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Introduction

Coronaviruses are positive single-strand RNA 
viruses, 80–220  nm in size, pleomorphic although 
often spherical, and enveloped with crown-shaped 
glycoprotein spikes, that comprise three genera: 
alphacoronavirus, betacoronavirus, and gammac-
oronavirus [1]. SARS-CoV-2, a betacoronavirus, has 
caused a global pandemic that started in 2019 [2]. 
While the pathogenesis of SARS-CoV-2 remains 
under study, common findings with SARS-CoV-1 
and MERS-CoV pathogenesis may offer insights 
into SARS-CoV-2 pathogenesis. Most coronaviruses 
are largely associated with respiratory infections. 
SARS-CoV-2 infection results in a series of symp-
toms comprising fever, pulmonary insufficiency, dry 
cough, myalgia, headache, and intestinal dysfunction 
[3]. The complications and loss of function through 
the affected organs are particularly exacerbated in 
patients with co-morbidities [4].

Reports of a wide range of neurologic symptoms 
including stroke [5–7], viral presence in the cerebro-
spinal fluid (CSF) [8], and brain tissues from autop-
sies [9–11] introduced a neuroinvasiveness poten-
tial of SARS-CoV-2. It is increasingly evident that 
SARS-CoV-2 is not only neurotropic but also asso-
ciated with a much broader spectrum of acute and 
atypical neurological syndromes and manifestations 
than prior infections, particularly those involving 
β-coronaviruses [12–17].
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The genome of SARS-CoV-2 is 79.5% similar to 
previous SARS-CoV [18–20]. The most important 
structural proteins are the spike (S), envelope (E), 
matrix (M), and nucleocapsid (N) [19, 21]. Despite 
similarities in their genomes, a remarkable difference 
is the longer length of the S glycoprotein present in 
SARS-CoV-2 as compared to other coronaviruses 
[21]. It has been hypothesized that the higher trans-
missibility of SARS-CoV-2 is due to this difference in 
the S protein [21].

Angiotensin-converting enzyme 2 (ACE2) serves 
as a receptor for SARS-CoV-2 entry into suscep-
tible cells of multiple organs [22]. The ubiquitous 
expression of ACE2 in multiple cell types allows 
SARS-CoV-2 to infect different organs including the 
nasopharynx, lungs, lymph nodes, small intestine, 
stomach, spleen, kidney, and brain leading to multiple 
organ damage [23]. The trimeric S glycoprotein inter-
acts with the human ACE2 to allow for viral entry 
into host cells by viral membrane fusion. The affinity 
of the interaction between SARS-CoV-2 S glycopro-
tein and ACE2 is 10 to 20-fold higher than SARS-
CoV, and this increased affinity is critical for the 
neuroinvasiveness of SARS-CoV-2 [19, 24, 25]. Viral 
fusion is helped by prior proteolytic cleavage of S by 
the transmembrane protease serine 2 (TMPRSS2), or 
by cathepsin B and L [22]. Hence, TMPRSS2 medi-
ates spike protein activation and promotes SARS-
CoV-2 entry via direct fusion, thereby subverting 
entry through endocytosis [26]. Moreover, TMPRSS2 
or TMPRSS4 can generate circulating ACE2 by 
cleavage of the membrane-bound protein in vascular 
endothelial cells. Once ACE2 is shed, SARS-CoV-2 
entry may occur by TMPRSS2 and TMPRSS4-medi-
ated endocytosis [27].

Furin is a pro-protein convertase present in mul-
tiple tissues, including the brain. At the intracellular 
level, furin cleaves the viral S protein to a mature 
form, thus reinforcing its receptor binding and mem-
brane fusion capabilities, therefore contributing to the 
multi-organ involvement particularly where ACE2 
expression level is low [28].

Several other molecules have been reported as 
SARS-CoV-2 cellular receptors and proteases that 
mediate viral entry [29, 30]. For epithelial cells, these 
proteases may assist viral entry through non-ACE2-
mediated routes such as a pathway involving the 
CD147-spike protein and CD26, which is expressed 
ubiquitously [31, 32].

ACE2 is a key component of the renin-angiotensin 
system (RAS), which plays an essential role in the 
homeostatic regulation of blood pressure, electrolyte, 
and fluid balance, as well as in the regulation of vital 
organ function by the renal and cardiovascular system 
[33].

The SARS-CoV-2-ACE2 interaction links viral 
pathogenesis to the function of the renin-angiotensin 
system (RAS). In the brain, there are a circulating 
RAS and a local one. The former exerts its effect in 
circumventricular organs that lack the blood–brain 
barrier (BBB) and project to nuclei in the hypothala-
mus and medulla. The brain RAS synthesize de novo 
all components, but independently of the circulatory 
RAS [34].

The brain RAS may actively participate in the 
modulation of neurotransmitter release [35–37], and 
therefore, it is thought to control blood pressure and 
regulate metabolism [38, 39]. Besides its role in nor-
mal organ development and function, RAS appears 
to be involved in age-associated organ dysfunction 
by promoting pathophysiological processes of vari-
ous age-related disorders. These include heart failure 
and other cardiovascular diseases, diabetes, cancer, 
chronic kidney disease, osteoporosis, and dementia 
[40]. In line with these observations, Benigni et  al. 
reported that normative aging may be delayed by 
inhibiting RAS [41], probably through the decrease 
of oxidative stress and upregulation of prosurvival 
genes [42].

Thus, SARS-CoV-2 infection and age-associated 
dysregulation of the RAS may contribute to adverse 
clinical outcomes. In this review, we focus on the 
potential role of disturbances in RAS as a cause for 
central nervous system sequelae of SARS-CoV-2 
infection in elderly patients.

SARS‑CoV‑2 and the CNS

Coronavirus disease 2019 (COVID-19) patients can 
present neurological symptoms including reduced or 
total incapacity to detect odors and/or flavors, menin-
gitis, ischemic stroke, cerebral thrombosis, sickness, 
delirium, and Guillain-Barré syndrome [43]. Some of 
these syndromes promote high in-hospital mortality, 
probably due to dysregulation of components of the 
central and peripheral nervous systems. Disturbance 
of nervous system function by SARS-CoV-2 infection 
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may impair multiple systemic cellular, tissue, and 
organ regulatory mechanisms, resulting in the varied 
symptomatology of COVID-19.

It appears that the brain may constitute a replica-
tive niche for SARS-CoV-2 [44]. Examination of 
brain tissues from post-mortem SARS-CoV-2-in-
fected patients revealed the presence of virus in brain 
capillaries, endothelial cells, pericytes, and neurons 
[9, 45, 46]. SARS-CoV-2 was also found in areas of 
the cardiorespiratory center and medulla, suggesting 
that infection of these brain areas may lead to or con-
tribute to respiratory failure in COVID-19 patients 
[47]. Moreover, SARS-CoV-2 was detected in the 
cerebrospinal fluid (CSF) of patients with acute neu-
rological symptoms, like seizures or encephalitis in 
conjunction with magnetic resonance image findings 
on the condition [8, 48]. Furthermore, viral antigens 
were detected in the CSF of COVID-19 patients [8, 
49]. Analysis of CSF also revealed the presence of 
SARS-CoV-2-specific antibodies, which hypothe-
sized that auto-antigenicity may underlie post-infec-
tious autoimmune demyelinated pathology of the 
brain in COVID-19 patients [50, 51].

Infection of the CNS by SARS-CoV-2 is possible 
due to ACE2 expression in neurovasculature, choroid 
plexus, ventricles, and substantia nigra, as well as in 
astrocytes, oligodendrocytes, and neurons, but not in 
microglia [52]. Nevertheless, ACE2 expression is rel-
atively high in some neurovascular unit components, 
particularly in brain pericytes; these cells are derived 
from neural crest stem cells and are physically link-
ing endothelial and astrocytic cells, thus promoting 
its maturation and production of basement mem-
brane components [53]. Using cortical organoids as 
a model, pericyte-like cells (PLCs) are permissive of 
infection with authentic SARS-CoV-2 and have been 
proposed to serve as viral “replication hubs,” able to 
spread the virus to astrocytes and mediating inflam-
matory type I interferon transcriptional responses 
[54].

The structural changes in cerebral small vessels of 
patients with COVID-19 and consequent neurologi-
cal symptoms have been associated with direct viral 
damage of infected brain endothelial cells mediated 
by SARS-CoV-2’s main protease [55]. Indeed, virus 
progeny release into the CNS has been associated 
with intracranial hypertension and edema that further 
contribute to increasing its neuroinvasiveness [56, 
57].

Studies performed in vitro using human brain orga-
noids and neurons suggest that SARS-CoV-2 infec-
tion promotes cell proliferation, metabolic processes, 
and organelle fission, suggesting that the brain is a 
site of replication for SARS-CoV-2 through a mech-
anism that involves reduction of interferon-driven 
gene activation. The observed reduction in interferon-
mediated responses following SARS-CoV-2 infection 
may also result from signaling emanating by infected 
neurons that promote the death of neighboring cells 
[44].

Infection of the central nervous system by SARS-
CoV-2 could be achieved by several routes: (i) the 
hematogenous route followed by a breakdown of the 
blood–brain barrier (BBB); (ii) through the blood-
cerebrospinal fluid barrier (BCSFB); (iii) following 
retrograde axonal transport of SARS-CoV-2 virions 
and trans-synaptic viral spreading; and (iv) through 
entry to circumventricular organs.

Early during infection, SARS-CoV-2 enters the 
bloodstream after primary infection of type II alve-
olar epithelial cells in the airway and, to a lesser 
extent, after infection of enterocytes at the gastroin-
testinal tract. Both sites that support the initial phase 
of viral replication are characterized by the high 
expression levels of ACE2. Later during infection, 
bloodstream invasion by the virus may increase when 
endothelial cells of the BBB or BCSFB are infected 
and disrupted, allowing for paracellular transmi-
gration of virions. This route of viral propagation 
involves intercellular adhesion molecule 1 (ICAM-
1)-mediated transport that is upregulated by tumor 
necrosis factor-alpha (TNF-α) and matrix metallo-
proteinases activation, which promote destabilization 
or disruption of tight junctions of the BBB leading to 
BBB leakage [9, 23, 47, 58–62]. Potent activation of 
the immune system known as “cytokine storm” is a 
state characterized by prominent overproduction and 
release of numerous active soluble components, such 
as interferons –IFN-, chemokines, interleukins –IL-, 
and TNF-α. The discharge of excessive amounts 
of pro-inflammatory cytokines (i.e., IFN-I, IFN-II, 
IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, TGF-β) 
and chemokines (i.e., CXCL-8, 10, CCL-2, CCL-3, 
and CCL-5) is responsible for an abnormal systemic 
inflammatory response, which afterward causes acute 
respiratory distress syndrome and organ failure [63], 
including an exacerbation of BBB breakdown and 
CNS dissemination [64–67].
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Another route that SARS-CoV-2 may use to access 
CNS may be via the brain lymphatic drainage sys-
tem. The presence of viral nucleotide sequences in 
macrophages and T lymphocytes distributed at the 
periphery of germinal centers, lymph nodes, and in 
peripheral blood suggests that SARS-CoV-2 could 
use a “Trojan horse”-type mechanism by infecting 
T lymphocytes, macrophages, and monocytes in the 
blood. Viremia in the circulation may be exacerbated 
by productive infection of peripheral endothelial cells 
[68–71].

Like other human coronaviruses, SARS-CoV-2 
infection may occur via the BCSFB. The CSF circu-
lation involves a local fluid exchange between blood, 
interstitial fluid, and CSF that occurs normally by 
directional and pulsatile flow through the brain [72]. 
Cells at the BCSFB may activate the expression of 
transcriptional factors (i.e., NF-kB) and metallopro-
teinases that can promote BCSFB permeability and 
immune cell trafficking, potentially leading to a neu-
roinflammatory environment [73].

SARS-CoV-2 may also reach the CNS through 
retrograde axonal transport and transneuronal spread 
from different nerves, allowing the virus to infect the 
brainstem and disseminate in the forebrain through 
neuroanatomically interconnected pathways [74]. 
SARS-CoV-2 spread through trans-synaptic transfer 
may involve exocytosis/endocytosis mechanisms or 
rapid axonal transport, which would move the virus 
along microtubules to the neuronal soma [75, 76]. 
The transneuronal pathway is one of the potential 
routes that would allow SARS-CoV-2 to enter the 
CNS through primary sensory neurons. In this sce-
nario, SARS-CoV-2 could enter through the olfac-
tory mucosa (causing anosmia), spread through the 
olfactory nerve, and reach the olfactory cortex [77, 
78]. Likewise, the virus could also enter the CNS 
through neurons innervating exocrine tissues such 
as salivary and lacrimal glands, spread through the 
facial and glossopharyngeal nerves, and reach vari-
ous brain stem nuclei. The SARS-CoV-2 infection 
could also spread from gustatory cells on taste buds 
(producing ageusia) and move retrogradely through 
nerves that end in the nucleus tractus solitarius of 
the brainstem [79]. Lastly, SARS-CoV-2 could also 
reach the brainstem through the vagus nerve through 
infection of terminals in the respiratory tract, allow-
ing the virus to spread to other organs innervated by 
vagal terminals [80–82]. The nucleus of the solitary 

tract and the dorsal motor nucleus of the vagus nerve 
express ACE2 [83], but after SARS-CoV-2 infec-
tion, ACE2 expression decreases forcing toward 
ACE-Ang-II-AT1 receptor axis, dysregulation of 
anti-inflammatory response leading to a systemic 
inflammatory response that results in the elevation of 
pro-inflammatory cytokines, chemokines, acute phase 
proteins, complement, and modification of leukocyte 
profiles in blood with consequent disruption of BBB, 
and microglial activation which results in increased 
vascular permeability [84–86] (Fig. 1).

Finally, SARS-CoV-2 might enter the CNS through 
the highly vascularized circumventricular organs 
that express ACE2 such as the subfornical organ, or 
through the paraventricular nucleus of the hypothala-
mus, the nucleus of the solitary tract, and the rostral 
ventrolateral medulla that also express ACE2 [87]. 
These areas are expected to be permissive to SARS-
CoV-2 infection and thus could undergo neurovascu-
lar damage as a consequence of infection as discussed 
previously [88, 89]. The circumventricular organs and 
the areas of the hypothalamus and brainstem proxi-
mal to the third and fourth ventricles lack BBB and 
allow communication between the blood, the CSF, 
and the brain parenchyma [90].

Renin‑angiotensin system (RAS) in the CNS 
during SARS‑CoV‑2 infection

RAS is a central mechanism of regulation of blood 
pressure that involves multiple organs including the 
brain, where its action impacts cerebral vasodila-
tion, neuroprotection, and cognition [91]. RAS initi-
ates in the kidney with the synthesis of the protease 
renin. This enzyme produces angiotensin I (Ang-I) 
by cleavage of its substrate angiotensinogen pro-
duced in the liver. Ang-I is not biologically active and 
is transformed in Ang-II mainly by the action of the 
angiotensin-converting enzyme (ACE). Ang (1–7) is 
subsequently produced by the action of angiotensin-
converting enzyme 2 (ACE2) on Ang-II. RAS func-
tion is dependent on the balance of two opposing 
pathways: One involves ACE and its product Ang-II 
that signals through seven transmembrane-spanning 
G protein-coupled AT1 or AT2 receptors (AT1R and 
AT2R, respectively) based on their selective affinity 
for peptide and non-peptide ligands. Ang-II mediates 
biological functions of the RAS system and controls 
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physiological responses in the renal system. The 
alternative pathway involves ACE2, which mediates 
the hydrolysis of Ang-II into Ang (1–7), which binds 
to the Mas receptor (MasR with the highest affinity. 
The first pathway results in vasoconstriction and is 
pro-inflammatory and pro-thrombotic, and fibrotic; 
the second pathway is vasorelaxant, natriuretic, anti-
thrombotic, anti-inflammatory, and anti-fibrotic 
through the actions of Ang (1–7) [92, 93].

Interestingly, an alternative renin isoform 
known as renin-b has been reported, supporting the 

existence of an intracrine RAS [94]. Renin-b is an 
alternative renin isoform transcribed in the brain 
but not present in other tissues [95, 96]. Catalyti-
cally active renin-b lacks a signal peptide and, as 
an intracellular form, it has been proposed to regu-
late brain RAS rather than generating intracellular 
Ang-II [97]. Whether Ang-II can be generated as a 
result of renin-b activity in presynaptic neurons to 
be subsequently released in presynaptic terminals 
upon depolarization is still unclear [97]. If this were 
the case, however, this pathway would involve a 

Fig. 1  Proposed routes of SARS-CoV2 neuroinvasion. 
Viruses enter the vascular pathways and spread toward the 
CNS through the vagus nerve branch that innervates the res-
piratory and gastrointestinal tract. SARS-CoV-2 could also 
enter the respiratory tract into the bloodstream through ACE2 
receptors expressed in type II alveolar epithelial cells of the 
respiratory tract and also after infection of enterocytes at the 
gastrointestinal tract. Bloodstream invasion by the virus may 
increase when endothelial cells of the BBB are infected and 
cell-to-cell adhesion disrupted, allowing for paracellular trans-

migration of virions involving ICAM-1-mediated transport that 
is upregulated by TNF-α and MMPs activation, which promote 
destabilization or disruption of tight junctions of the BBB 
leading to BBB leakage that is exacerbated by the cytokine 
storm. Additionally, the presence of viral nucleotide sequences 
in macrophages and T lymphocytes distributed at the periph-
ery of germinal centers, lymph nodes, and in peripheral blood 
suggests that SARS-CoV-2 could use a “Trojan horse”-type 
mechanism by infecting T cells, macrophages, and monocytes 
in the blood
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potential role of Ang-II as a neurotransmitter or a 
neuromodulator [98].

The role of the RAS and especially the impli-
cations of ACE2 activity in the brain have been 
explored only recently. However, the recently dem-
onstrated influence of the Ang (1–7)/Mas pathway 
in neuronal plasticity suggests a role of ACE2 in 
CNS homeostasis [99].

SARS-CoV-2 entry into the brain activates 
microglia and induces astrogliosis, increasing the 
secretion of proinflammatory cytokines (TNF-α, 
IL-6, and IL-1β) and prostaglandin E2, leading to 
chronic inflammation, neural hyperexcitability, and 
exacerbated neuron programmed cell death [84, 
100].

Levels of Ang-II are increased in SARS-CoV-2 
infected patients. Increased Ang-II may lead to exac-
erbated inflammatory responses observed in COVID-
19 since Ang-II potently activates NF-κB in differ-
ent cell types [101, 102]. An increase in activity of 
the Ang-II pathway would be more harmful in older 
patients because of its exacerbated inflammatory 
component [103]. Thus, activation of the Ang-II path-
way may contribute to increased risk of mortality in 
older individuals with COVID-19 by exacerbating the 
impact of dysregulation of the immune system, which 
leads to hyper-inflammation [103]. Additionally, in 
patients that recover, peripheral inflammation during 
SARS-CoV-2 infection could have long-term conse-
quences leading to CNS disorders such as neurode-
generative disease and dementia [104].

Ang (1–7) can induce endothelial and neuronal 
nitric oxide (NO) synthase (eNOS) activity through 
Ang (1–7)-Mas, and bradykinin-NO [105] signal-
ing, increasing NO production [106], which promotes 
vasodilatation and apoptosis reduction [107, 108]. 
Ang (1–7)/Mas receptor signaling also inhibits induc-
ible NO synthase (iNOS) in glial cells and neurons, 
thus reducing tissue damage by peroxynitrite [109, 
110]. In the brain, NO release is required for neural 
processes including locomotor activity, memory, and 
learning [111]. Under physiological conditions, NO 
activates Akt and cyclic AMP-responsive-element-
binding protein (CREB), which are involved in sur-
vival pathways. Excess NO, on the other hand, leads 
to the formation of reactive nitrogen species which 
cause cell damage [112]. NO production is strongly 
associated with the activity of RAS, and in patients 
with COVID-19, some neurological signs could be 

associated with diminished physiological NO levels 
in the CNS [113].

Numerous reports have shown that the brain 
ACE2-Ang-(1–7)-MasR axis acted as a pivotal regu-
lator of blood pressure, counteracting the pressor 
effect of ACE-Ang-II-AT1R [114]. Increased levels 
of oxidative stress and proinflammatory cytokines 
prompted to favor and maintain hypertension through 
activating redox signaling in the blood pressure regu-
latory centers. In this sense, in vitro and in vivo stud-
ies have revealed that inhibition of oxidative stress 
and inflammation may represent part of the underly-
ing mechanisms for the antihypertensive effects of 
ACE2-Ang-(1–7)-MasR axis [115, 116] (Fig. 2).

In the bloodstream, the level of soluble ACE2 
is normally lower than 17  mU/L [117, 118] but 
becomes elevated in different cardiovascular disor-
ders [117–120]. Probably promoted by the SARS-
CoV-2 infection, it is also raised among patients with 
severe COVID-19 [121], which could be more pro-
nounced among older patients [86, 119, 122–124]. 
However, contradictory results have been reported 
regarding circulating ACE2 activity in SARS-
CoV-2 infected patients that is ranging from elevated 
[125–131] to unchanged [132, 133] or even lowered 
circulating ACE2 levels [134]. Particularly in the 
brain, overactive RAS is associated with decreased 
cellular ACE2 level and activity during the develop-
ment of neurogenic hypertension. Among patients, 
increased shedding of ACE2 takes place as indicated 
by its increased activity in their CSF samples. Such 
phenomenon involves the ADAM17, a member of the 
“A Disintegrin And Metalloproteases” (ADAM) fam-
ily known to cleave a variety of membrane-anchored 
proteins, including ACE2. In the central nervous sys-
tem, the AT1R on neurons mediates the ADAM17 
upregulation upon brain RAS over-activation, lead-
ing to increased shedding of ACE2 and favoring the 
development of neurogenic hypertension and com-
promising the compensatory effect of Ang (1–7) 
[135]. However, the level of circulating ACE2 in the 
CSF in patients hospitalized with COVID-19 remains 
unknown.

Previous evidence obtained from SARS-CoV-1 
patients indicates that SARS-CoV-2 infection can 
down-modulate ACE2 expression [136–139]. Consid-
ering that ACE2 mediates the Ang (1–7) production, 
it is expectable that SARS-CoV-2-mediated ACE2 
downregulation will reduce Ang (1–7) production. 
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There is cumulative evidence that the ACE2-Ang 
(1–7)-MasR axis in the brain exerts mainly benefi-
cial effects against hypertension [114], atherosclero-
sis [140] and antithrombotic activity [141]. The Mas 
receptor concentration is high not only in the brain 
structures associated with memory and cognition 
such as the hippocampus but also in the piriform 
cortex involved in smell being observed in neurons, 
astrocytes, and endothelial cells of cerebral resistance 
vessels [142–145]. As an endogenous constituent of 
the brain, Ang (1–7) is detected in the hypothala-
mus, medulla oblongata, and amygdale [146]. Con-
sequently, when the ACE2 expression is decreasing 
after its SARS-CoV-2 interaction, a deleterious effect 
on the ACE2-Ang (1–7)-MasR axis becomes promi-
nent with an impaired endothelial function in cerebral 
arteries and oxidative damage [147], difficulties in 
learning and memory [145, 148, 149], and reduced 
antioxidant and anti-inflammatory actions [146, 150, 
151] [152].

RAS also regulates stress and anxiety responses. 
Transgenic mice with increased ACE2 expression 
display behaviors consistent with reduced anxiety 
levels [153]. This outcome was reversed when mice 

were treated with a Mas receptor antagonist, sug-
gesting the Ang (1–7)/Mas axis in the regulation of 
anxiety. In addition, overexpression of ACE2 in mice 
reduces levels of cortisone and proopiomelanocor-
tin in plasma, indicating that ACE2 may modulate 
basal anxiety levels through actions on the hypo-
thalamic–pituitary–adrenal (HPA) axis [154–157]. 
SARS-CoV-2-mediated shedding of ACE2 may favor 
anxiety as well as depressive symptoms. Expectedly, 
disturbance of the HPA and the subsequent hypocor-
tisolism seen in SARS-CoV-1 patients has been asso-
ciated with increased anxiety, depression, and post-
traumatic stress disorder [158]. In the RAS pathway, a 
stress response system similar to the HPA axis is trig-
gered by Ang-II — as a stress hormone — binding to 
AT receptors located in the HPA axis, hippocampus, 
and prefrontal cortex [159]. Such HPA response to 
stress is desensitized using ACE inhibitors [160].

An increasingly large body of evidence suggests 
that the ACE2/Ang (1–7)/Mas receptor pathway 
results in the generation of protective mediators in 
numerous neuropsychiatric pathologies and stress 
disorders [110, 145, 154, 161]. The anti-inflammatory 
and antithrombotic effect of the activity of the ACE2/

Fig. 2  SARS-CoV-2 entry into the brain activates microglia 
and induces astrogliosis, increasing the secretion of proinflam-
matory cytokines (TNF-α, IL-6, and IL-1β) and prostaglandin 
E2 (PGE2), leading to chronic inflammation, neural hyperex-
citability, and exacerbated neuron programmed cell death. Lev-
els of Ang-II are increased lead to exacerbated inflammatory 
responses observed in COVID-19 since Ang-II potently acti-

vates NF-kB in different cell types. An increase in activity of 
the Ang-II pathway would be more harmful in older patients 
because of its exacerbated inflammatory component which 
leads to hyper-inflammation. ACE2 expression is also high 
in brain pericytes that could be permissive of infection with 
SARS-CoV-2 and able to spread the virus to astrocytes mediat-
ing inflammatory interferon-type I (IFN-I) transcription
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Ang (1–7)/Mas receptor pathway in the CNS reduces 
both oxidative stress and apoptosis [162, 163]. Exper-
iments in mice revealed that the administration of 
Ang (1–7) reduced not only the level of Ang-II but 
also hormones associated with stress response such as 
norepinephrine, dopamine, and serotonin (87).

Age‑related changes in the brain RAS

RAS is imbalanced during aging due to changes in 
levels of its components. Changes in RAS during 
the aging result in abnormal levels of inflammation, 
oxidative stress, and cell death that promote chronic 
age-related disorders. Several studies have shown that 
Ang-II mediates premature senescence [164, 165]. 
Benigni et  al. have shown increased longevity by 
downregulation of AT1R, which attenuated oxidative 
stress and promoted expression of pro-survival genes 
[41, 166].

Age-dependent variations in RAS components are 
differently controlled in circulating and brain RAS 
[167].

The mitochondrial and nuclear AT1R levels 
increased significantly with age [168, 169] as opposed 
to decreased AT2R expression [170] which achieves 
its maximal expression in developing fetal tissues but 
decreases later reaching lower levels in adulthood 
[171]. Similarly, age-related alterations in the distri-
bution of RAS have been documented in the brain. A 
progressive decrease in the expression of AT2Rs and 
mRNA/protein expression of other protective RAS 
receptors accompanied by elevated Ang-II and AT1R 
levels with aging was shown in the substantia nigra 
[172]. Similarly, protective Ang (1–7)/MasR axis 
expression may be decreased in the brain of aged rats 
[143, 173] (Fig. 3).

Mitochondrial dysfunction has a critical role in 
cellular aging [174]. A functional mitochondrial angi-
otensin system has been identified that exhibits dis-
tributional changes in their RAS receptor levels with 
aging such as a decrease in AT2R and an increase in 
AT1R density [168]. Mitochondria in human skeletal 
muscle cells and monocytes as well as mouse cardiac 
myocytes, renal tubular cells, neuronal cells, vascular 
endothelial cells, and hepatocytes express high lev-
els of AT1R with aging, which increases mitochon-
drial ROS levels, leading to diminished mitochon-
drial integrity, lowered ATP generation, and further 

overproduction of ROS, a prominent molecular medi-
ator of aging [175]. Increased ROS levels lead to oxi-
dation of mitochondrial macromolecules and DNA 
damage, both linked to cellular senescence and apop-
tosis [175, 176]. Excessive ROS production promotes 
the uncoupling of endothelial NO synthase, which in 
turn reduces NO availability and enhances ROS pro-
duction. Under physiological conditions, the Ang-II 
capability to propitiate oxidative stress is firmly regu-
lated. At variance, uncontrolled Ang-II-dependent 
ROS generation takes place as a consequence of age-
associated activation of RAS. This increased Ang-II 
level is associated with cellular senescence depicted 
by cardinal markers such as telomere shortening and 
cell cycle arrest, which are reversed by losartan [177]. 
Consistent with these observations, over-activation of 
the Ang-II/AT1R/NADPH-oxidase complex (NOX) 
axis in the brain results in increased oxidative stress 
and cellular dysfunction. Oxidative imbalance in this 
system is associated with diminished levels of sir-
tuin-3 (SIRT3) which suppress the pro-oxidative RAS 
axis [178]. Additionally, the uncoupling of endothe-
lial NOS by superoxide anions may occur, thus 
decreasing NO availability and NOS activity with 
aging [179].

Upregulated AT1R but reduced AT2R expression 
impairs the counterbalance mechanism of the RAS in 
the aging brain while oxidative stress, neuroinflam-
mation, and increased neuron vulnerability continue 
[180, 181]. It has been suggested that RAS imbalance 
leads to age-related pro-inflammatory changes known 
as “inflammaging,” observed in several tissues during 
aging [180].

Vascular cognitive impairment is a consequence of 
cerebrovascular disease characterized by brain dys-
function and cognitive loss [182]. Aging and hyper-
tension are major risk factors for vascular cognitive 
impairment. Aging and hypertension are associated 
with poor blood flow with consequent hypoperfu-
sion and hypoxia. These conditions generate a pro-
oxidative and pro-inflammatory milieu in the brain, 
which may promote neuronal death, thus contribut-
ing to cognitive impairment [183]. In this scenario, 
AT1R over-activity stimulates vasoconstriction and 
increases oxidative stress, inflammation, and suscep-
tibility to ischemia. On the other hand, ACE2 over-
expression and activity of the Ang (1–7)/MasR axis 
of RAS counteract the impact of AT1R activity, 
reducing both inducible NOS and the production of 
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pro-inflammatory cytokines in the brain and promot-
ing angiogenesis [184] (Fig. 3).

CNS and post‑acute sequelae of SARS‑CoV‑2 
infection

“Long COVID” syndrome includes multiple post-
acute sequelae of SARS-CoV-2 infection [185]. 
Numerous patients manifest prolonged multisystem 
compromise with significant disability [186]. After 
6 months of SARS-CoV-2 infection, 76% of patients 
have at least one of the following symptoms: fatigue/
muscle weakness, difficulty sleeping, hair loss, anos-
mia, and mobility difficulties [187].

Neuropsychiatry and movement abnormalities are 
reported post-infection [188–190]. Among these, the 
lack of movement coordination, falls, gait shuffling, 
and confusion was detected in individuals testing 
negative for SARS-CoV-2 for several days [5, 191]. 
Consistent with these observed abnormalities, demy-
elinating lesions of the CNS driven by inflammation 
arising from activation of glial cells are also a sequela 
of COVID-19 [192, 193].

An inflammatory mechanism is considered the 
most plausible association between SARS-CoV-2 
brain infection and neurological dysfunction. Enceph-
alitis as the central neuroinflammatory sequelae 
SARS-CoV-2, especially in older adults, has been 
documented in neuroimaging, electrophysiological, 
and laboratory studies [50, 194].

Fig. 3  RAS starts with the synthesis of protease renin in the 
kidney, which produces Ang-I from angiotensinogen in the 
liver. Ang-I is transformed in Ang-II by the action of ACE. 
Secondly, Ang (1–7) is produced by the action of ACE2 on 
Ang-II. RAS function is dependent on the balance of two 
opposing pathways. One formed by Ang-II, and the AT1R 
(inflammatory way), and the other comprises Ang (1–7) that 
intervenes in its actions by binding to Mas receptor and Ang-II 
/AT2R (anti-inflammatory way). The aging process unbalances 

the RAS activation promoting abnormal levels of inflamma-
tion, oxidative stress with concomitant cell death. AT1R and 
Ang-II levels are upregulated during aging. In contrast to the 
counterbalanced components, AT2R and Ang (1–7)/Mas axis 
expression appeared to be decreed. This process could be exac-
erbated during SARS-CoV-2 infection and explain the acceler-
ated neurodegenerative manifestation observed in aging pheno-
types of COVID-19 patients
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Although pathophysiological mechanisms of 
SARS-CoV-2 infection are still largely unknown, the 
neurological sequela observed after SARS-CoV-2 
infection may suggest infection-driven damage to 
glial cells and neurons that express ACE2. Further-
more, the ACE2 substrate (Ang-II) is synthesized by 
ACE activity, which might be inhibited by endog-
enous serum albumin present in the blood and poten-
tially many tissues, but not present in the CNS [195], 
and it is also tightly coordinated by genotype-depend-
ent expression and secretion mechanisms [196]. Con-
sequently, in the CNS location, a high ACE activity, 
and consequently of Ang-II level, is expectable, thus 
highlighting the role of ACE2 as its cellular down 
expression would result in a more severe dysregula-
tion of local RAS.

Sequelae may also be due to the disruption of bidi-
rectional interactions between the immune and nerv-
ous systems, which could lead to a pro-inflammatory, 
hypercoagulable, and hypoxemic state in the brain. 
Such an environment is expected to drive neurologi-
cal syndromes including demyelinating and move-
ment disorders, degenerative dementias, encephalopa-
thies, and also neuropsychiatric and unusual cognitive 
disorders [197]. Consistent with this hypothesis, 
increased coagulopathy, vasculopathy, neuroinflam-
mation, and immune dysregulation are expected to 
underlie the increase in the risk of stroke during the 
COVID-19 [198].

Damage to endothelial cells arising from direct 
SARS-CoV-2 infection likely drives COVID-19-as-
sociated coagulopathy that underlies specific forms 
of neurological dysfunction. Damaged endothelial 
cells produce excess nitric oxide, promoting platelet 
and leukocyte adhesion, followed by the migration 
of inflammatory cells [199]. Release of tissue fac-
tor (also known as coagulation factor III or tissue 
thromboplastin) after endothelial cell damage, espe-
cially in the brain, activates α-thrombin, the final 
serine protease in the coagulation cascade [200]. 
The active thrombin disrupts BBB after cleav-
ing protease-activated receptors known as PAR on 
endothelial cells thus gaining access to the CNS 
and impairing oxygen exchange. Once there, it can 
cleave to activate PARs on microglia/astrocytes 
for neuroinflammation and neurons to form neu-
rofibrillary tangles [200]. Of note, microglial nod-
ules formed after phagocytosis of hypoxic neurons 
were found in the cerebellum of COVID-19 patients 

[201]. Consistent with this knowledge, COVID-
19 patients frequently present with microvascu-
lar ischemic and hemorrhagic parenchymal injury, 
microglial activation, and neuroinflammation [190, 
199, 202]. Even mild respiratory SARS-CoV-2 
infection without neuroinvasion may cause a multi-
cellular dysregulation in the brain, including white 
matter microglial reactivity, abnormalities in neural 
precursor cell populations, reduction in hippocam-
pal neurogenesis, depletion of myelinating oligo-
dendrocytes, and myelin loss. Such anomalies are 
related to neurological symptoms, including impair-
ment in attention, concentration, speed of informa-
tion processing, and memory, as part of the long-
COVID cognitive syndrome [203].

SARS-CoV-2 infection may directly impact 
mechanisms of disease in age-associated neurologi-
cal disorders such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD). Vascular dysfunction plays 
a central role in AD and PD [204]. Expression of 
the ApoE4 allele — a major risk factor for AD and 
chronic traumatic encephalopathy — in glial cells is 
associated with more severe neurodegenerative symp-
toms observed in older COVID-19 patients [205]. 
Moreover, ACE is upregulated in the limbic regions 
of the brain of patients with AD [206].

In addition to the direct involvement of neuro-
vascular damage arising from increased inflamma-
tion, some of the post-acute neurological sequelae 
associated with SARS-CoV-2 infection could be due 
to dysregulation of RAS. Hyperinflammation has 
been reported more frequently in older patients with 
SARS-CoV-2 infection and is related to dysregulated 
immune and RAS in older adults that may underlie 
the observed increased risk of mortality and post-
acute neurological sequelae in this demographic 
group [103].

The RAS plays a central role in the regulation 
of vascular function. Both the RAS and the vascu-
lar system are impacted by COVID-19 pathogenesis 
[207]. As discussed above, SARS-CoV-2 infection 
may exacerbate age-associated oxidative stress, which 
may compromise genome integrity in neurons and 
potentially other cells in the CNS, promoting neuro-
degenerative processes [208]. Studies that blocked the 
Ang-II receptor demonstrated that disruption of the 
blood–brain barrier is associated with RAS activa-
tion, dysfunction of the neurovascular unit, cognitive 
impairment, and dementia [209].
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Although a strong association between SARS-
CoV-2 and peripheral neuromyopathy as Guillain-
Barré syndrome (GBS) is lacking, SARS-CoV-2 
infection may be an occasional trigger for GBS. 
Previous studies showed that SARS-CoV-2-infected 
patients share neurological symptoms similar to those 
previously described in patients who experienced 
non-SARS-CoV-2 post-infection GBS [210, 211]. 
Moreover, peripheral neuropathy was most frequent 
among older adults [212].

Overall, a lower global cognitive performance 
score that is positively associated with severity of 
respiratory disease in COVID-19 patients suggests 
that brain injury could be due to reduced oxygen and 
subclinical neuroinflammation, both common in brain 
aging [213]. Taken together, this evidence may help 
explain the accelerated age-associated phenotypes 
observed in COVID-19 patients with neurodegenera-
tive manifestations.

Concluding remarks

In addition to the respiratory tract, SARS-CoV-2 can 
also enter the CNS where it binds to cell receptors, 
including ACE2, expressed in several brain areas 
and both neuronal and non-neuronal cell types. The 
appearance or accelerated progression of neurodegen-
erative disease is manifested once the virus enters the 
CNS, promoting neuroinflammation, coagulopathies 
and hemorrhages, barrier dysfunction, and neuronal 
death. The varied range and severity of acute neuro-
logical COVID-19 syndromes as well as the conse-
quences of sustained, viral-mediated neural dysregu-
lation of peripheral systems may be a unique feature 
of SARS-CoV-2 infection. A disturbance of the bi-
directional interactions of the nervous system and the 
RAS may accelerate aging through the generation of 
a pro-inflammatory state that can promote long-term 
neurological syndromes.
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