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Abstract

Estrogen receptor-α (ERα) and its ligand estradiol (E2) play critical roles in breast cancer growth 

and are key therapeutic targets. Here, we report a novel dual role of the adenosine A1 receptor 

(Adora1) as an E2/ERα target and a regulator of ERα transcriptional activity. In ERα-positive 

breast cancer cells, E2 up-regulated Adora1 mRNA and protein levels, an effect that was reversed 

by the E2 antagonist ICI 182,780. siRNA ablation of Adora1 in ERα-positive cells reduced basal 

and E2-dependent proliferation, whereas Adora1 over-expression in an ERα-negative cell line 

induced proliferation. The selective Adora1 antagonist, DPCPX, reduced proliferation, 

establishing Adora1 as a mediator of E2/ERα-dependent breast cancer growth. Intriguingly, 

Adora1 ablation decreased both mRNA and protein levels of ERα and, consequently, estrogen 

responsive element-dependent ERα transcriptional activity. Moreover, Adora1 ablation decreased 

binding activity of ERα to the promoter of its target gene TFF1 and led to reduced TFF1 promoter 

activity and mRNA levels, suggesting that Adora1 is required for full transcriptional activity of 

ERα upon E2 stimulation. Taken together, we demonstrated a short feed-forward loop involving 

E2, ERα, and Adora1 that favors breast cancer growth. These data suggest that Adora1 may 

represent an important target for therapeutic intervention in hormone-dependent breast cancer.
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Introduction

Breast cancer is one of the most common malignancies in women, and is the second leading 

cause of death for women in the United States (Landis et al., 1999). The mechanisms of 
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breast cancer pathogenesis have been intensively studied, and new treatments targeting this 

disease have emerged. Drugs such as tamoxifen (Shen et al., 2008; Snoj et al., 2008), which 

inhibit the ability of estrogen to activate the estrogen receptor, or aromatase inhibitors 

(Hayashi and Yamaguchi, 2005; Howell and Buzdar, 2005), which block aromatase enzyme 

activity necessary for estrogen production, are used to prevent and treat hormone-responsive 

breast cancer. Even with aggressive mammographic screening, adjuvant chemotherapy, and 

intensive therapy for existing cancer however, many of the women who develop breast 

cancer will die from it. Identification of additional factors that contribute to breast cancer 

cell proliferation may enhance our understanding of this disease and potentially facilitate the 

development of novel therapeutic agents.

Estrogen receptor-α (ERα) and its ligand estradiol (E2) play critical roles in breast cancer 

growth and are important therapeutic targets for this disease (DeNardo et al., 2005; Kun et 

al., 2003; Pettersson and Gustafsson, 2001). There is a significant interest in understanding 

the mechanisms by which ERα signaling is regulated in breast cancer and using this 

knowledge to develop interventions to that inhibit ERα signaling (Boulay et al., 2005; Fan 

et al., 1999; Namba et al., 2005; Nonclercq et al., 2007). We previously reported that the 

adenosine A1 receptor (Adora1) is a novel target of ERα (Lin et al., 2007), the in vivo 

expression of which significantly correlates with the presence of ERα in breast cancer.

Adora1 is a member of the G protein-coupled receptor (GPCR) superfamily. Adora1 has 

been actively studied as a potential drug target for the treatment of fetal hypoxia, Pick’s 

disease, and for the protection of brain from traumatic brain injury and heart from ischemia-

reperfusion injury (Albasanz et al., 2007; Kochanek et al., 2006; Merighi et al., 2003; 

Morrison et al., 2006; Wendler et al., 2007). Based on these varied roles of Adora1, it has 

also been suggested that the receptor may act as a potent regulator of normal and tumor cell 

growth by exerting antiapoptotic and prosurvival effects.

Recently, evidence has emerged that Adora1 is over-expressed in various breast cancer cell 

lines (Mirza et al., 2005). We demonstrated previously that Adora1 is one of many target 

genes of ERα, and we hypothesized that Adora1 may serve as a mediator of estrogen action 

in breast cancer growth. Here, we determined whether Adora1 in turn regulates the 

transcriptional activity of ERα in breast cancer cells. Our findings suggest that Adora1 may 

play a dual role as a target and a regulator of ERα in breast cancer cells, and a positive 

feedback loop between ERα and Adora1 signaling may modulate cancer cell proliferation.

Results

Estrogen up-regulates Adora1 mRNA and protein in breast cancer MCF-7 cells

Adora1 was identified as a novel target of ERα in our previous study (Lin et al., 2007). To 

investigate effect of estrogen on expression of Adora1 in MCF-7 cells, after overnight 

starvation, various concentrations (10−5, 10−6, 10−7, 10−8, 10−9, 10−10 and 10−11 M) of 17β-

estradiol (E2) were added to the medium for a period of 3 hours. Real-time PCR was 

performed to measure the expression of Adora1. E2 treatment significantly up-regulated 

Adora1 mRNA, with the largest inductions seen at 10−5, 10−8, 10−9 M E2, and relatively 

lower inductions seen at 10−6, 10−7, 10−10 and 10−11 M E2 (Figure 1A). To explore the 
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temporal response of Adora1 expression to E2 stimulation, MCF-7 cells were treated with 

10−8 M concentration E2 for 5 days and the level of Adora1 expression was quantified over 

time by real-time PCR (Figure 1B). E2 stimulated Adora1 mRNA levels as early as 60 

minutes. Adora1 expression reached 8-fold baseline levels at 4 hours, after which the 

magnitude of stimulation decreased gradually and disappeared by 48 hours. E2 also induced 

Adora1 protein levels in a time-dependent manner in MCF-7 cells (Figure 1C). A mild E2 

induction of Adora1 protein was noted at 3h. A robust E2 induction of Adora1 protein was 

observed at 24 h, which reached a maximum level at 48 h. The E2 antagonist ICI 182,780 

reversed E2-stimulated Adora1 expression (Figure 1D). These results indicated that E2 up-

regulates Adora1 mRNA and protein levels in a time-and concentration-dependent manner 

in MCF-7 breast cancer cells.

Adora1 silencing results in significantly decreased endogenous ERα in MCF-7 cells

Up-regulation of Adora1 expression in MCF-7 cells upon E2 stimulation suggests that 

Adora1 may play a role in breast cancer progression. Since ERα activation is known to 

promote cell cycle progression (Aitken and Lippman, 1982; Altucci et al., 1996; Osborne 

and Schiff, 2005), we examined whether Adora1 modulates ERα function in MCF-7. 

Specific targeted knockdown of Adora1 mRNA and protein levels was achieved with siRNA 

in MCF-7 cells (Figure 2A and 2B).

We monitored Adora1 knockdown efficiency by real-time PCR prior to downstream 

experiments. We repeated Adora1 knockdown 3 times using optimized experimental 

conditions. Compared with control siRNA-transfected MCF-7 cells, the real-time PCR CT 

values for Adora1 mRNA in cells transfected with Adora1 siRNA were 4.5- to 5-fold 

higher; real-time PCR delta/delta CT calculation indicated that Adora1 mRNA levels were 

significantly lower by 95.6% to 96.9% in cells transfected with Adora1-siRNA. The average 

knockdown efficiency was 96.2%±0.58 (p<0.01, t test).

In the presence of Adora1 siRNA, we found that ERα mRNA was down-regulated to 

approximately 60% compared with that in non-silenced cells (Figure 2A). Silencing of 

Adora1 also caused a significant decrease of ERα protein level (Figure 2B). These present 

results showed that depletion of Adora1 resulted in a marked reduction of both ERα mRNA 

and protein levels.

To further demonstrate that Adora1-dependent signaling regulates ERα levels, we incubated 

MCF-7 cells in the presence or absence of the Adora1-selective adenosine antagonist 

DPCPX (103 µM and 104 µM) for 12 h and measured ERα protein levels using western 

analysis. DPCPX is a xanthine derivative compound and highly selective Adora1 ligand 

(Factor et al., 2007; Haleen et al., 1987). DPCPX inhibits the effect of adenosine on Adora1 

by specifically binding to this receptor. DPCPX treatment significantly abolished ERα 

protein (Figure 2C). This verifies the conclusion that Adora1 knockdown or inhibition of its 

signaling pathway ablates ERα.
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Silencing of Adora1 is associated with a decrease in breast cancer cell proliferation

It has been shown that the Adora1 gene is located proximally to an ERα binding site and 

that its expression is induced by E2 (Lin et al., 2007). Here, we showed that depletion of 

Adora1 resulted in significantly decreased mRNA and protein level of ERα (Figure 2). 

Because ERα activation and its signaling are critical for cell proliferation (Chalbos et al., 

1982; Fu et al., 2006; Laganiere et al., 2005), we tested the possibility that Adora1 

modulates ERα-mediated cell proliferation in breast cancer pathobiology. MCF-7 cells were 

cultured in steroid-deprived medium for 3 days, and siRNA against Adora1 or control 

siRNA was transiently transfected into the cells for 48 hours followed by 20 to 24-hour 

treatment with E2 or vehicle. We confirmed Adora1 knockdown by immunoblot (Figure 

3A). As shown in Figure 3B, knockdown of Adora1 in MCF-7 cells treated with or without 

E2 resulted in significantly decreased cell proliferation (24.9% and 14.8%, respectively) 

compared with cells transfected with control siRNA (14.0% and 9.5%, respectively). We 

confirmed this result by quantification of proliferating cell nuclear antigen (PCNA), a 

marker of cell proliferation and prognosis (23, 24), by immunoblot. Knockdown of Adora1 

decreased cell proliferation as shown specifically by a decrease in PCNA immunostaining 

(Figure 3C). The lowest level of PCNA was observed in Adora1-depleted cells incubated 

with vehicle. In E2-treated cells, silencing of Adora1 resulted in remarkable decrease in 

PCNA level compared to that in the non-silenced MCF-7 cells. Data obtained from 

quantification of PCNA corroborated those from the MTT assay in Figure 3B. To further 

demonstrate a role of Adora1 in cell proliferation, we inhibited the effect of adenosine on 

this receptor using the Adora1-selective antagonist, DPCPX, which also attenuated in 

MCF-7 breast cancer cell proliferation (Figure 3D) and E2-induced cell proliferation by 

2.46-fold (Figure 3E). These results indicate that depletion of Adora1 or inhibition of the 

downstream signaling pathway significantly decreased mRNA and protein levels of ERα, 

and inhibited E2-induced cell proliferation in MCF-7 cells.

Over-expression of Adora1 is associated with an increase in proliferation of ERα negative 
MDA-MB-231 breast cancer cells

The inhibitory effect of Adora1 depletion on cell proliferation in ER-positive MCF-7 cell 

prompted us to investigate whether over-expression of a full-length Adora1 cDNA in ER-

negative MDA-MB-231 cells could stimulate cell proliferation. Over-expression of Adora1 

increased cell proliferation as shown in Figure 3F specifically by an increase in viable cells 

measured by MTT assay and by PCNA immunostaining, compared with cells transfected 

with an empty pcDNA 3.1 vector (control). Transfection with the Adora1 expression vector 

significantly increased the viable cell numbers. These results further support our conclusion 

that Adora1 is a mediator of breast cancer cell growth.

Targeted knockdown of Adora1 inhibits ERα transcriptional activity

To determine whether Adora1 mediates ERα transcription, we examined the transcriptional 

activity of endogenous ERα on an ERE-dependent reporter construct in MCF-7 and T47D 

cells after siRNA silencing of Adora1. Specific targeted knockdown of Adora1 protein was 

achieved (Figure 4A in MCF-7 cell and Figure 4C in T47D). Breast cancer cells were 

cultured in charcoal-stripped serum for 3 days, followed by transfection of control siRNA or 
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siRNA to Adora1 for 24 hours, then co-transfection with an (ERE)2-Luc reporter construct 

for 24 hours. Cells were stimulated overnight with E2 or vehicle. As shown in Figure 4, in 

both MCF-7 (Figure 4B) and T47D (Figure 4D) cell lines and regardless of the absence or 

presence of E2, ERE-mediated transcription was significantly decreased by the addition of 

siRNAs directed against Adora1 compared to that in non-silenced cells. In agreement with 

previous data, these results indicate that silencing of Adora1 significantly reduced ERα level 

leading to reduced transcriptional activity of ERα.

Adora1 silencing decreases binding of ERα to TFF1 promoter and E2-induced expression 
of the endogenous ERα target gene- TFF1

We examined whether Adora1 plays a functional role in transcriptional activation of a 

known ERα target gene, TFF1, by transfecting siRNAs directed against Adora1 in MCF-7 

cells. As shown in Figure 5A, knockdown of Adora1 expression resulted in a marked 

reduction of E2-induced recruitment of ERα to the TFF1 promoter. This result suggested 

that Adora1 might be required for ERα transactivation of E2-responsive gene. As shown in 

Figure 5B, a TFF1-luciferase promoter construct was poorly induced by E2 in Adora1 

silenced MCF-7 cells compared with Adora1 non-silenced MCF-7 cells. Thus, introduction 

of siRNAs directed against Adora1 considerably decreased the ability of ERα to stimulate 

transcription from the TFF1 promoter. Next we investigated whether the presence of Adora1 

is required for binding of ERα to the TFF1 promoter. To determine more directly whether 

Adora1 is involved in regulating expression of ERα target, we examined the effect of 

inhibiting Adora1 expression on E2-induced expression of ERα target gene, TFF1. The 

presence of the siRNAs significantly reduced the ability of E2 to stimulate the expression of 

a selected ERα target, TFF1 (Figure 5C), but not the non-target siRNA. These results 

suggest that Adora1 is required for the full ERα transcription activity. It also, in agreement 

with the luciferase assay with ERE-dependent construct performed in MCF-7 cells, confirms 

the involvement of Adora1 in the regulation of ERα target gene expression. These results 

demonstrate that Adora1 plays an important role in ERα binding and transcriptional activity 

and the necessity of Adora1 for full ligand-dependent activity of ERα.

Discussion

In this study, we provide evidence for a novel dual role of the Adora1 as a target and a 

regulator of E2/ERα action in breast cancer. We show that E2 up-regulates Adora1 mRNA 

and protein level, and that the inhibition of Adora1 either by RNAi or its selective antagonist 

attenuated MCF-7 breast cancer cell proliferation by abolishing ERα and its E2-dependent 

transcriptional activity. These findings suggest the existence of a short feed-forward loop 

involving E2, ERα, and Adora1 that modulate breast cancer cell proliferation.

Studies have revealed that the ERα gene is regulated at the levels of activity of its 

transcription factor, such as AP2 (McPherson et al., 1997), transcribed ERα mRNA stability 

(Kenealy et al., 2000), and its protein degradation (Alao et al., 2004). In present study, we 

found that ablation of Adora1 resulted in markedly decreased ERα mRNA and protein 

levels; this may represent a novel mechanism, by which Adora1 decrease the binding of 

transcription factor, such as AP2 to ERα promoter regions, which result in decreased ERα 
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mRNA transcribed and protein translated, and therefore the reduced the binding of ERα to 

its target genes. While our findings do not exclude the possibility that loss of Adora1 may 

shorten the half-life of ERα message or enhance ubiquitin degradation of ERα, others have 

suggested that suppression of ERα expression, rather than decreased stability of ERα 

mRNA and protein, is a more likely mechanism by which ERα activity is regulated (Huang 

et al., 2006; Lu et al., 2003). The ERα gene contains multiple promoters, some of which are 

as far as 150 kb upstream of the primary transcriptional start site (Reid et al., 2002). Only a 

few transcription factors are known to regulate ERα expression (McPherson et al., 2007), 

including AP2. Additional experiments are needed to elucidate the mechanism of ERα 

down-regulation by ablation of Adora1.

How Adora1 exerts of its effects on ERα function in the proliferation of human breast 

cancer MCF-7 cells is also unclear. It is possible that Adora1 cooperates with ERα in 

regulating E2-dependent cell proliferation. E2 treatment significantly increased expression 

of Adora1, indicating that Adora1 up-regulation, mediated by ligand-activated ERα, may be 

involved in breast cancer initiation and progression. It is possible that ERα-mediated E2 

signaling might cross-talk with Adora1-mediated signaling through an unknown mechanism 

that regulates transcription and proliferation.

In this study, we identified Adora1 as being essential for ERα-stimulated TFF1 promoter 

activity and expression. TFF1 is a prototypic gene representing a subset of ERα target 

promoters, and has been shown to have a important role in breast cancer cell proliferation 

(Prest et al., 2002). The results of the present study not only presents a new paradigm in the 

control of estrogen action but a mechanism by which Adora1 modulates ERα action to 

regulate specific genes and biological responses. Cooperation of the downstream effector is 

essential to both initiate and propagate the hormonal signal (Carroll et al., 2005). The 

ablation of Adora1 resulted in decrease of ERα and E2-induced ERα transcriptional activity. 

As a consequence, ERα-mediated breast cancer cell proliferation was therefore reduced.

In the study, we demonstrated the inhibitory effect of DPCPX, an Adora1 selective 

adenosine antagonist, on ERα signaling. DPCPX inhibits the effect of adenosine on Adora1 

by specifically binding to this receptor. DPCPX was used under in vitro and in vivo 

conditions to evaluate the role of Adora1 in the lungs (Factor et al., 2007), brain (Ilie et al., 

2009), gut (Brunsden and Grundy, 1999), heart and kidney (Moosavi et al., 2009). 

Preliminary experiments revealed that antagonism of Adora1 activity result in a reduction in 

ERK1/2 phosphorylation (data not shown), which is critical for E2-mediated cell growth 

(Keshamouni et al., 2002). It has been shown that ERK phosphorylation is associated with 

increased ERE-mediated transcription in ovarian cancer (Bourguignon et al., 2005) and 

breast cancer (Kuske et al., 2006). In present study, we found that depletion of Adora1 

caused a decrease in both ERα mRNA and protein levels in MCF-7 breast cancer cell line. 

In vivo, we previously demonstrated a significant positive correlation between ERα and 

Adora1 mRNA levels in ERα+ breast cancer tissues (Lin et al., 2007). Our data may have 

clinical implications in that the ablation or antagonism of Adora1 appears to inhibit ERα-

mediated tumor cell growth. Our data suggest that the blockade of signaling pathways 

downstream of Adora1 may have a protective effect against tumor development and that the 
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Adora1 pathway may represent an important target for therapeutic intervention in hormone-

dependent breast cancer.

Materials and methods

Cell lines

MCF-7, T47D and MDA-MB-231 cells (American Type Culture Collection, ATCC, 

Manassas, VA) were maintained in Minimum Essential Medium (MEM, Invitrogen, 

Carlsbad, CA) containing penicillin (25 U/ml), streptomycin (25 U/ml), insulin (0.01 mg/

ml), and 10% fetal bovine serum (FBS). When indicated, the cells were cultured with 

charcoal-stripped serum for 3 days. After overnight starvation, cells were treated with E2 

(10−8 M), ICI 182780, or vehicle for the indicated times. Cells were then collected and 

subjected to real-time PCR analysis, immunoblot, luciferase activity assay, and the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Invitrogen, Carlsbad, 

CA).

Reagents

E2 and ICI 182780 (ICI) were obtained from the Sigma (St. Louis, MO). MTT assay kit was 

from Invitrogen. Final concentrations of 10−8 M and 10−6 of E2 and ICI were diluted into 

culture medium at the indicated times.

Real-time PCR

Total RNA was extracted from cells, treated with DNase I, and reverse transcribed using 

random hexamers and SuperScript III reverse transcriptase enzyme (Invitrogen). Real-Time 

PCR was done with SYBR Green or Taqman Real-Time Core Reagents (Applied 

Biosystems, ABI, Foster City, CA) on the ABI 7000 or 7900 HT Sequence Detection 

Systems. Primers and probes for quantification of Adora1 and ERα were purchased from 

ABI. Levels of expression were normalized to the GAPDH gene.

Knock-down of Adora1 by small interference RNA (siRNA)

RNA interference was carried out by using SMARTpool small interfering RNA (siRNA) 

designed against Adora1 and control (nontargeting) siRNA as a negative control 

(Dharmacon, Lafayette, CO). The target sequences of siRNA oligonucleotides against 

Adora1 were: 1) GGAGGAGCCUGGAGUGUAA; 2) GGUAGGUGCUGGCCUCAAA; 3) 

GGAGUCUGCUUGUCUUAGA; 4) CAAGAUCCCUCUCCGGUAC. To verify that these 

oligonucleotide sequences in the Adora1 siRNA pool specifically targeted Adora1 but not 

ERα mRNA, we aligned the four Adora1 siRNA oligonucleotide sequences with ERα 

mRNA (Locus number: NM_000125 from NCBI DNA database) by Blast alignment from 

National Center for Biotechnology Information (NCBI). Alignment of these sequences to 

ERα mRNA did not show any homology, indicating that these siRNA oligonucleotides do 

not target ERα mRNA. After 3 days of culture in MEM containing 10% charcoal-stripped 

calf serum, siRNA against Adora1 or control siRNA at a final concentration of 100 nmol/L 

was transfected into the MCF-7 cells for 48 hours. The cells were then stimulated with E2 

(10 nM) or vehicle for 20–24 hours and harvested for analysis.
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Plasmid constructs

To generate the estrogen-responsive luciferase reporter construct (ERE)2-Luc for transient 

transfection assays in breast cancer cell lines, a synthesized oligo contained consensus ERE 

sites (GTACCAGGTCACAGTGACCTGATCAGCTAGTCAAGGTCACAGTCCTTCGTAC) 

was ligated into the blunted HindIII site of the pGL4.10 [luc 2] vector (Promega, Madison, 

WI). The promoter region of the TFF1 gene from nucleotides −428 to −332 (Nunez et al., 

1989) was amplified and then ligated into PGL4.10 [luc 2]. The plasmid constructs above 

were confirmed by sequencing.

To investigate inducible effect of Adora1 expression on cell proliferation, a full-length 

Adora1 cDNA was cloned into the pcDNA3.1 vector (Invitrogen, Carlsbad, CA). The cDNA 

has been amplified after reverse transcription of Adora1 mRNA from MCF-7 cells. We used 

the following primers for PCR amplification: forward primer, 5’ CAC CAT GCC GCC CTC 

CAT CT 3’ and reverse primer, 5’ GTC ATC AGG CCT CTC TTC TGG 3’. The PCR 

profile was 3 min at 94°C, followed by 40 cycles of 30 s at 94°C, 30 s at 60°C, and 1min at 

72°C, and a final extension of 7 min at 72°C. The amplified fragments were analyzed on a 

1% agarose gel. The PCR fragments were directly cloned into the pcDNA3.1 expression 

vector (Invitrogen) as described in the manufacturer's protocol and sequenced to check its 

fidelity.

Luciferase assay

Hormone-depleted breast cancer cells were transfected with Adora1 or control siRNA (final 

concentration 100 nM, Dharmacon) using Fugene HD transfection reagent (Roche, 

Indianapolis, IN) for 24 hours. The cells were then co-transfected with (ERE)2-Luc plasmid 

or empty vector for 24 hours followed by treatment with or without E2 (10−8 M) overnight. 

Cells were then harvested and assayed for luciferase and pCMVβ-gal (a constitutive β-

galactosidase expression vector used to normalize transfection efficiency) activities 

(Promega).

Over-expression of Adora1 gene in MDA-MB-231 cells

Hormone-depleted MDA-MB-231 cells were transfected with Adora1 expression plasmid or 

pcDNA3.1 empty vector using Fugene HD transfection reagent for 48 hours. Adora1 

expression vector or pcDNA3.1 empty plasmid (24 µg) was transfected to cells cultured in 

10cm-dishes, as described in the manufacturer's protocol. Cells were then harvested at 48 

hours after transfection and over-expression efficiency was checked by western. Cell 

proliferations were measured by MTT assay and by immunoblot of proliferating cell nuclear 

antigen (PCNA) as described below.

Chromatin immunoprecipitation (ChIP)

After knock-down of Adora1 with siRNA, cells were subjected to ChIP with ERα based on 

a protocol described previously (Lin et al., 2007). The immunoprecipitated and input DNA 

samples were assayed for binding to the TFF1 promoter region. The primers were: Forward 

primer, 5’ GGCCATCTCTCACTATGAATCACTTCTGC 3’; Reverse primer, 5’ 

GGCAGGCTCTGTTTGCTTAAAGAGCG 3’. For PCR, 1 µl of purified DNA was used in 
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the following PCR profile: 3 minutes at 94 °C, followed by 35 cycles of 30 seconds at 94 

°C, 30 seconds at 60 °C, and 30 seconds at 72 °C; and a final extension of 7 minutes at 

72°C. The amplified PCR products were analyzed on a 1% agarose gel.

Cell proliferation assay

Cell proliferation was measured by immunoblot of proliferating cell nuclear antigen (PCNA) 

or by utilizing the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) 

assay (Invitrogen). After transfection and treatment, the MTT reagent was applied for 4 

hours and the resulting formazan crystals were dissolved overnight. The result was measured 

on the plate reader set to record absorbance at 570 nm.

Protein extraction and immunoblotting

Protein was extracted from treated cells and immunoblot was performed by using ERα 

(Millipore, Billerica, MA), PCNA, or β-actin (loading control) antibodies based on a 

standard protocol as follows. Aliquots of 20 µg of total protein were separated on a 10% 

SDS-polyacrylamide gel and transferred to a nitrocellulose membrane (Millipore). The 

membrane was blocked for 1 hour at room temperature with 5% milk in TBS followed by 

hybridization with primary antibodies at a dilution of 1:1000 directed against the following: 

A1 adenosine receptor (Adora1, rabbit polyclonal, EMD), ERα (rabbit monoclonal, 

Millipore); PCNA (mouse monoclonal, Millipore); β-actin (mouse monoclonal, 1:10,000 

dilution, Sigma). After washing, the membrane was then incubated for 1 hour at room 

temperature with appropriate horseradish peroxidase-conjugated secondary antibody (Cell 

Signaling Technology, Danvers, MA) at a dilution of 1:4,000. Immunoreactive bands were 

detected by a chemiluminescence (Pierce, Rockford, IL) and visualized by autoradiography.
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Figure 1. 
Effect of E2 treatment on the expression of Adora1 in MCF-7 cells. Serum-starved MCF-7 

cells were stimulated with (A) variable concentrations of E2 (ranging from 10−11 to 10−5 M) 

or vehicle (EtOH) for 3 hours; (B) E2 (10−8 M) or vehicle (EtOH) for 15 minutes or 1, 2, 3, 

4, 6, 8, 10, 24, 48, 72, 96 or 120 hours; (C) E2 (10−8 M) or vehicle (EtOH) for 0, 1, 3, 4, 8, 

24, 48 hours; or (D) E2 (10−8 M), ICI 182,780 (10−6 M) or vehicle for 3 hours. Cells were 

harvested, total RNA was isolated, and mRNA levels of Adora1 at each dose and time points 

were measured by real-time PCR and normalized by GAPDH. Data are the average of 3 
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replicates ± SD. *, p<0.01 determined by t-test. Adora1 protein levels were measured by 

immunoblot. β-actin was used as a loading control.
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Figure 2. 
Inhibition of Adora1 results in significantly decreased endogenous ERα in MCF-7 cells. 

MCF-7 cells were transiently transfected with an Adora1-targeted siRNA or a control 

siRNA construct; (A) mRNA levels of Adora1 and ERα were measured by real-time PCR; 

(B) protein levels of Adora1 and ERα were measured in immunoblot analyses using the 

indicated antibodies; and (C) MCF-7 cells were treated with vehicle or DPCPX at the 

concentration of 103 µM and 104 µM for 12 h, protein levels of ERα were measured in 

immunoblot analyses using ERα antibody. Data are the average of 3 replicates ± SD. *, 

p<0.01 determined by t-test. β-actin was used as a loading control.
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Figure 3. 
Inhibition of Adora1 by siRNA in MCF-7 cells leads to reduced cell proliferation. (A) 

Adora1 protein expression in MCF-7 cells transfected with control (siC) or Adora1 (siA) 

siRNA. β-actin levels served as a control for specificity and gel loading. Cell proliferation 

was analyzed by MTT assay and PCNA immunoblot analysis. (B) MCF-7 cells were 

incubated in the presence of control or Adora1 siRNA in the medium supplemented with 5% 

charcoal-stripped FBS for 48 hours and stimulated with 10 nM E2 for an additional 24 

hours. MCF-7 cells were harvested for determination of cell proliferation by MTT assay. 

Results represent the mean of at least 3 independent experiments ± SE. (C) Immunoblot of 

PCNA was performed with mouse anti-human monoclonal PCNA antibody. Control siRNA- 

or Adora1 siRNA-transfected MCF-7 cells were treated with or without E2 (10 nM) 

overnight. (D) Serum-starved MCF-7 cells were treated with variable concentrations of the 

Adora1 antagonist DPCPX or vehicle for 24 hours. The cells were harvested for 

determination of cell proliferation by MTT assay. (E) Serum-starved MCF-7 cells were 

treated with E2 (10nM) or E2 (10nM) plus 100µM DPCPX overnight. The cells were 

harvested for determination of cell proliferation by MTT assay. Data are the average of 3 

replicates ± SD. *, p<0.01 determined by t-test. (F) Over-expression of Adora1 expression 

plasmid in serum-deprived MDA-MB-231 cells. Expression of the empty vector (Empty) 

was used as a reference standard. Expression plasmids and empty vector (24 µg) were 

separately transfected into ERα− MDA-MB-231 cells in 10cm culture dishes. Cells were 

then harvested 48 h after transfection and over-expression efficiency was checked by 

Adora1 western. Cell proliferations were measured by MTT assay and by immunoblot of 
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proliferating cell nuclear antigen (PCNA). Blots were reprobed with β-actin antibody to 

control for loading Columns, mean of three independent experiments; bars, SE. *, p< 0.01, t 

test, statistically significant differences.
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Figure 4. 
Adora1 silencing decreases ERα transcriptional activity in breast cancer cells. MCF-7 cells 

were cultured with charcoal-stripped serum for 3 days. (A) Immunoblot analysis of Adora1 

expression in MCF-7 cells and (C) T47D cells transfected with control (siC) or Adora1 (siA) 

siRNA. β-actin levels were detected to control for specificity and gel loading. (B) MCF-7 

cells and (D) T47D cells were co-transfected with control siRNA or Adora1 siRNAs (100 

nM), (ERE)2-Luc reporter or pGL4 vector (200 ng) and pCMVβGal (80 ng), in the presence 

or absence of E2 (10−8 M) overnight. Cells were then lysed and assayed for luciferase and β-

gal activities. Reported normalized luciferase activities are the means ± SD from 3 

independent experiments (*, p<0.01 determined by t-test).
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Figure 5. 
Silencing of Adora1 in MCF-7 cells leads to reduced binding of ERα to TFF1 promoter, 

TFF1 promoter driven luferase activity, and mRNA expression of TFF1. (A) Knock-down 

of Adora1 results in decreased binding of ERa to the TFF1 promoter. B) siRNA knock-down 

of Adora1 expression decreases ERα-stimulated transcriptional activation of the TFF1 

promoter. MCF-7 cells were co-transfected with a TFF1-Luc reporter or pGL4 vector 

(200ng), pCMVβGal (80ng), and either control or Adora1 siRNA (100 nM) in the presence 

or absence of E2 (10−8M) overnight. C) Adora1 silencing results in significantly decreased 

TFF1 expression. MCF-7 cells were transfected either with control or Adora1 siRNA (100 

nM) and treated with vehicle or E2 (10−8 M) overnight. Cells were then lysed, total RNA 

was extracted, and mRNA levels of Adora1 were measured by real-time PCR and 

normalized to GAPDH. Data represent the average of 3 replicates ± SD (*, p<0.05 

determined by t-test).

Lin et al. Page 18

Oncogene. Author manuscript; available in PMC 2010 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


