq, Grh ChIP-seq, and 21 bulk ATAC-seq profiles from

were retrieved from GEO, with GEO accession number GSE102441.

Raw Sine Oculis ChIP-seq data were retrieved from GEO, with GEO

accession number GSE52943. Atonal gain-of-function and loss-of-

function data were retrieved from GEO, with GEO accession number

GSE16713. Differential expressed genes between GMR+ FAC sorted

cells and GMR� FAC sorted cells and onecutx562 versus WT were

retrieved from the supplementary materials from Potier et al (2014).

Glass, Prospero, Nerfin-1, and l(3)neo38 ChIP-seq profiles were

retrieved from ENCODE, with the following experiment IDs, respec-

tively: ENCSR472URU, ENCSR682YQM, ENCSR335NNR, and

ENCSR643EOU. ATAC-seq profiles on different embryonic domains

were obtained from GEO, with GEO accession number GSE118240.

Resource description
SCope

Ariss—WT 11416 cells

• EAD_Ariss_WT_Seurat_SCENIC: Loom file containing dimension-

ality reductions (as shown by Ariss et al, based on analysis with

Seurat, and based on pySCENIC regulons), gene expression, and

regulon enrichment from pySCENIC (with regulons derived from

pySCENIC in this data set) from the Drop-seq eye disc data set
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from Ariss et al (2018). This data set contains 11,416 cells, 7,801

genes, and 140 regulons. The labels given by Ariss et al (“Ariss

labels”) and the labels transferred with Seurat from the 10x

scRNA-seq data (“10x labels”) are given as metadata.

• EAD_Ariss_WT_Seurat_SCENIC_regulonsfrom10x: Loom file

containing dimensionality reductions (as shown by Ariss et al,

based on analysis with Seurat, and based on pySCENIC regulons),

gene expression, and regulon enrichment from pySCENIC (with

motif-based regulons derived from pySCENIC in our 10x data set)

from the Drop-seq eye disc data set from Ariss et al (2018). This

data set contains 11,416 cells, 7,801 genes, and 159 regulons. The

labels given by Ariss et al (“Ariss labels”) and the labels trans-

ferred with Seurat from the 10x scRNA-seq data (“10x labels”) are

given as metadata.

scATAC-seq—15387 cells

• Gene

� EAD_scATAC_AggSumPredictiveDistribution_Gene_Regulons:

Loom file containing the cisTopic cell-Topic tSNE coordinates,

gene activity scores based on the aggregation of region proba-

bilities around the TSS (5 kb plus introns, multiplied by 106),

and regulon enrichment (on the gene activity score matrix,

using the regulons derived from the analysis with pySCENIC in

the 10x scRNA-seq data set). This data set contains 15,387

cells, 16,892 genes, and 175 regulons. The labels transferred

from the 10x scRNA-seq data (“RNA labels”) are given as meta-

data.

� EAD_scATAC_AggSumPredictiveDistribution_Gene_Topics:

Loom file containing the cisTopic cell-Topic tSNE coordinates,

gene activity scores based on the aggregation of region proba-

bilities around the TSS (5 kb plus introns, multiplied by 106),

and topic enrichment. This data set contains 15,387 cells,

16,892 genes, and 49 topics. The labels transferred from the

10x scRNA-seq data (“RNA labels”) are given as metadata.

� EAD_scATAC_AggSignedImportancePredictiveDistribu-

tion_Gene_Regulonss: Loom file containing the cisTopic cell-

Topic tSNE coordinates, gene activity scores based on the

aggregation of region probabilities based on the enhancer-to-

gene links (multiplied by 108), and regulon enrichment (on the

gene activity score matrix, using the regulons derived from the

analysis with pySCENIC in the 10x scRNA-seq data set). This

data set contains 15,387 cells, 8,347 genes, and 175 regulons.

The clusters derived from SNN clustering with Seurat on the

topic-cell matrix (“Seurat_res_1.2”) are given as metadata.

� EAD_scATAC_AggSignedImportancePredictiveDistribu-

tion_Gene_Topics: Loom file containing the cisTopic cell-Topic

tSNE coordinates, gene activity scores based on the aggregation

of region probabilities based on the enhancer-to-gene links

(multiplied by 108), and topic enrichment. This data set

contains 15,387 cells, 8,347 genes, and 49 topics. The clusters

derived from SNN clustering with Seurat on the topic-cell

matrix (“Seurat_res_1.2”) are given as metadata.

• Janelia

� EAD_scATAC_AggSumPredictiveDistribu-

tion_JaneliaRegions_Topics: Loom file containing the cisTopic

cell-Topic tSNE coordinates, Janelia region probabilities based

on the aggregation of the probabilities of the ctx regions that

overlap with the Janelia enhancer (multiplied by 106), and

topic enrichment. This data set contains 15,387 cells, 740

Janelia regions, and 49 topics. The labels transferred from the

10x scRNA-seq data (“RNA labels”) and the clusters derived

from SNN clustering with Seurat on the topic-cell matrix

(“Seurat_res_1.2”) are given as metadata.

• Ctx Regions

� EAD_scATAC_PredictiveDistribution_CtxRegions_Topics: Loom

file containing the cisTopic cell-Topic tSNE coordinates, ctx

region probabilities (multiplied by 106), and topic enrichment.

This data set contains 15,387 cells, 129,553 ctx regions, and 49

topics. The labels transferred from the 10x scRNA-seq data

(“RNA labels”) and the clusters derived from SNN clustering

with Seurat on the topic-cell matrix (“Seurat_res_1.2”) are given

as metadata.

scRNA-seq—3531 cells

• EAD_scRNAseq_LinkBasedandSeurat: Loom file containing

dimensionality reductions (based on analysis with Seurat and

based on pySCENIC regulons), gene expression, and link-based

regulon enrichment (regulons formed by performing the motif

enrichment step of the SCENIC (Aibar et al, 2017) workflow on

the regions linked to each gene). This data set contains 3,531

cells, 8,744 genes, and 161 regulons. The labels given by cell clus-

tering with Seurat (“Seurat_res_1.2”) and the experimental run

(“Experiment run”) are given as metadata.

• EAD_scRNAseq_SCENICandSeurat: Loom file containing dimen-

sionality reductions (based on analysis with Seurat and based on

pySCENIC regulons), gene expression, and pySCENIC regulon

enrichment (motif and ChIP-seq based). This data set contains

3,531 cells, 8,744 genes, and 175 regulons. The labels given by

cell clustering with Seurat (“Seurat_res_1.2”), the experimental

run (“Experiment run”), the labels transferred from Ariss et al

(“Ariss labels”), and the labels transferred from the scATAC-seq

data (“ATAC labels”) are given as metadata.

• EAD_scRNAseq_SCENICandSeurat_regulonsfromAriss: Loom file

containing dimensionality reductions (based on analysis with Seurat

and based on pySCENIC regulons), gene expression, and pySCENIC

regulon enrichment (using the regulons derived from Ariss et al).

This data set contains 3,531 cells, 8,744 genes, and 140 regulons.

The labels given by cell clustering with Seurat (“Seurat_res_1.2”),

the experimental run (“Experiment run”), the labels transferred from

Ariss et al (“Ariss labels”), and the labels transferred from the

scATAC-seq data (“ATAC labels”) are given as metadata.

Virtual EAD—5370 cells

• Janelia

� Janelia_Accessibility_AggSumProb: Loom file containing the

virtual eye-antennal disc coordinates and the Janelia region

probabilities based on the aggregation of the probabilities of

the ctx regions that overlap with the Janelia enhancer (multi-

plied by 106). This data set contains 5,526 cells and 740 Janelia

regions. The labeling of the cells in the virtual eye-antennal

disc (“Zone”) is given as metadata.

� Janelia_Functionality_ImageRegistration: Loom file containing

the virtual eye-antennal disc coordinates and the Janelia

enhancer activity patterns mapped from the images into the

virtual eye-antennal disc. This data set contains 5,058 cells and

454 Janelia mapped images (corresponding to 390 Janelia
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enhancers). The labeling of the cells in the virtual eye-antennal

disc (“Zone”) is given as metadata.

• ATAC

� Pseudotime-based_ATAC_VE_CtxRegions+Topics: Loom file

containing the virtual eye-antennal disc coordinates, the ctx

region probabilities (multiplied by 106), and the topic enrich-

ment. This data set contains 5,526 cells, 129,553 ctx regions,

and 49 topics. The labeling of the cells in the virtual eye-

antennal disc (“Zone”) and the cell type labels based on the

scATAC-seq data (“Cell type”) are given as metadata.

• RNA

� Pseudotime-based_RNA_VE: Loom file containing the virtual

eye-antennal disc coordinates, gene expression, and the

pySCENIC regulon enrichment (derived from the 10x scRNA-

seq data). This data set contains 5,370 cells, 8,744 genes, and

175 regulons. The labeling of the cells in the virtual eye-

antennal disc (“Zone”), the cell type labels based on the scRNA-

seq data (“Cell type”), the labels transferred from Ariss et al

(“Ariss labels”), and from the scATAC-seq data (“ATAC

labels”) are given as metadata.

UCSC

Custom tracks

• Bulk ATAC DGRP regions: Bed file containing the 38,179 regions

found accessible across the 50 bulk ATAC-seq profiles from Droso-

phila inbred lines.

• Color—Standardized R2G Coor+Genie3 50 kb: BigInteract track

containing links between enhancers and target genes. The track is

colored by the sign of the link, which can be positive (green) or

negative (red). Default threshold: 0.

• Ctx_regions: Bed file containing the 129,553 ctx regions accessible

in the eye-antennal disc in the Drosophila genome.

• Janelia lines: Bed file containing the coordinates of the enhancers

tested by the Janelia FlyLight Project (with Janelia line ID).

• Optix-GFPVSRest_logFC1: Bed file containing the regions differen-

tially accessible in the Optix-GFP+cells compared to the Optix-

GFP� cells (with P-value < 0.05 and logFC > 1)

• REDFly (BED): Bed file containing the coordinates of the enhan-

cers contained in the REDfly database (Rivera et al, 2019).

• Score—Standardized R2G Coor+Genie3 50 kb: BigInteract track

containing links between enhancers and target genes. The trans-

parency of the links represents the Random Forest importance of

the enhancer-to-gene link. Default threshold: 0.

• So ChIP-seq peaks: Sine oculis (so) ChIP-seq peaks determined by

MACS2 peak calling after remapping the data from Jusiak et al

(2014) to the 3rd 2017 FlyBase release (D. melanogaster r6.16)

genome.

Eye-Antennal Disc Hub (Bravo González-Blas et al, 2019) @ aert

slab.org

• 10x topics: Topic bigwig files representing the region-topic scores

obtained from the analysis of the 10x scATAC-seq with cisTopic

(Bravo González-Blas et al, 2019) (v0.2.2).

• Aggregate scATAC—Cell sorting: Aggregate profiles from the FAC-

sorted Optix-GFP+ and sens-GFP+ cells as normalized bigwig

files.

• ATAC DGRP—Eye disc: Bulk ATAC-seq profiles from the 50 DGRP

lines used in this study as normalized bigwig files.

• ATAC Aggr EAD Clusters: Cell type-specific (based on clustering

on the topic-cell matrix) aggregate profiles from the 10x scATAC-

seq analysis as normalized bigwig files.

• Bulk ATAC—Cell sorting: Bulk ATAC-seq profiles from the FAC-

sorted Optix-GFP+ and sens-GFP+ cells as normalized bigwig files.

• ENCODE ChIP-seq: Normalized bigwigs from the ChIP-seq experi-

ments of Prospero, Nerfin-1, and l(3)neo38 (and controls)

retrieved from ENCODE.

• ENCODE Normalized ChIP-seq: Control normalized bigwig files

from the ChIP-seq experiments of Prospero, Nerfin-1, and l

(3)neo38 retrieved from ENCODE.

• Grh ChIP-seq: Normalized bigwigs from the Grainyhead ChIP-seq

experiments performed by Jacobs et al (2018) after remapping to

the 3rd 2017 FlyBase release (D. melanogaster r6.16) genome.

• Predictive accessibility: Barchart track representing the region-cell

probabilities (multiplied by 106) per cell type for each region.

• RNA Aggr EAD Clusters: Cell type-specific (based on Seurat clus-

tering) normalized bigwigs containing 10x scRNA-seq reads.

• scRNA Gene expression gene: Barchart track representing the

normalized UMI counts per cell type for each gene.

• scRNA Gene expression transcript: Barchart track representing the

normalized UMI counts (multiplied by 102) per cell type for each

transcript.

• so ChIP-seq: Normalized bigwigs from the Grainyhead ChIP-seq

experiments performed by Jusiak et al (2014) after remapping

to the 3rd 2017 FlyBase release (D. melanogaster r6.16) genome.

• TF perturbations: Bulk ATAC-seq profiles from the GMR-GAL4

UAS-TF (and control) lines included in the genetic screen.

Data availability

The data generated for this study have been deposited in NCBI’s Gene

Expression Omnibus and are accessible through GEO Series accession

number GSE141590 (http://www.ncbi.nlm.nih.gov/geo/query/acc.c

gi?acc=GSE141590). We also provide a SCope session at http://sc

ope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc with the processed

single-cell data and a UCSC hub (http://ucsctracks.aertslab.org/pape

rs/Bravo_et_al_EyeAntennalDisc/hub.txt) and session at http://ge

nome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc with the

processed aggregate and bulk ATAC-seq profiles, enhancer-to-gene

links, and ChIP-seq tracks.

The code for spatial single-cell omics integration and inference of

enhancer-to-gene links is included in the ScoMAP R package, with

detailed tutorials, at https://github.com/aertslab/ScoMAP. The code

to reproduce the figures in this article is available at https://github.c

om/aertslab/Bravo_et_al_EyeAntennalDisc/.

Expanded View for this article is available online.
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