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Abstract

MKR mice, lacking insulin-like growth factor 1 receptor (IGF-1R) signaling in skeletal muscle, are lean yet hyperlipidemic,
hyperinsulinemic, and hyperglycemic, with severe insulin resistance and elevated hepatic and skeletal muscle levels of
triglycerides. We have previously shown that chronic peripheral administration of the adipokine leptin improves hepatic
insulin sensitivity in these mice independently of its effects on food intake. As central leptin signaling has been implicated in
the control of peripheral glucose homeostasis, here we examined the ability of central intracerebroventricular leptin
administration to affect energy balance and peripheral glucose homeostasis in non-obese diabetic male MKR mice. Central
leptin significantly reduced food intake, body weight gain and adiposity, as well as serum glucose, insulin, leptin, free fatty
acid and triglyceride levels relative to ACSF treated controls. These reductions were accompanied by increased fat oxidation
as measured by indirect calorimetry, as well as increased oxygen consumption. Central leptin also improved glucose
tolerance and hepatic insulin sensitivity determined using the euglycemic-hyperinsulinemic clamps relative to pair fed
vehicle treated controls, as well as increasing the rate of glucose disappearance. Hepatic vagotomy only partially reversed
the ability of central leptin to improve glucose tolerance. These results demonstrate that central leptin dramatically
improves insulin sensitivity independently of its effects on food intake, in a lean mouse model of type 2 diabetes. The
findings also suggest that: 1) both hepatic vagal and non-vagal pathways contribute to this improvement, and 2) central
leptin alters glucose disposal in skeletal muscle in this model.
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Introduction

MKR mice are a model of non-obese Type 2 diabetes created

by engineering a muscle-specific dominant-negative insulin-like

growth factor-1 receptor (IGF-1R) transgene that abrogates IGF-

1R and insulin receptor (IR) function in skeletal muscle by forming

hybrids exclusively with endogenous muscle IGF-1Rs [1]. The

formation of similar hybrids with endogenous insulin receptors

similarly inhibits their function by greater than 80%. As a

consequence, MKR mice are born with severe muscle insulin

resistance and subsequently develop insulin resistance in both liver

and adipose tissue. Eventually b cell dysfunction occurs, as

demonstrated by a loss of first phase insulin secretion, but with an

exaggerated second phase insulin secretion. Thus, by 6–8 weeks of

age, MKR mice characteristically demonstrate hyperinsulinemia,

hyperglycemia, hyperlipidemia and increased tissue TG levels [2].

Results from our previous studies suggested that the rapid

progression of MKR phenotype from pre-diabetic levels to frank

diabetes is secondary to their hyperlipidemia and increased TG levels

in muscle and liver. Accordingly, chronic peripheral administration of

b adrenergic agonists or fibrates to MKR mice reduced tissue lipid

levels and improved hepatic insulin sensitivity [3]. We subsequently

found that chronic peripheral administration of the adipokine leptin

to MKR mice also dramatically reduced adiposity, increased fat

oxidation, and improved hepatic insulin sensitivity and glucose

homeostasis, independently of its effects on food intake [4]. The sites

and modes of leptin action responsible for these improvements

remain unknown, but may involve the central nervous system; central

leptin receptor signaling has been implicated in the control of

multiple determinants of peripheral glucose homeostasis, including

fatty acid oxidation, lipogenesis [5], hepatic insulin resistance [6],

hepatic glucose fluxes [7], and skeletal muscle substrate utilization

[8,9]. Consequently, the present studies were designed to determine

whether central leptin administration would be sufficient to

recapitulate the beneficial metabolic effects of peripheral leptin in

the lean Type 2 diabetic MKR mouse. As the hepatic vagus has also

been implicated in the central leptinergic control of glucose

homeostasis [10], we also examined whether the hepatic vagus

mediated any effects of central leptin on glucose tolerance.

Materials and Methods

Animals
MKR Type 2 diabetic mice have been previously described [1].

Male MKR mice on an FVBn background were studied in these

experiments. Homozygous MKR mice were identified by tail-vein

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e17058



fed glucose measurements ranging between 250–500 mg/dl, 6 to 8

weeks post-weaning, compared with WT mice with normal blood

glucose levels (between 150–180 mg/dl). Throughout all studies,

mice were maintained in a 12-h light/dark cycle and were fed

standard NIH -07 diet with ad libitum access to tap water. All

animal protocols were approved by the IACUC committees of the

Mount Sinai School of Medicine and the Albert Einstein College

of Medicine of Yeshiva University.

Surgical Procedures
Third ventricle cannulation. Under i.p ketamine/xylazine

anesthesia (Ketamine (100 mg/kg) and Xylazine (10 mg/kg) [11],

10–12 wk old MKR mice were stereotaxically implanted with a 28

G chronic stainless steel cannula (Plastics One Inc.) targeting the

3rd ventricle (coordinates: A/P 21.6 mm posterior to bregma, D/

V 24.7 mm). After a 1 week recovery period, mice were briefly

anesthetized under 0.25% isoflurane, and an Alzet 1004

minipump (Cupertine, CA) was inserted subcutaneously on the

back and connected to the 3rd ventricle cannula via a polyethylene

tubing connector kit (Alzet). Pumps were preloaded with either

recombinant mouse leptin (R&D systems, Minneapolis, MN)

dissolved in artificial cerebrospinal fluid (ACSF) or ACSF

(Harvard Apparatus, Boston, MA). Infusion rate and duration

was 0.25 ul/hour (leptin: 0.0417 ug/hour) for 5–14 days,

depending on the study. Accurate 3rd ventricle cannula

placement was confirmed by postmortem inspection of the

cerebroventricular spread of a 500 nl India ink injection.

Hepatic branch vagotomy. Hepatic branch vagotomy was

performed in Ketamine/Xylazine anesthetized animals as

previously described [10]. Briefly, a laparotomy incision was

Figure 1. Body Weight, Food Intake, And Body Composition In Leptin Treated MKR Mice. Two week third intracerebroventricular leptin
treatment (filled symbols) reduced body weight gain (A), 24 h daily food intake (B), fat mass (C) and produced a small reduction in lean mass (D) in
male MKR mice, relative to artificial cerebrospinal fluid (ACSF) vehicle treated controls (open symbols). All data presented as means 6 SEM, N = 6/
group. * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0017058.g001

Figure 2. Body Weights (A) And Fat Content (B), Before And
After 14 Days Of ICV Leptin Treatment Compared With ACSF
And Pair-Fed Control Mice. All data presented as means 6 SEM,
N = 6–7/group. * p,0.05. Different superscript letters indicate signifi-
cant differences at p,0.05.
doi:10.1371/journal.pone.0017058.g002

Central Leptin Improves Glucose Homeostasis

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e17058



made on the ventral midline and the abdominal muscle wall

opened, revealing the gastrointestinal tract in the peritoneum. The

gastrohepatic ligament was severed, and the stomach was gently

retracted onto sterile saline soaked cotton gauze, revealing the

descending ventral esophagus and the ventral subdiaphragmatic

vagal trunk. The hepatic branch of this vagal trunk was visua-

lized using a neurosurgical dissecting scope under 10–206
magnification, and the hepatic branch of the vagus was ligated

using two 8.0 silk ties. The hepatic nerve trunk was then transected

by microcautery between the two sutures, severing and cau-

terizing the hepatic vagus, thereby minimizing the possibility of

regeneration. The muscle and skin layers of the laparotomy

incision were closed with Prolene suture and surgical adhesive

(Vetbond), respectively. After experiments, animals were sacrificed

and the adequacy of the procedure was assessed by demonstrating

the absence of vagal nerve tissue between the sutures. For sham

surgeries, a midline laparotomy was performed and the hepatic

vagal nerve trunk ware exposed but not manipulated or severed.

Vascular catheter implantation. One week prior to clamp

studies, catheters were inserted in the right jugular vein (MRE-

025, Braintree Scientific Inc.) and carotid artery (0007700, Alzet,

Cupertino, CA) during anesthesia with 0.25% isoflurane.

Figure 3. Locomotor Activity And Metabolic Functions In Leptin Treated MKR Mice. Two week third intracerebroventricular leptin
treatment (black bars) reduced light and dark phase locomotor activity (A,B), respiratory quotient (RER, C,D) and increased both light and dark phase
oxygen consumption in male MKR mice relative to artificial cerebrospinal fluid (ACSF) vehicle treated controls (open bars) (E,F). All data presented as
means 6 SEM, N = 6/group. * p,0.05.
doi:10.1371/journal.pone.0017058.g003
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Energy Balance Phenotyping
For five days before and throughout a 14 day period of ICV

leptin or ACSF infusion, animals were individually housed in

metabolic chambers maintained at 21–22uC on a 12-hour light/12

dark cycle with lights on at 7 am, and were provided with

nutritionally complete standard powdered diet (NIH 07) and tap

water ad libitum. Metabolic and behavioral measurements

(oxygen consumption, food intake, locomotor activity) were

obtained continuously using a CLAMS (Columbus Instruments)

open-circuit indirect calorimetry system. Body weights were

measured daily, and body composition was determined weekly

by magnetic resonance spectroscopy using an ECHOMRI

instrument (Echo Medical Systems.). For pair fed groups, each

animal received food in individual cages, and the amount of food

provided was adjusted daily to correspond to the average amount

of food consumed by the leptin treated group for each successive

day of leptin treatement.

Plasma Assessments
Serum insulin and leptin levels were measured using radioim-

munoassay kits (Linco, St. Charles, MO). Serum free fatty acids

and triglyceride levels were measured by enzymatic colorimetric

assay (Roche, Penzberg, Germany and Thermo, Victoria,

Australia, respectively). Blood glucose was measured by gluc-

ometer (Analox GM 7, Analox Instruments, Lunenburg, MA).

Glucose Tolerance Tests
Two weeks following chronic 3rd ventricle minipump implan-

tation for leptin and ACSF control infusions, i.p. glucose tolerance

tests (ipGTTs) were performed. Briefly, after a 5 hour fast, mice

were injected intraperitoneally with glucose (2 g/kg BW) and

blood glucose levels were determined from tail vein samples at 0,

15, 30, 60 and 120 minutes after the injection.

Hyperinsulinemic-Euglycemic Clamp Studies
In separate studies designed to determine the mechanisms

involved in the improvement in glucose homeostasis following 3rd

ventricle leptin infusion, hyperglycemic–euglycemic clamps were

performed in unrestrained mice 5 days following the onset of the

central minipump infusion. Vascular catheters were inserted as

described above, 8 days prior to the clamps to allow for surgical

recovery prior to minipump implantation. Mice were fasted for

5 h prior to clamps. The clamp protocol consisted of a 90-min

tracer equilibration period (t = 290 to 0 min) beginning at 12:00

P.M. followed by a 120-min experimental period (t = 0 to

120 min). A blood sample was obtained at t = 290 min to

determine initial glucose levels. A 5-uCi bolus of [3-3H] glucose

purified by high-performance liquid chromatography was given at

t = 290 min followed by a 0.05 uCi/min infusion. At t = 215

and 25 min, a blood sample (10 ul) was taken for the assessment

of basal glucose and insulin levels and glucose turnover. The

insulin clamp was begun at t = 0 min with a primed-continuous

infusion of human insulin (300 mU/kg bolus followed by 3 mU/

kg/min 1; Novolin; Novo Nordisk, Princeton, NJ). The [3-3H]

glucose infusion was increased to 0.1 uCi/min for the remainder

of the experiment. Euglycemia (120–130 mg/dl) was maintained

during clamps by measuring blood glucose every 10 min starting

at t = 0 min and infusing 45% dextrose as necessary. Blood

samples (60–200 ul) were taken every 10 min from t = 80

to120 min and processed to determine glucose specific activity.

Clamp insulin levels were determined from samples obtained at

t = 80 and 120 min. All blood samples were resuspended in

heparinized saline and infused back to mice to maintain

hematocrit. Plasma samples were collected to determine glucose

levels and specific activities of [3-3H]-glucose. All tissue samples

were stored at 280uC for subsequent analysis.

Statistical Analyses
Statistical comparisons were made by one way, two way or

repeated measures ANOVAs, using Bonferroni correction for

planned comparisons. An alpha level of 0,0.05 indicated

significant differences among treatments. Unless otherwise spec-

ified, data are presented as means 6 SEM.

Results

Food Intake, Body Weight And Locomotor Activity
Chronic ICV leptin infusion caused a ,10–15% reduction in

body weight (BW) in MKR mice that began within 1–2 days of

infusion onset, and remained stable thereafter (Figure 1A), while

Figure 4. Glucose Tolerance Tests In Leptin And Vehicle
Treated MKR Mice. Two week intracerebroventricular leptin treat-
ment significantly improved glucose tolerance in male MKR mice
relative to artificial cerebrospinal fluid (ACSF) vehicle treated controls
and pair fed, ACSF treated MKR mice. A. Intraperitoneal glucose
tolerance test (ipGTT, 2 g/kg), B. Area under the curve (AUC) during
ipGTT. All data presented as means 6 SEM, N = 6–7/group. * p,0.05,
** p,0.01.
doi:10.1371/journal.pone.0017058.g004
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ACSF was without effect. This reduction in body weight was

accompanied at weeks 1 and 2 by significantly reduced food intake

and fat mass, a small but significant reduction in lean mass

(Figure 1B–D). Body weight and fat mass were also measured in

pair-fed controls (Figure 2 A and B) and only leptin treated mice

showed a marked decrease in fat mass. A small but significant

reduction in circulating plasma leptin levels (1.760.2 ng/ml versus

2.060.3 ng/ml, p,0.05) was seen. Central leptin treatment also

significantly reduced serum insulin, FFA and TG levels relative to

ACSF treated controls (insulin: 1.260.23 vs. 3.260.3 ng/ml; FFA:

0.35608 vs 0.75612 ng/dl, p,0.01; TG: 0.260.1 vs.

1.460.3 nM (all p,0.01)).

Spontaneous locomotor activity during both light and dark

phases was significantly reduced in ICV leptin treated MKR mice

relative to controls (Figure 3A–B). Leptin also decreased

respiratory equivalent ratio (RER) during the dark but not light

phase, demonstrating increased fat oxidation (Figure 3C–D).

These changes were accompanied by increased oxygen consump-

tion during both light and dark phases in leptin treated mice

(Figure 3E–F).

Prior to and immediately following implantation of the infusion

pumps, fed blood glucose levels remained in the diabetic range in

all MKR mice (between 300–400 mg/dl). ICV leptin significantly

lowered fasting blood glucose (BG) beginning 1 week following

leptin infusion (98.8614 mg/dl vs. 222623 mg/dl, p,0.001),

while pair feeding ACSF treated mice to the level of leptin treated

controls was without effect (ACSF: BG 222623 vs. ACSF pair fed:

BG 182613 mg/dl, N.S.). ICV leptin also significantly improved

glucose tolerance relative to both ASCF and ASCF-pair fed

controls (Figure 4A–B).

Hyperinsulinemic Euglycemic Clamp Studies
Glucose infusion rate (GIR) and the rate of glucose disappear-

ance (Rd) during hyperinsulinemic-euglycemic clamps were

significantly increased in central leptin treated-MKR mice relative

to ACSF and ACSF, pair fed mice (Figure 5 A–B). Leptin also

produced a small but significant reduction in basal glucose

production (Figure 5C). However, endogenous glucose production

during the clamp was greatly reduced in mice receiving central

leptin infusion relative to both control groups (Figure 5C). Pair

feeding alone significantly increased GIR and Rd and decreased

glucose production during the clamps, although not to the degree

elicited by central leptin infusions (Figure 5 A,B,D).

Effects Of Hepatic Branch Vagotomy
Five hr. fasted blood glucose levels were lower in all leptin

treated MKR mice compared to ACSF and ACSF pair fed

controls, but this leptin-induced reduction was unaffected by

hepatic branch vagotomy (LEPTIN + SHAM: 104 ng/dl 618 vs.

LEPTIN 6 VAGOTOMY: 109 mg/dl 613) (Figure 6A). Fol-

lowing ip glucose injection, hepatic branch vagotomized MKR

mice showed significantly less of a reduction in blood glucose levels

at 15 and 120 min, but their AUC for blood glucose did not differ

from that of sham vagotomized mice infused with leptin

(Figure 6A,B). Hepatic branch vagotomy alone failed to alter

Figure 5. Hyperinsulinemic-euglycemic clamps. Third intracerebroventricular leptin treatment (black bars) significantly improved hepatic
insulin sensitivity and glucose disposal during hyperinsulinemic-euglycemic clamps in male MKR mice relative to artificial cerebrospinal fluid (ACSF)
vehicle treated controls (open bars) and pair fed, ACSF treated male MKR mice (hatched bars). A. Glucose infusion rate (GIR) during the clamp, B.
peripheral glucose disappearance rate (Rd), hepatic glucose production (GP) under basal conditions (C) or hyperinsulinemia (D). All data presented as
means 6 SEM. N = 5–6/group. Different superscript letters indicate significant differences at p,0.05.
doi:10.1371/journal.pone.0017058.g005

Central Leptin Improves Glucose Homeostasis

PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e17058



ipGTT in ACSF treated mice relative to sham surgical controls

(Figure 6A,B).

Discussion

The present results demonstrate that central leptin improves

glucose homeostasis in the non-obese Type 2 diabetic MKR mouse.

Third intracerebroventricular administration of leptin markedly

increased whole body glucose tolerance as well as glucose disposal

during hyperinsulinemic euglycemic clamps. We conjectured that

brain leptin acted via the liver rather than the skeletal muscle to

produce these effects, because muscle insulin- and IGF-1- induced

glucose uptake into muscle is abrogated by the genetically

engineered dnIGF-1R in MKR muscle [1]). Consistent with this

idea, intracerebroventricular and hypothalamic leptin administra-

tion alters hepatic glucose fluxes and glucose production [6,7], and

such alterations are mediated in part via the intact hepatic vagus

nerve [10]. Consequently, we evaluated the degree to which hepatic

branch vagotomy affected the ability of central leptin to improve

glucose homeostasis. Vagotomy modestly reversed the improve-

ment in glucose tolerance in central leptin treated animals, but the

overall area under the curve was not significantly changed,

suggesting that the consequences of leptin’s actions on other tissues

may be playing a more important role in determining this effect.

One possible mechanism is the reduction of substrates reaching the

liver, such as fatty acids.

Accordingly, we report that adiposity, plasma TG and FFA

were decreased and fat oxidation and oxygen consumption were

increased in leptin treated animals relative to ACSF vehicle treated

controls. These data suggest a direct neural action of leptin on

lipid metabolism that is consistent with results from previous

studies. Leptin activates sympathetic nerves supplying white

adipose tissue via a central neural pathway to increase plasma

glycerol and free fatty acid levels [12]. Furthermore, mediobasal

hypothalamic administration of leptin decreases white adipose

tissue (WAT) lipogenesis, and this effect is blocked by sympathetic

denervation, supporting the existence of a hypothalamic WAT

circuit mediating lipid metabolism [5]. In MKR mice, increased

b3 adrenergic stimulation, targeting adipose tissue, improves

whole body glucose homeostasis and hepatic insulin sensitivity,

accompanied by reduced adiposity and increased fat oxidation [3].

Here we report that central leptin also improves hepatic glucose

production and hepatic insulin sensitivity during clamps, again in

parallel with reduced adiposity and increased fat oxidation. Thus,

some of the present improvement in overall glucose homeostasis

we observed may be secondary to leptin-induced reductions in

adiposity in white adipose tissue, as supported by the inability to

identify and retrieve epididymal, inguinal or omental white

adipose tissue in animals after leptin treatment.

The increases in fat oxidation and reductions in plasma free

fatty acids and TG following central leptin administration were

accompanied by an increase in oxygen consumption. This

occurred in spite of a significant reduction in total locomotor

activity. The effect of ICV leptin on locomotor activity in the

MKR mice contrasts the effect seen in other mouse models [13]

and maybe specific to the MKR mice. Future studies should

include wild-type control mice using the same FVBn background

to address this discrepancy. On the other hand, part of the

apparent discrepancy between increased oxygen consumption and

reduced locomoter activity following ICV leptin, may be due to

the ability of central leptin to increase sympathetic outflow to

brown adipose tissue, thereby increasing thermogenesis [14].

Alternatively, skeletal muscle may be a metabolic target of central

leptin action in the MKR mouse. Consistent with this suggestion,

we found that hyperinsulinemic-euglycemic clamps in MKR mice

receiving central leptin displayed a marked increase in the rate of

disappearance of glucose. Intracerebroventricular and parenchy-

mal hypothalamic administration of leptin have been demonstrat-

ed to increase skeletal muscle glucose metabolism, glucose uptake

and fat oxidation, and these effects are blocked by either surgical

denervation or by application of chemical agents that block

sympathetic neural outflow to skeletal muscle [8,9,15,16,17].

These effects of central leptin appear to be mediated by brain

melanocortin receptors, as central administration of the melano-

cortin 3/4 receptor antagonist SHU9119 blocks the ability of

ventromedial hypothalamic (VMH) leptin to increase skeletal

muscle glucose uptake, while ICV or direct VMH injection of

melanoocortin receptor agonists increase uptake [18]. Since the

present study did not include experiments to test these effects

directly, our conclusions must remain speculative and await

confirmation in future studies.

Figure 6. Glucose tolerance in leptin-treated MKR mice with or
without hepatic vagotomy. Selective hepatic branch vagotomy
(VGX) partially reversed the ability of two week third intracerebroven-
tricular leptin treatment to improve glucose tolerance in male MKR
mice, relative to artificial cerebrospinal fluid (ACSF) vehicle treated
controls. SHAM = sham surgical treatment. A. Intraperitoneal glucose
tolerance (ipGTT, 2 g/kg), * p,0.05, B. Area under the curve (AUC)
during ipGTT. All data presented as means 6 SEM, N = 6–7/group.
Different superscript letters indicate significant differences at p, 0.05.
* p,0.05.
doi:10.1371/journal.pone.0017058.g006
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Interestingly, recent studies have demonstrated an effect of

leptin in STZ-induced Type 1 diabetic rodents [19,20]. Both

peripheral and ICV administered leptin improved the hypergly-

cemic state, despite the absence of circulating insulin. These data

as well as those from the present study, strongly suggest that the

effects of leptin (whether via the hypothalamus or directly on

peripheral tissues) on glucose homeostasis are unique and require

further investigation.

In summary, we have shown that central leptin is an effective

anti-diabetic therapy in a non-obese model of type 2 diabetes.

Current evidence supports the suggestion that its beneficial

metabolic effects in this model rely on distinct neural linkages

between central leptin receptors and adipose tissue, liver and

skeletal muscle.

‘‘All animal protocols were approved by the IACUC commit-

tees of the Mount Sinai School of Medicine and the Albert

Einstein College of Medicine of Yeshiva University.’’ Protocol

Einstein #20090402 approval date 7/13/2009. Protocol Mt Sinai

# IACUC MKR metabolism 05-1274.
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