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Abstract: In this paper, a three-dimensional model of nonlinear elastic material is proposed. The
model is formulated in the framework of Green elasticity, which is based on the specific elastic energy
potential. Equivalently, this model can be associated to the deformation theory of plasticity. The
constitutive relationship, derived from the assumed specific energy, divides the material’s behavior
into two stages: the first one starts with an initial almost linear stress–strain relation which, for
higher strain, smoothly turns into the second stage of hardening. The proposed relation mimics the
experimentally observed response of ductile metals, aluminum alloys in particular. In contrast to the
classic deformation theory of plasticity or the plastic flow theory, the presented model can describe
metal compressibility in both stages of behavior. The constitutive relationship is non-reversible
expressing stress as a function of strain. Special attention is given to the calibration process, in which
a one-dimensional analog of the three-dimensional model is used. Various options of calibration
based on uniaxial stress test are extensively discussed. A finite element code is written and verified
in order to validate the model. Solutions of selected problems, obtained via ABAQUS, confirm the
correctness of the model and its usefulness in numerical simulations, especially for buckling.

Keywords: nonlinear elasticity; Green elasticity; deformation theory of plasticity; infinitesimal strain;
specific energy; stress–strain relations; constitutive relationship; aluminum alloys; FEM simulations; buckling

1. Introduction

During an analysis of structural response under certain loading conditions, one of the
issues to deal with is the definition of an appropriate constitutive relationship reflecting
real behavior of the considered material. One-dimensional models based on uniaxial
stress tests describe stress–strain relations, which can be used only in the cases of simple
structural elements with a dominant uniaxial compressive or tensile stress state. Typical
metal structures, as beams and columns, are usually composed of connected plate or shell
elements. Under an acting load, some of those elements are in multiaxial stress states,
which must be appropriately tied to multiaxial strain states. Therefore, there is a need
for the definition of a suitable constitutive relation, more complex than the stress–strain
relationship observed in a simple uniaxial test.

In case of metal structures, the currently used material models are formulated in the
framework of either the deformation theory or the plastic flow theory. The deformation
theory of plasticity (Hencky–Nadai), equivalent to the nonlinear infinitesimal elasticity
theory of the Green type [1,2], can be used if the unloading process can be ignored and
no significant redistribution of stresses due to permanent deformation is expected. On
the other hand, the plastic flow theory (Lévy–Mises or Prandtl–Reuss) can be applied to
calculations of structures under monotonic or cyclic loading [1,2]. A common issue of
those theories for metals is that plastic strain does not allow any volumetric deformation,
because it is governed by the second invariant of the stress deviator. However, there are
plenty of models of elastic-plastic materials which include plastic volumetric deformation.
They are suitable for frictional materials as soils, rocks, concrete and porous metals [1–3],
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but rarely for structural metals. The plastic flow theory leads to a path-dependent material
response in which the actual strain depends on the history of previous deformation. The
constitutive equations in the plastic flow theory are formulated in an incremental form in
which the strain increment is determined by the current stress and its increment. According
to this theory, the unloading takes place along a line parallel to the initial elastic path,
preserving the initial stiffness of material. This is consistent with experimental behavior of
most structural metals. Conversely, in the deformation theory of plasticity, the current state
of stress is uniquely determined by the state of strain, and vice versa. The response is path-
independent and the loading and unloading take place along the same nonlinear stress–
strain path. Therefore, the deformation theory lacks the physical foundation compared to
the plastic flow theory when permanent deformation occurs.

Despite this inconsistency, the deformation theory is used in many engineering prob-
lems involving inelastic (or nonlinear elastic) buckling of structures. The deformation
theory seems to be more in agreement with experimental results than the plastic flow
theory. This phenomenon is usually referred to as the “plastic buckling paradox” [4–8]. A
more physically justified plastic flow theory leads generally to overestimated predictions
of the critical load, whereas the application of the deformation theory of plasticity in buck-
ling analysis delivers results more compatible with experimental data. This paradox has
existed for many years leading to controversies, some of them are still to be resolved [4].
Numerous explanations of the issue were given in the literature but none of them seems
to be completely satisfactory. For this reason, the deformation theory of plasticity is still
recommended for practical engineering applications concerning the inelastic buckling of
beams, columns, plates and shells [5,6,9]. Therefore, the analytical model presented in
this paper refers to the deformation theory of plasticity, more precisely to the Green-type
nonlinear elasticity.

Structural materials, such as aluminum alloys, high strength and stainless steel, exhibit
a smooth nonlinear stress–strain response with no distinct yield limit. In majority of engi-
neering applications, a piecewise stress–strain relationship consisting of a linear elastic, then
a perfectly or hardening plastic response is used. The constitutive behavior of aluminum
alloys in the uniaxial stress state can be adequately described by the Ramberg–Osgood
law [10] and more accurately by its numerous piecewise enhancements, see in [11–14],
among others. In the models, strain is given as an explicit, yet analytically non-invertible,
function of stress [15]. This approach can be used in both the plastic flow theory and the
deformation theory of plasticity. Such models can be used in hand calculations of simple
structural elements [16], but solving more complex problems, especially handling finite ele-
ment implementations, is problematic or impossible. Another group of constitutive models,
suitable for the nonlinear elasticity theory (the deformation theory of plasticity), gives
stress as an explicit function of strain. The constitutive relations are represented by smooth
nonlinear curves, possibly piecewise, and, besides some simple cases, are non-invertible
analytically [17–20]. When it comes to the development of three-dimensional models, they
are based on various modifications of the distortional part of the linear constitutive relation
to a nonlinear form, compare in [18,21]. In the plastic flow theory, the plastic strain rate is
governed by the Huber–Mises yield function, leading to the incompressibility of plastic
deformation, and by a continuous or a piecewise linear hardening law determined from
experimental data. In the nonlinear elasticity (the deformation theory of plasticity), the dis-
tortional part of the linear constitutive relation is modified to a nonlinear form via a variable
shear modulus. Therefore, this approach has the same limitations as the plastic flow theory.
An attempt to resolve this issue is undertaken in [5], where variability of Poisson’s ratio is
assumed, which, unfortunately, may violate thermodynamical restrictions. Furthermore,
the deformation theory of plasticity formulated for the plane stress state and applied to
the plate theory is used in [5,6,9], where interaction of buckling modes is investigated.
Application of both theories in finite element programs can be found in many publications
on stability of metallic structures, aluminum in particular, for example, in [22–24], among
others. As a conclusion, there is an apparent lack of elastic models with fully nonlinear
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behavior for both the volumetric and distortional deformation with the inherently included
variability of Young’s modulus and Poisson’s ratio, describing adequately compressible
or nearly incompressible metals. Such models are common in the continuum mechanics
(large strains) termed as hyperelastic or hyperplastic materials [21,25–27], but there is no
direct transfer of those models to the infinitesimal elasticity theory, especially in the context
of distinct requirements for convexity and material stability.

In this paper, a nonlinear model for compressible and “plastically” incompressible
metals is proposed. The definition of the model is based on the composition of two stages
of material behavior. In the initial stage, the response is close to this of a linear elastic
compressible material with certain stiffness, that is the well-known Hooke’s law. The
second stage, denoted here as hardening, concerns advanced straining, physically plastic
yield, which is modelled by a nonlinear constitutive relationship, which has an asymptotic
stiffness different than initial one. The two relationships are smoothened to obtain a
continuous transition between the mentioned limit responses. Then, the proposed model is
calibrated with respect to experiments and implemented in the finite element method.

After this introduction, the paper is organized as follows. In Section 2, the main part
of the paper is given. We introduce an elastic strain energy potential, then, based on it, we
derive a constitutive relationship and obtain a fourth-order tensor of tangent stiffness for
incremental formulation. Moreover, we regard simplified models and analyze asymptotic
properties of the model. All thermodynamic requirements applicable to nonlinear elastic
materials are verified and limits for material constants are derived. Section 3 contains a
calibration of the developed model. The calibration of material parameters is extensively
discussed since the obtained constitutive relation is non-invertible and material stiffness
varies with increasing strain. We show various approaches to the calibration, which is
based on the uniaxial stress test. In Section 4, we describe the model’s implementation
in a finite element code (ABAQUS) and show results of basic numerical tests in order
to verify it. The validation in Section 5 includes more advanced examples of selected
structural members. The most relevant research outcomes and conclusions are summarized
in Section 6.

2. Nonlinear Elastic Model for Isotropic Material

In this section, we propose and describe features a three-dimensional model of nonlin-
ear elastic material, which can be regarded as a model in the framework of the deformation
theory of plasticity. We start from a definition of an elastic specific energy potential, then
derive a constitutive relationship and secant and tangent stiffnesses. The constitutive rela-
tionship is formulated in a format in which the stress tensor is a function of the strain tensor.
We deliver graphical interpretations of the potential and the constitutive relation and derive
limits for material constants to meet the thermodynamical requirements [1,2]. We reduce
this model to the simplified case of a material which reflects “plastic” incompressibility
(here termed as asymptotically incompressible) in the second stage of its behavior. This type
of material is closely related to the Hencky–Nadai deformation theory of plasticity with
modified distortional part of the constitutive relationship. Moreover, the Prandtl–Reuss
plastic flow theory based on the Huber–Mises yield condition with an isotropic hardening
can describe similar material response under monotonic loading programs, which do not
result in significant redistribution of stresses due to plastic deformation.

2.1. Elastic Energy Function

We start the development of the constitutive relationship of an isotropic nonlinear
elastic material with definition of the specific elastic energy function. An isotropic function
of two strain tensor invariants W(p, q) is assumed in the form:
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W = 1
2
(
3Kp2 + 2Gq2)+ (G0 − G)q2

0

(
p2

p2
0
+ q2

q2
0

)
F
[

1
2n , 1

n , 1 + 1
n ,−

(
p2

p2
0
+ q2

q2
0

)n]
,

F = 1 + ab
c z + a(1+a)b(1+b)

2!c(1+c) z2 + a(1+a)(2+a)b(1+b)(2+b)
3!c(1+c)(2+c) z3 + . . . ,

(1)

where K, G, G0, q0, p0, n are material constants and F(a, b, c, z) is the hypergeometric
function, which has an appropriate (hypergeometric) power series expansion [28]. We use
the following notation for the strain tensor invariants:

p =
1√
3

trε, q =
√

tre2 ≥ 0, where e = ε− pk (2)

is the deviator of the infinitesimal strain tensor ε, and tr is the trace operation. The cubic
(isotropic) tensor k is defined as

√
3 k = I with property ‖k‖ = 1, while I is the unit

second-order tensor. We use two invariants instead of all three invariants to keep simplicity
of the model, the form of the considered strain energy is complex enough.

In total, six independent constants are required to define this model, namely K, G, G0,
q0, p0, n. In the second stage, that is when the material is “plastically” incompressible, the
number of material constants is reduced to five. The proposed elastic energy is a potential for
stress [1,29] when the material constants involved in Equation (1) meet the following condition:

2(G0 − G)q2
0 = 3(K0 − K)p2

0, (3)

where K0 is an auxiliary material constant, that can be calculated from Equation (3) when
other constants are known.

In order to fulfil basic thermodynamic requirements [1,2,29,30], the specific elastic
energy in Equation (1) has to be a non-negative W(p, q) ≥ 0 and convex function [30].
Convexity conditions are:

∂ 2W
∂p 2 ≥ 0,

∂W
∂q
≥ 0,

∂ 2W
∂q 2 ≥ 0,

(
∂ 2W
∂p 2

)(
∂ 2W
∂q 2

)
−
(

∂ 2W
∂p∂q

)2

≥ 0. (4)

Note that the specific elastic energy in Equation (1) is supposed to be a strictly convex
function, but here, we allow it to be only convex to leave doors open for investigation of
limiting cases. To satisfy strict inequalities in Equation (4), the initial bulk and shear moduli
defined at the strain origin ‖ε‖ = 0 must be positive, that is K0 > 0 and G0 > 0, accordingly.
The limit (or termed as asymptotic) bulk K and G shear moduli, which describe the material
response for substantial strains (‖ε‖ =

√
p2 + q2 → ∞ ) called hardening, must be non-

negative, K ≥ 0 and G ≥ 0. Moreover, the function in Equation (1) fulfils the natural state
condition W(0, 0) = 0. Using Young’s moduli E0 and E along with Poisson’s ratios ν0
and ν, the regarded bulk and shear moduli are expressed in the classic way as for linear
elastic materials:

K0 =
E0

3(1− 2ν0)
, G0 =

E0

2(1 + ν0)
and K =

E
3(1− 2ν)

, G =
E

2(1 + ν)
(5)

with appropriate limits applied to them: E0 > 0, −1 < ν0 < 1/2 and E > 0; the limits for ν
are specified below in Equation (7). Parameters p0 ≥ 0 and q0 ≥ 0 are the characteristic
values of the strain invariants defined in Equation (2) and their interpretation is presented
in Figures 1 and 2. Power n (termed as a regularization parameter) is allowed to take any
value higher than one half, n > 1/2, but for metallic alloys, n ≥ 1 is a suitable choice, and
for aluminum alloys, n is typically between 2 and 6.
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Figure 1. Contours of elastic strain energy for a linear material with K0 = 56, 700 MPa, G0 = 26, 200 MPa
(left part, blue contours), and for the nonlinear material with: K0 = K = 56, 700 MPa, G0 = 26, 200 MPa,
G = 100 MPa, q0 = 0.003688, n = 3 (right part, red contours).

Figure 2. Relationships between stress and strain invariants and asymptotes for K0 = 4K, G0 = 12G:
(a) p versus ξ for q = 0; (b) q versus r for p = 0. Interpretation of material parameters.

Besides the above-mentioned limits, the convexity conditions in Equation (4) are
met when the initial material stiffness moduli are greater than the hardening moduli (so
softening of the material is not allowed):

K0 ≥ K and G0 ≥ G. (6)

Using Equation (5) and the limits set by Equation (6), the following restrictions on the
hardening stage (asymptotic) Poisson’s ratio can be derived:

νmin = (1 + ν0)
E
E0
− 1 ≤ ν ≤ 1

2
−
(

1
2
− ν0

)
E
E0

= νmax. (7)

The initial values of Young’s modulus E0 and Poisson’s ratio ν0 are well documented
for elastic materials. Modulus E for the hardening part of the material response (physically
with ongoing elastic-plastic deformation) can be determined from an experimental uniaxial
test, while the value of Poisson’s ratio ν is postulated in the limits described in Equation (7).
For aluminum alloys exhibiting plastic incompressibility, the values of ν can be assumed
close to the upper limit given in Equation (7), compare in [5,31].

For certain values of the power n, the elastic strain energy can be expressed via
elementary functions. For n = 1, the formula from Equation (1) takes the following form:

W(p, q) =
1
2

(
3Kp2 + 2Gq2

)
+ 2(G0 − G)q2

0

[√
1 +

p2

p2
0
+

q2

q2
0
− 1

]
. (8)



Materials 2021, 14, 7351 6 of 32

When K → K0 (or equivalently ν→ νmax ) then p0 → ∞ and the elastic energy de-
fined in Equation (1) simplifies to:

W(p, q) =
1
2

(
3K0 p2 + 2Gq2

)
+ (G0 − G)q2F

[
1

2n
,

1
n

, 1 +
1
n

,−
(

q2

q2
0

)n]
. (9)

which describes the linear elastic behavior for the isotropic part and hardening occurring
only for the deviatoric part. This case of behavior is often assumed in the deformation
theory of plasticity [5,9,21]. When K = 0, G = 0 and q0 → ∞ , Equations (1) and (8) reduce
to the well-known formula for a linear material:

Wlin(p, q) =
1
2

(
3K0 p2 + 2G0q2

)
. (10)

Comparison of the same contours of elastic energy for linear (Equation (10)) and
nonlinear (Equation (1)) material models in the plane of invariants defined in Equation
(2) is shown in Figure 1. Contours for the linear model (blue) are elliptic, while for the
nonlinear material (red) they change shape with increasing strains from elliptic for the first
phase of behavior to the shape of a rounded parallelogram for the second phase of material
behavior. This shape is due to significant difference between values of the bulk and shear
moduli for the hardening part of material’s response. The green line q = q0 marks the
border between two stages of material behavior described by the energy in Equation (9).

2.2. Constitutive Relationship

The following constitutive relationship is derived according to the potential law of
elasticity [1,2]:

σ =
∂W
∂ε

=
∂W
∂p

∂p
∂ε

+
∂W
∂q

∂q
∂ε

. (11)

Calculating the above derivatives of the function given in Equation (1) and of the strain
invariants defined by Equation (2), we obtain the following result for the stress tensor:

σ = 3Kpk + 2Gqd +
1
Q
[3(K0 − K)pk + 2(G0 − G)qd], (12)

with introduced additional notation for an increasing scalar-valued function of strain tensor
invariants:

Q ≡ Q(p, q) = 2n

√√√√1 +

(
p2

p2
0
+

q2

q2
0

)n

= 2n

√√√√1 +

(
3(K0 − K)p2

2(G0 − G)q2
0
+

q2

q2
0

)n

. (13)

We use a normalized deviatoric tensor ‖d‖ = 1, described by relation e = qd. Func-
tion Q defined by Equation (13) couples the isotropic and deviatoric parts of the constitutive
relationship expressed by Equation (12). In case of stress tensor σ, we use invariants ana-
logical as in Equation (2):

ξ =
1√
3

trσ, r =
√

trs2 ≥ 0, where s = σ− ξk (14)

is the stress tensor deviator. Based on Equation (12), the first stress tensor invariant can be
expressed as:

ξ = 3Kp + 3(K0 − K)
p
Q

= 3KS p, (15)

and, in similar way, the second invariant of the stress deviator is of the form:

r = 2Gq + 2(G0 − G)
q
Q

= 2GSq. (16)
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Introduced material functions KS(p, q) and GS(p, q) are the secant bulk and shear
moduli, accordingly. Secant moduli are easily determined in experiments of various
materials, so the above Equations (15) and (16) can be used for calibration of material
parameters.

For various interpretations, it is convenient to introduce stress-type constants
ξ0 = 3(K0 − K)p0 ≥ 0 and r0 = 2(G0 − G)q0 ≥ 0 connected to the stress tensor invariants
(14) and rewrite Equation (3) as:

2(G0 − G)q2
0 = 3(K0 − K)p2

0 = ξ0 p0 = r0q0. (17)

The relations between the stress tensor invariants and strain tensor invariants accord-
ing to Equations (15) and (16) are shown in Figure 2. They are plotted for the selected ratios
of the asymptotic and the initial moduli (G/G0 and K/K0). The considered nonlinear model
is drawn for n = 2 and for the asymptotic case n→ ∞ , which determines the upper bound
for the model predictions with respect to n. Power n can be viewed as a regularization
parameter of a piecewise linear relation when n = ∞. The asymptotes ( n→ ∞ ) include
the initial linear material envelope (green lines) and the hardening envelope (blue lines),
compare with Equations (20) and (21). In addition, characteristic values of the stress and
strain invariants, that is p0, q0 and ξ0, r0, are interpreted graphically. Moreover, parameters
ξP = K0 p0 and rP = G0q0, defining location of the elbow points in the piecewise linear
graphs, are explained.

Let us investigate the asymptotic properties of the proposed model, that is the case of
n→ ∞ . Function Q defined by Equation (13) is bound by the following:

lim
n→∞

Q = 1 for QA =

√
p2

p2
0
+

q2

q2
0
≤ 1, (18)

lim
n→∞

Q = QA for QA > 1. (19)

Condition QA(p, q) = 1 defines an ellipse on the (p, q) plane with the semi-axes p0
and q0. Then, the constitutive relation in Equation (12) is separated into two cases, that is
the linear elastic envelope and the asymptotic relation:

σL = 3K0 pk + 2G0qd for QA ≤ 1 and (20)

σA = 3Kpk + 2Gqd +
1

QA
[3(K0 − K)pk + 2(G0 − G)qd] for QA > 1. (21)

Equation (20) describes the behavior of a linear material according to Equation (10) and
establishes an envelope of the relation in Equation (12) for a strain fulfilling the condition
QA ≤ 1. For QA = 1, the linear relation from Equation (20) switches to the asymptotic
relation given in Equation (21). Interpretation of those relationships for the isotropic and
deviatoric parts is shown on Figure 2. Results described by Equations (18) to (21) will be
used effectively in the further model calibration process.

As a special case, we regard the simplified model described by Equation (9), which
is defined by the proposed energy (Equation (1)) reduced for K → K0 and p0 → ∞ . As a
result, the model includes five material constants. The constitutive relation in Equation (12)
becomes:

σ = 3K0 pk + 2Gqd +
1

QI
2(G0 − G)qd, and QI =

2n

√√√√1 +

(
q2

q2
0

)n

. (22)

Then, Equations (15) and (16) for the above relation are:

ξ = 3K0 p and r = 2Gq + 2(G0 − G)
q

QI
. (23)
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showing nonlinear material behavior only in the deviatoric part. For this case, the linear
envelope relation in Equation (20) remains intact, while the asymptotic relation from
Equation (21) changes as follows:

σA = 3K0 pk + 2Gqd +
1

QIA
2(G0 − G)qd for QIA =

√
q2

q2
0
> 1. (24)

Equations (22)–(24) will be used in a simplified calibration procedure and for compari-
son with existing models.

2.3. Secant and Tangent Stiffnesses

In the finite element implementation, we use the rate (or incremental) constitutive
relationships [1,2,21,25–27]. Let us now express Equation (12) in the following forms:

σ = CS.ε and
.
σ = CT .

.
ε, (25)

where CS is a fourth-order tensorial function of the secant stiffness, CT is a fourth-order
tensorial function of the tangent stiffness of the material, while “.” stands for the full
contraction operation and upper dot represents time derivative. Using tensor identities:
(k⊗ k).ε = pk and (1− k⊗ k).ε = qd, the secant stiffness is defined as:

CS = 3K k⊗ k + 2G(1− k⊗ k) +
1
Q
[3(K0 − K)k⊗ k + 2(G0 − G)(1− k⊗ k)]. (26)

⊗ denotes the tensor product, 1 is the fourth-order unit tensor, that in any orthonormal
basis {bi} has the components: 1ijkl =

(
δikδjl + δilδjk

)
/2 for i, j, k, l = 1, 2, 3. The tangent

stiffness tensor is defined as a derivative of function in Equation (12) with respect to the
strain tensor:

CT = ∂σ
∂ε = CS − 1

Q2n+1

(
p2

p2
0
+ q2

q2
0

)n−1[
3(K0 − K) p2

p2
0
k⊗ k

+3(K0 − K) pq
q2

0
(d⊗ k + k⊗ d) + 2(G0 − G)

q2

q2
0
d⊗ d

]
,

(27)

where Equation (3) was used during derivations. Both tensorial functions expressed by
Equation (26) and Equation (27) have all minor and mayor symmetries
Cijkl = Cjikl = Cijlk = Cklij for hyperelastic (Green type) materials [1,2,21,29]. The bulk
and shear tangent stiffness functions are then written as:

3KT = 3KS − 3(K0 − K)
p2

p2
0Q2n+1

(
p2

p2
0
+

q2

q2
0

)n−1

, (28)

2GT = 2GS − 2(G0 − G)
q2

q2
0Q2n+1

(
p2

p2
0
+

q2

q2
0

)n−1

. (29)

It is evident that the bulk or shear tangent stiffness is lower than the secant counterpart
for a given strain level. When tangent stiffnesses are non-negative, the elastic energy
described by Equation (1) is a convex function [29].

When ‖ε‖ → 0 , the functions of the secant CS(ε) and tangent CT(ε) stiffnesses take
the same initial values:

CS0 = CT0 = 3K0 k⊗ k + 2G0(1− k⊗ k). (30)
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In case of ‖ε‖ → ∞ , both functions approach the following values of asymptotic
stiffnesses:

CSA = CTA = 3K k⊗ k + 2G(1− k⊗ k). (31)

Expressions in Equation (30) and Equation (31) are identical to the stiffnesses of
appropriate linear materials.

Notice that the scalar valued function Q(p, q) defined by Equation (13) provides a
smooth and continuous transition of the actual material stiffness from the initial value to
the asymptotic one when 1/2 < n < ∞. This property allows to define independently
material constants K0 and G0 for the initial stage of the material and constants K and G
for the advanced strain values (within the second stage), close to the material’s failure.

For the special case of K → K0 and p0 → ∞ , the stiffness tensors are:

CS = 3K0k⊗ k + 2G(1− k⊗ k) +
1

QI
2(G0 − G)(1− k⊗ k), (32)

CT = CS −
1

Q2n+1
I

(
q2

q2
0

)n

2(G0 − G)d⊗ d. (33)

Then, the bulk and shear tangent stiffness functions are expressed as:

3KT = 3KS = 3K0, 2GT = 2GS − 2(G0 − G)
1

Q2n+1
I

(
q2

q2
0

)n

. (34)

3. Calibration of Material Parameters

The most convenient way to calibrate the developed model with respect to experi-
mental tests is to use the pure shear stress and the equal triaxial tension or compression.
Unfortunately, triaxial tests are almost impossible to perform, considering their complexity
and expensiveness. The shear stress tests with ξ = 0 can be carried out, but still are not a
common practice in engineering applications. Technically, the uniaxial tension or the uniax-
ial compression tests are available for many materials, including aluminum alloys [10–12].
Typically, the uniaxial tests provide only a relation between the direct strain and the ap-
plied stress, with no relation for the transverse strain, whose availability can significantly
improve the quality of calibration. The constitutive relationships for three-dimensional
nonlinear models are usually quite complex and non-invertible, thus difficult to calibrate
on the basis of sole uniaxial tests. Note, that the constitutive relationship in which the
stress tensor is a function of the strain tensor is convenient for the finite element implemen-
tation, but is troublesome when the calibration is based on stress tests. In this section, first,
we propose a calibration procedure, applicable to “plastically” incompressible material,
which leads to an acceptable accuracy. Then, we describe a more general approach to
calibration for fully compressible material and discuss the obtained results. We will use a
one-dimensional model analog of the spatial one to approximate experimental results for
the uniaxial tension or compression stress states.

3.1. One-Dimensional Analog of the Proposed Nonlinear Elastic Material Model

The elastic strain energy for the one-dimensional nonlinear elastic model is:

W(ε) =
1
2

Eε2 + (E0 − E)ε2F

[
1

2n
,

1
n

, 1 +
1
n

,−
(

ε2

ε2
0

)n]
, (35)

where F(a, b, c, z) is the hypergeometric function [28], see also Equation (1). The regarded
specific energy function is non-negative, W(0) = 0, and convex when E0 > 0, ε0 ≥ 0,
E0 ≥ E and n > 1/2. Function in Equation (35) depends on four material parameters: E0,
E, ε0 and n which can be determined from the uniaxial tests. We define two useful stress
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parameters σ0 ≥ 0 and σP ≥ 0 by the following relations: σ0 = (E0 − E)ε0 and σP = E0ε0.
Differentiation of Equation (35) leads to the one-dimensional constitutive relationship:

σ = Eε +
1

Q1
(E0 − E)ε, where Q1(ε) =

2n

√√√√1 +

(
ε2

ε2
0

)n

. (36)

When n→ ∞ , the above relationship can be written in intervals as a piecewise
linear relation:

σL = E0ε for Q1A ≤ 1 and (37)

σA = Eε +
1

Q1A
(E0 − E)ε for Q1A > 1 where Q1A =

√
ε2

ε2
0

. (38)

Equation (38) defines two skew asymptotes, one for tension and another for compression:

σAT = Eε + σ0 and σAC = Eε− σ0. (39)

Graphs of the constitutive relation described by Equation (36) for n = 1 with asymp-
totes according to Equations (37) and (38) for tension are shown in Figure 3. n can be
interpreted as a parameter governing the smooth regularization of the piecewise linear
relationship. All the material parameters introduced in the one-dimensional model are
explained in Figure 3a. Range for the hardening modulus 0 < E ≤ E0 and stress–strain
curves for several values of n > 1/2 with fixed other parameters are presented in Figure
3b. The figure delivers a general overview on the flexibility of the proposed model in
description of possible material’s response.

Figure 3. (a) Stress–strain curves according to the one-dimensional model of elastic material for n = 1 and n→ ∞
(piecewise linear). Graphical interpretation of material parameters: E0, E, ε0, σ0 and σP. (b) Stress–strain curves for several
values of n with possible range for the hardening modulus E.

The secant and tangent stiffness functions are expressed by the formulae:

ES =
σ

ε
= E +

1
Q1

(E0 − E) and ET =
dσ

dε
= E +

1
Q2n+1

1

(E0 − E). (40)

Strict convexity of energy defined by Equation (35) with respect to strain is attained
if ET(ε) > 0 for arbitrary ε. When ε→ 0 , we obtain the initial stiffnesses ES0 = ET0 = E0,
and for ε→ ±∞ , we get the asymptotic stiffness values ESA = ETA = E. Via the function
Q1(ε), we can control the curvature of the elbow in the vicinity of (ε0, σP) point shown in
Figure 3. For low-hardening aluminum alloys, we observe a significant difference between
the initial and the asymptotic stiffnesses, typically E0 ∼= 300E, while the regularization
parameter n takes values from 2 to 6 depending on the alloy type. During the presented
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calibration of the model, first, we estimate the initial modulus E0 and the hardening
modulus E, then calculate characteristic stress σ0 (or strain ε0) and, finally, we obtain the
power n parameter numerically. In the literature, we can find various one-dimensional
models which are calibrated with available experimental data, compare in [7–13]. The
presented one-dimensional model can be calibrated with the same uniaxial tests. In case of
one-dimensional model optimization techniques, such as the least squares method, can
be used to enhance agreement with experimental data. However, those results cannot be
directly transferred to calibration of the three-dimensional model against the uniaxial test.

3.2. Uniaxial Stress State

Typically, the calibration of model parameters is carried out based on the uniaxial
tension (or compression) test, which is described by the following matrix representation of
the stress and strain tensors in an orthonormal basis:

[σ] =

 σ 0 0
0 0 0
0 0 0

 and [ε] =

 ε 0 0
0 εT 0
0 0 εT

, (41)

where σ and ε represent the normal stress and the direct strain in loading direction, and
εT are the transverse strains of an isotropic material. Based on the tension test σ ≥ 0 and
representations in Equation (41), the strain invariants from Equation (2) are:

p =
ε + 2εT√

3
and q =

√
2
3
(ε− εT). (42)

Two independent scalar relationships resulting from Equation (12) take the form:

σ = K(ε + 2εT) +
4
3

G(ε− εT) +
1

QUX

[
(K0 − K)(ε + 2εT) +

4
3
(G0 − G)(ε− εT)

]
, (43)

0 = K(ε + 2εT)−
2
3

G(ε− εT) +
1

QUX

[
(K0 − K)(ε + 2εT)−

2
3
(G0 − G)(ε− εT)

]
, (44)

where

QUX = 2n

√√√√1 +

[
(K0 − K)(ε + 2εT)

2

2(G0 − G)q2
0

+
2(ε− εT)

2

3q2
0

]n

. (45)

The bulk and shear moduli are defined by Equation (5) via Young’s moduli and
Poisson’s ratios. Since Equation (44) is highly nonlinear, the transverse strain εT cannot be
calculated directly from it. In such circumstances, it is not possible to substitute the result
from Equation (44) into Equation (43) and obtain σ(ε). Thus, there is no direct connection
between the one-dimensional model relation and the uniaxial test that resulted from the
three-dimensional one and typical curve-fitting techniques cannot be applied to calibrate
the model. Instead, in the proposed simplified procedure, we will use the limiting relations
from Equations (20) and (21) to obtain the material parameters.

In case of the linear envelope described by Equation (20), we get the well-known results:

σL = K0(ε + 2εT) +
4
3

G0(ε− εT) and 0 = K0(ε + 2εT)−
2
3

G0(ε− εT). (46)

Application of Equation (5) in the solution of Equation (46) yields:

σL =
9K0G0

G0 + 3K0
ε = E0ε and εT =

2G0 − 3K0

2(G0 + 3K0)
ε = −ν0ε. (47)
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3.3. Calibration Procedure for Simplified Model

First, we regard a special case where K = K0 (or equivalently ν = νmax) and G 6= G0
that results in p0 → ∞ . In other words, we keep a linear material behavior for the isotropic
part, while the reduction of stiffness occurs for the distortional part of the constitutive
relationship in Equation (22). We analyze this case separately because of its close relations
to the Hencky–Nadai deformation theory of plasticity with modified deviatoric part of the
constitutive relationship. We use results obtained here to compare the proposed model
predictions with the Prandtl–Reuss plastic flow theory based on the Huber–Mises yield
condition (plastic incompressibility) with an isotropic hardening [1,2,21].

For the uniaxial test according to Equation (41), the asymptotic relation defined in
Equation (24) becomes:

σA = K0(ε + 2εT) +
4
3

G(ε− εT) +

√
8
3
(G0 − G)q0

(ε− εT)√
(ε− εT)

2
, (48)

0 = K0(ε + 2εT)−
2
3

G(ε− εT)−
√

2
3
(G0 − G)q0

(ε− εT)√
(ε− εT)

2
. (49)

Equation (49) can be solved analytically for the tension or compression test separately.
In case of tension, we express the transverse strain as:

εT =

√
3
2

G0 − G
G + 3K0

q0 +
2G− 3K0

2(G + 3K0)
ε (50)

and, then, Equation (48) takes the form:

σA =
√

6 q0
3K0(G0 − G)

G + 3K0
+

9GK0

G + 3K0
ε. (51)

Comparison of the one-dimensional model asymptote expressed by Equation (39) for
tension with Equation (51) yields the following calibration formulae for G and q0:

G =
3EK0

9K0 − E
=

E0E
3E0 − (1− 2ν0)E

and q0 =
G + 3K0

3K0(G0 − G)

σ0√
6

. (52)

Based on Equations (47) and (51), we can correlate q0 and ε0 solving σL(ε0) = σA(ε0),
which results in the following expression:

q0 =

√
3
2

3K0ε0

G0 + 3K0
=

√
2
3
(1 + ν0)ε0. (53)

The first result in Equation (52) and the above outcome (Equation (53)) are the sought
final calibration formulae. Having determined E0 and E, we obtain σ0 (or ε0) in the one-
dimensional model. Assuming ν0, we obtain K0 and G0 using Equation (5), then applying
Equation (52) and Equation (53), we can calculate the G and q0 parameters of the three-
dimensional model.

Using Equation (50), we can define the asymptotic Poisson ratio function for the
regarded simplified model:

νAK(ε) = −
εT
ε

=
3K0 − 2G

2(G + 3K0)
−
√

3
2

G0 − G
G + 3K0

q0

ε
= ν−

(
1
2
− ν0

)(
1− E

E0

)
ε0

ε
, (54)

which can be written in the alternative forms:

νAK(ε) =
1
2
−
(

1
2
− ν0

)[
E
E0

+

(
1− E

E0

)
ε0

ε

]
= ν +

(
1
2
− ν

)(
1− E0

E

)
ε0

ε
. (55)
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Function νAK(ε) defines an envelope (the lower limit) for the actual Poisson’s ratio in
the proposed model, compare with the results in [5,31]. Note that full incompressibility of
the material is attained for ε→ ∞ .

Let us summarize the sequence of calculations in the procedure of material parameters
calibration for the simplified model. In the procedure, we assume the initial Poisson ratio ν0
and estimate (calculate) the initial E0 and hardening E moduli from uniaxial experimental
test data. The initial modulus E0 should be determined as a trend line at the initial part
of an experimental stress–strain curve. The hardening modulus E is estimated from the
pre-peak part (hardening stage) of an experimental test. Then, we calculate K0, G0, G, σ0,
ε0 and q0 using the derived calibration formulae. The last parameter n, we determine from
Equations (43) and (44) with K = K0 based on one experimental point located in the vicinity
of the elbow of an experimental stress–strain curve.

Constitutive relationships for the uniaxial stress state (Equations (43) and (44))
can be expressed in a parametric way using the generalized (for the model) Poisson
ratio ν defined by the equality εT = −ν ε. In the range of ν prescribed by Equation (7), the
relation between ε(ν) and σ(ν) is of the form:

σ(ν) = 3K0(1− 2ν)ε(ν), ε(ν) =

√
3
2

q0

1 + ν
2n

√[
2(G0 − G)(1 + ν)

3K0(1− 2ν)− 2G(1 + ν)

]2n
− 1. (56)

As an example, we use our own experimental test data for aluminum AW6063 T66. For
the data, the conventional proportionality limit is estimated as σH = 145.1 MPa for strain
εH = 0.002131 and, then, the initial elasticity modulus is calculated as
E0 = σH/εH ∼= 68, 100 MPa. For the estimation of hardening modulus, we select two
points: in the initial hardening zone (ε1, σ1) = (0.01, 238.6 MPa) and the ultimate stress
(εU , σU) = (0.06064, 253.9 MPa). Based on those values, we calculate parameters included
in the one-dimensional model (Equation (36)):

E =
σU − σ1

εU − ε1
∼= 300 MPa, σ0 = σ1 − Eε1 = 235.6 MPa and (57)

ε0 =
σ0

E0 − E
= 0.003475, σP = E0ε0 = 236.6 MPa. (58)

Assuming a value of the initial Poisson’s ratio of ν0 = 0.3, we obtain parameters of
the three-dimensional model using Equations (5), (52) and (53):

K0 = 56, 700 MPa, G0 = 26, 200 MPa, G = 100 MPa, q0 = 0.003688. (59)

Having G and K = K0, we calculate the value of the asymptotic Poisson ratio
ν = νmax = 0.499 using the inverse form of the last relation in Equation (5), which is
within the allowed limits according to Equation (7): −0.994 ≤ ν ≤ 0.499. The regulariza-
tion parameter n is calculated using an additional calibration point located in the vicinity
of elbow on the experimental stress–strain curve (εn = ε0, σn) = (0.003475, 214.5 MPa).
Numerical solution to the system of Equations (43) and (44) via Wolfram Mathematica
gives the following results: εT = −0.001107 and n = 3.28 ∼= 3. Finite element simulations
of test problems for those values of parameters are presented in the next sections.

Since the one-dimensional model cannot be exactly transferred to the uniaxial state
from the spatial one, the proposed calibration process is sensitive to the selection of
calibration points. Results of calibration for several locations of the point in the hardening
zone of the experimental curve (ε1, σ1) for determination of parameters E0, E and σ0 (or ε0)
are given in Table 1. Moreover, we can observe that the selection of (εn, σn) has a strong
influence on the regularization parameter n as well. To ensure the convergence for finding
a numerical solution, the following condition for the selected point should be checked
σn < σA(εn), according to the asymptotic limit in Equation (51) for the hardening stage.



Materials 2021, 14, 7351 14 of 32

Table 1. Dependence of material parameters on selection of calibration point (εi, σi).

εi σi E σ0 ε0 ν G q0 n
% MPa MPa MPa % - MPa % -

1 238.6 302.3 235.6 0.3475 0.4991 100.8 0.3689 3.283
2 242.9 270.9 237.5 0.3502 0.4992 90.34 0.3717 3.049
3 246.7 235.1 239.6 0.3532 0.4993 78.42 0.3749 2.823
4 249.9 194.4 242.1 0.3566 0.4994 64.81 0.3785 2.605
5 252.3 150.4 244.8 0.3603 0.4996 50.14 0.3824 2.408

Graphs of the one-dimensional constitutive relation given by Equation (36) for three
calibration points included in Table 1 are shown in Figure 4a. Distributions of the secant and
tangent moduli from Equation (40) are presented in Figure 4b. We can observe graphically
some sensitivity of stress–strain curves to the assumed location of the calibration point
for determination of the hardening modulus E. The best agreement between the one-
dimensional model prediction and the experiment is for a calibration point located between
strain 0.01 and 0.02 for the regarded alloy.

Figure 4. Influence of selecting the calibration point on the hardening stage for the one-dimensional model. (a) Calibrated
constitutive relations, (b) secant and tangent moduli.

Results based on the values of material parameters according to Equation (59) are
presented in Figure 5. Graphs of the model Poisson’s ratio as a function of strain gov-
erned by Equation (56) is shown in Figure 5a. The lower band Poisson’s ratio for the
linear envelope (asymptote at origin) according to Equation (47) and the function from
Equation (55) for a skew asymptote of the uniaxial test curve are shown for comparison.
Graphs in Figure 5b present comparison of the stress–strain curves determined for the one-
dimensional model in Equation (36) with the uniaxial stress test of the three-dimensional
model from Equation (56). Asymptotes are also included in the graphical interpretation
of results. The model predictions (blue line) are in very good agreement with the experi-
mental test (dashed line) used for the calibration. Besides the scatter of the experimental
results close to the origin (for σ < 40 MPa), the maximum relative difference between
the model prediction and the experiment is up to 2% (

(
εPred − εExp

)
/εExp ≤ 0.02 when

40 MPa < σ < 200 MPa), for the first stage, and 1% (
(
σPred − σExp

)
/σExp ≤ 0.01 when

ε > 0.002), for the second stage.



Materials 2021, 14, 7351 15 of 32

Figure 5. (a) Poisson’s ratio for the model and its envelope, (b) stress–strain relation for the one-dimensional and the
uniaxial tension of the three-dimensional model with asymptotes.

3.4. Calibration Procedure for Fully Compressible Material
Procedure described in Section 3.3 will be now extended to the fully compressible

material including the second stage of behavior, where the bulk modulus undergoes
changes K < K0. Results for the initial linear behavior governed by Equation (47) remain
true. The present calibration is based on uniaxial experimental data. For the asymptotic
relation in Equation (21), we use here a generalized Poisson’s ratio ν (εT = −ν ε), which
allows to express Equations (43) and (44) in the form:

σA =

[
K(1− 2ν) +

4
3

G(1 + ν)

]
ε +

ε

QAUX

[
(K0 − K)(1− 2ν) +

4
3
(G0 − G)(1 + ν)

]
, (60)

0 = K(1− 2ν)− 2
3

G(1 + ν) +
1

QAUX

[
(K0 − K)(1− 2ν)− 2

3
(G0 − G)(1 + ν)

]
, (61)

where:

QAUX =

√√√√[ (K0 − K)(1− 2ν)2

2(G0 − G)
+

2(1 + ν)2

3

]
ε2

q2
0

. (62)

Equation (61) can be solved for ε = εA, separately for the uniaxial compression and
tension. In case of tension, we obtain:

εA = q0
3(K0 − K)(1− 2ν)− 2(G0 − G)(1 + ν)

2G(1 + ν)− 3K(1− 2ν)
P(ν), (63)

which, when substituted into Equation (60), results in:

σA = q0
6(K0G− G0K)(1− 2ν)(1 + ν)

2G(1 + ν)− 3K(1− 2ν)
P(ν), (64)

where:

P(ν) =

√
6(G0 − G)

3(K0 − K)(1− 2ν)2 + 4(G0 − G)(1 + ν)2 . (65)

Functions of the asymptotic direct strain εA(ν) and the asymptotic normal stress σA(ν)
define the stress–strain relation in the uniaxial test in the parametric form. The generalized
Poisson’s ratio ν can change within the limits ν0 ≤ ν ≤ ν.

To find the calibration formulae in the following derivations, we will regard ν as a
parameter in the parametric description of the uniaxial stress state of the elastic model. The
nonlinear path of the uniaxial stress in the plane of invariants (p, q) is shown in Figure 6.
Note that for a linear material, the uniaxial stress path goes along a straight line. For our
model, the relation between εA(ν) and σA(ν) is nonlinear since the Poisson’s ratio function
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ν changes with the loading level within the prescribed limits ν0 ≤ ν ≤ ν. This function has
a skew asymptote which can be determined by calculation of the appropriate limits of the
functions in Equation (63) and Equation (64) when ν→ ν . The asymptote is described by
the following function:

σAUX =
3
√

2 q0

G + 3K

√
(G0 − G)[(K0 − K)G2 + 3(G0 − G)K2] +

9GK
G + 3K

ε. (66)

Figure 6. Contours of elastic strain energy for compressible nonlinear material for K0 = 56, 700 MPa,
G0 = 26, 200 MPa, K = 16, 200 MPa, G = 65 MPa, q0 = 0.00379, n = 3.44.

Comparison of the asymptote for the one-dimensional model from Equation (39) for
tension with Equation (66) yields the following calibration formula:

G =
3EK

9K− E
=

E
2(1 + ν)

, (67)

which confirms the definition of the hardening shear modulus (Equation (5)). Based
on Equations (47) and (66), we can solve σL(ε0) = σAUX(ε0) leading to the following
dependence of q0 on ε0:

q0 =
3[(K0 − K)G0G + 3(G0 − G)K0K]ε0

(G0 + 3K0)
√

2(G0 − G)[(K0 − K)G2 + 3(G0 − G)K2]
. (68)

Equation (68) is the sought calibration formula for the fully compressible material.
The constitutive relationships for the uniaxial stress state described by Equations (43)

and (44) can be expressed in a parametric way using the model Poisson’s ratio ν. In case of
fully compressible material model, the relation between ε(ν) and σ(ν) is:

ε(ν) = q0P(ν) 2n

√[
3(K0 − K)(1− 2ν)− 2(G0 − G)(1 + ν)

2G(1 + ν)− 3K(1− 2ν)

]2n
− 1, (69)

σ(ν) = q0
6(G0K− K0G)(1 + ν)(1− 2ν)

2(G0 − G)(1 + ν)− 3(K0 − K)(1− 2ν)
ε(ν). (70)

In the calibration procedure of the three-dimensional model of the fully compressible
material, we assume the initial ν0 and the asymptotic ν Poisson’s ratios within the limits
resulting from Equation (7). Note that ν0 and ν can be calibrated as well if experimental
results for the transverse strain εT are available. Next, we calculate the initial E0 and
the hardening E moduli from the uniaxial experimental data (direct strain versus stress).
The initial modulus E0 should be determined as a trend line at the initial part of an
experimental stress–strain curve. The hardening modulus E is estimated from the pre-peak
part (advanced hardening stage) of an experimental test. Then, we can calculate bulk
and shear moduli K0, G0, K, G for both stages, and on the basis of the asymptotes of the
one-dimensional model σ0 or ε0, we obtain q0 from Equation (68). The last parameter n
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we determine from Equations (43) and (44) using one experimental point located in the
vicinity of the elbow of a stress–strain curve.

For the regarded experimental data for aluminum AW6063 T66, the parameters E0,
E, σ0 and ε0 have the same values as in Section 3.3. Assuming values of the initial and
the asymptotic Poisson’s ratios ν0 = 0.3 and ν = 0.498 (almost incompressible asymptotic
material behavior) located within the limits −0.994 ≤ ν ≤ 0.499, we calculate parameters
of the three-dimensional model using Equation (5):

K0 = 56, 700 MPa, G0 = 26, 200 MPa, K = 25, 200 MPa, G = 101 MPa, (71)

along with Equations (68) and (3):

q0 = 0.003691, p0 =

√
2(G0 − G)

3(K0 − K)
q0 = 0.002741. (72)

The obtained values show significant drop in the bulk modulus value for the hard-
ening stage if compared to asymptotic incompressible material model. Having results
in Equations (71) and (72), we calculate the regularization parameter n using an addi-
tional calibration point, as previously, located in the vicinity of elbow of the experimental
stress–strain curve (εn, σn) = (0.003475, 214.5 MPa). Numerical solutions to the system of
Equation (43) and Equation (44) are εT = −0.001071 and n = 4.26 ∼= 4.

Again, the proposed calibration process is sensitive to the selection of calibration
points. With the assumed ν = 0.498, results of calibration for several locations of a point in
the hardening zone of the experimental curve (εi, σi) are given in Table 2. The value of the
regularization parameter n is also greatly affected by the choice of (εn, σn). The selected
point should be below the asymptotic curve described parametrically by Equation (63) and
Equation (64).

Table 2. Dependence of material parameters on selection of calibration point (εi, σi) in case of
compressible material.

εi σi E σ0 ε0 K G q0 n
% MPa MPa MPa % MPa MPa % -

1 238.6 302.3 235.6 0.3475 25,190 100.9 0.3691 4.265
2 242.9 270.9 237.5 0.3502 22,570 90.41 0.3720 3.979
3 246.7 235.1 239.6 0.3532 19,590 78.48 0.3752 3.706
4 249.9 194.4 242.1 0.3566 16,200 64.87 0.3789 3.445
5 252.3 150.4 244.8 0.3603 12,530 50.19 0.3828 3.211

Contour lines of the elastic energy defined by Equation (1) in the plane of invariants
(p, q) for the fourth set of parameters (based on point with εn = 0.04) from Table 2 are
presented in Figure 6. A straight line representing the path of the uniaxial strain test and a
curved path of the uniaxial stress according to Equation (42) with usage of Equation (69)
and Equation (70) are shown as well. In case of a linear material, the uniaxial stress path
follows a straight line (light blue), which is included for comparison. Because of the curved
path of the uniaxial stress (dark blue), the calibration procedure is not straightforward,
as was shown in this section. Location of the elbow ellipse QA(p, q) = 1, separating the
domain of the initial linear envelope from Equation (20) from the domain of the asymptotic
relationship according to Equation (21), is also given with a solid green line in Figure 6.

The stress–strain curves of the calibrated model for the fourth set (εn = 0.04) of
parameters from Table 2 are presented in Figure 7a,b. The calibrated constitutive relation
for the uniaxial stress in the three-dimensional model according to the parametric formulae
in Equations (69) and (70) is shown in Figure 7a. The asymptote of this relation described
by Equation (66) and the asymptotic curve based on definitions in Equations (63) and (64)
are plotted in this figure as well. Only in the vicinity of the elbow, the difference between
curves is significant. The asymptotic curve (orange line) and its asymptote (green line)



Materials 2021, 14, 7351 18 of 32

diverge in the elbow zone more than the curve of the one-dimensional model shown in
Figure 7b. This effect is closely related to the nonlinear path of the uniaxial stress state
shown in Figure 6. Generally, the bigger hardening in the second stage is, the larger
difference between those curves can be observed. The stress–strain curves determined for
the one-dimensional model in Equation (36) and for the uniaxial stress test of the three-
dimensional model described by Equations (69) and (70) are compared to the experimental
relation in Figure 7b. A very good compatibility between the experimental data and model
predictions can be observed. The maximum error between the model’s prediction and the
experiment is up to 2%, but generally decreases. Comparison of predictions according to
the three sets of calibrated parameters included in Table 2 are presented in Figure 7c,d.
In case of compressible material, stress–strain curves are less sensitive to the selection
of the calibration point than those for asymptotically an incompressible material or one-
dimensional model (Figure 4). Relations between the transverse strain and the stress are
shown in Figure 7d. In contrast to calibration from Section 3.3, the best correspondence of
the uniaxial test prediction and the experiment is for a calibration point located between
strain 0.045 and 0.055 for the regarded alloy.

Figure 7. Stress–strain relation for compressible material: (a) asymptotic curve according to Equations (63) and (64)
with asymptotes, (b) one-dimensional model and uniaxial tension of the three-dimensional model with asymptotes and
experiment; and (c) comparison of calibrated three uniaxial tension curves with experiment, (d) comparison for transverse
strain for three selected calibration points.

As an alternative to the presented equations, the calibration of the fully compress-
ible material can be done by usage of four appropriately selected experimental points
without reference to the one-dimensional model. In this approach, ν0 and ν must be as-
sumed according to the limits set by Equation (7). Next, using the selected points from
the experimental stress–strain curve, the four remaining parameters E0, E, q0 and n can
be calculated. Based on Equations (43) and (44), a system composed of eight nonlinear
equations, two for each calibration point, is solved numerically using Wolfram Mathe-
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matica. Four values of εT (for each point) are determined as well. The solution is very
sensitive to the choice of experimental points and starting points for iterations. Assum-
ing Poisson’s ratios ν0 = 0.3, ν = 0.498 and the experimental calibration points (ε, σ):
(0.00213, 145 MPa), (0.00378, 223 MPa), (0.00545, 235 MPa), (0.0606, 254 MPa), the follow-
ing values of parameters are found: E0 = 68, 280 MPa, E = 153 MPa, σ0 = 245 MPa
and n = 3.94. Then, the parameters of the three-dimensional model can be obtained:
K0 = 56, 900 MPa, G0 = 26, 260 MPa, K = 12, 750 MPa, G = 51 MPa, q0 = 0.00382,
p0 = 0.00240.

Results of this variant of calibration are shown in Figure 8. A graph of the model
Poisson’s ratio as a function of strain (Equation (69)) is shown in Figure 8a. Comparing
this graph with graphs presented in Figure 5a, we can observe a slower development of
the model’s Poisson ratio for the fully compressible material than for the second stage
of the asymptotically incompressible material. Figure 8b provides a comparison of the
stress–strain curves determined for the one-dimensional model from Equation (36) and the
uniaxial stress test of the three-dimensional model defined by Equations (69) and (70). The
compatibility of the model’s predictions and the experimental curve is satisfactory. The
difference between the one-dimensional model and the uniaxial stress for strains above
the elbow is related to the nonlinear path of the uniaxial stress state shown in Figure 6.
The best compatibility between the uniaxial test prediction and the experiment is when
the third calibration point is selected between strain 0.045 and 0.055 for the regarded alloy.
This range is in contradiction with the suggested range 0.01 and 0.02 for the asymptotically
incompressible material.

Figure 8. (a) Poisson’s ratio for the compressible model, (b) stress–strain relation for the one-dimensional model and the
uniaxial tension of the three-dimensional model with asymptotes.

4. Model Implementation in ABAQUS Environment with Basic Tests

In this section, we describe implementation of the proposed three-dimensional model
and present a basic test of its correctness. The model of nonlinear elasticity introduced in
Section 2 has been programmed in FORTRAN 90 (Intel Visual Fortran Compiler, Profes-
sional Edition 11.1) as a part of the user material procedure (UMAT) of ABAQUS/Standard [32].
The format of the UMAT procedure requires an incremental form of constitutive relation-
ships, thus, we need to know an explicit definition of the fourth-order tensor of tangent
stiffness. In the context of continuum mechanics, this relationship is compatible with the ob-
jective hypoelasticity relationship, which is formulated as the Zaremba–Jaumann objective
derivative of the Kirchhoff stress tensor related to the rate of deformation tensor [21,25–27].
In case of small displacement theory, the rate of the Cauchy stress tensor is tied to the rate of
infinitesimal strain tensor as it is given in Equation (25) and the tensor of tangent stiffness is
described by Equation (27). In that case, the objectivity assumption is no longer valid. The
tangent stiffness tensor is employed to obtain the structural tangent stiffness matrix which
is further used for iterations according to the Newton–Raphson method. The constitutive
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relationship formulated by Equation (12) allows to determine the actual stress tensor at the
end of an increment. More details on the finite element algorithm are described in [21,32,33].
The objectivity issues for FEM formulations are analyzed and discussed in [25–27]. In the
ABAQUS/Standard, the moderately large deformation formulation is based on changing
the infinitesimal stress and strain tensors to the Cauchy stress tensor and logarithm of the
left deformation tensor (ln V). Such a relationship is not objective, so, for example, in a
shear test, we obtain oscillations of the stress component, compare Figure 14.19 in [26]. It is
also known that consideration of plastic properties of a material may lead to regularization
of this response (with no oscillation).

We verify the developed UMAT procedure on boundary value problems with homoge-
neous fields of stress and strain. The uniaxial stress state, the uniaxial strain state and shear
test are chosen as first tests. In both problems, we apply stretching in x1 direction of cubic
samples, modelled with one C3D8 finite element of ABAQUS. The selected problems can
be solved analytically (uniaxial strain state) or partly analytically and partly numerically
(uniaxial stress state) and compared with the results obtained using the considered model.

In case of the uniaxial strain state, it is possible to determine analytic formulae for the
components of stress tensor as a function of the direct strain component using constitutive
relationship in Equation (12). This allows to compare the numerical solution obtained via
the ABAQUS program with the exact one, see Figure 9a. Based on the calibration performed
in Section 3.3 for the simplified model, the following values of material parameters have
been adopted for the test: G0 = 26,200 MPa , K0 = K = 56,700 MPa , G = 100 MPa,
q0 = 0.003688, p0 = 1.0 and n = 3. Additionally, we confront the received curves
with predictions of the standard model of elastic-plastic material available in ABAQUS,
see Figure 9b. This model is based on the Huber–Mises yield condition with isotropic
hardening. The plastic hardening function is determined from a uniaxial tensile test.
For this purpose, we assume E0 = 68, 090 MPa, ν0 = 0.3 and a piecewise linear plastic
hardening function σ

(
εp
)
, where εp is an equivalent plastic strain. This function is assessed

from the own experiment of uniaxial tension of AW 6063 T66 aluminum alloy (Metpartner,
Poland) to reproduce closely the observed stress–strain curve.

Figure 9. Comparison of the analytic elastic solution for the uniaxial strain test with: (a) FEM solution according to our own
implementation, (b) FEM solution based on the standard elastic-plastic model.

Comparison of both numerical simulations with the analytical solution is presented
in Figure 9, for both axial and lateral stress components. It can be concluded that the
nonlinear elasticity model has been correctly implemented; agreement of results is up
to six digits. Additionally, comparing the exact solution obtained within the framework
of nonlinear elasticity with the FEM solutions, it can be noticed that all obtained curves
coincide; the results are fully compatible, qualitatively and quantitatively. In order to
verify stability of solutions, numerical simulations are carried out for a wider range of
deformations (ε > εU = 0.06064) than the stable behavior of the tested aluminum alloy,
which was used for the calibration.



Materials 2021, 14, 7351 21 of 32

In case of the uniaxial stress test, it is not possible to obtain an explicit analytical closed-
form solution for the considered material model. Only a parametric description of the
relationship between axial stress and strain can be obtained, in which the model’s Poisson’s
ratio is the parameter according to Equations (69) and (70). In order to verify the parametric
description, the solution was obtained using the FindRoot nonlinear equation solving
procedure by Wolfram Mathematica. From the condition of null transverse normal stress in
Equation (44), a nonlinear relationship between the direct strain and the transverse strain
was obtained. This allowed to determine the relationship between strain components,
which in turn made it possible to obtain the normal stress in the stretching direction
according to Equation (43). We will call this solution analytical-numerical and treat it as
a reference for the FEM solution obtained using the proposed nonlinear elastic material
model implemented in the UMAT procedure. Comparison of the two outcomes is presented
in Figure 10a. Again, the compatibility of the results is excellent. The Huber–Mises model
estimates are also qualitatively and quantitatively correct but the convergence is worse
than that of our own model, see Figure 10b.

Figure 10. Comparison of the analytical-numerical nonlinear elastic solution for the uniaxial stress test with: (a) FEM
solution according to own implementation, (b) FEM solution based on standard elastic-plastic model.

The third test used for verification of the model implementation is the shear test. The
calculations are carried out for one C3D8 finite element. Appropriate displacements are
applied in the element’s nodes to induce a purely distortional deformation. In case of our
own implementation, the obtained results are presented against the analytical solution
in Figure 11a. Comparison of the exact solution for the nonlinear elastic model with
results of the numerical test according to the Huber–Mises elastic-plastic model is shown
in Figure 11b. In this case, the model prediction is compatible with the analytic one only for
a limited range of the distortional strain. With an increasing strain level, the discrepancy
between solutions increases.

Figure 11. Comparison of the analytic nonlinear elastic solution for the pure distortion test with: (a) FEM solution according
to our own implementation, (b) FEM solution based on standard elastic-plastic model.
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5. FEM Solutions to Selected Boundary Value Problems

In this section, we regard three boundary value problems which can be seen as
structural element models. We analyze a rod under self-weight load, a rectangular plate
with a circular hole in tension and a compressed column. In case of the rod, we compare
an exact solution with the numerical one, which is based on the proposed model. Those
examples serve as preliminary applications of the developed model to solutions of more
realistic engineering structures with inhomogeneous fields of stress and strain.

5.1. Rod Stretched under Its Self-Weight

A problem of a rod subjected to tensile load (self-weight) is now regarded. The rod
with dimensions 20 mm × 40 mm × 800 mm is meshed with 80,000 finite elements of C3D8
type (spatial, eight-node with linear shape functions). The resulting FEM mesh is uniform as
shown in Figure 12. For nodes located on the ABCD surface, the displacement component
in direction 3 is blocked, and for the node at point B, the displacement components in
directions 1 and 2 are blocked as well. It is assumed that gravity acts in the direction of axis
3 and the self-weight load is realized by assigning volumetric forces applied to elements,
using the scaled mass density of the rod. The prescribed load is assumed in such a way that
the ultimate stress σ33 = σU = 253.9 MPa is reached in the most stressed cross-section, that
is x3 = 0. In this case, we consider a reduced model of nonlinear elasticity neglecting the
hardening stage behavior. This assumption is undertaken to compare numerical simulation
with an existing analytical solution to the problem. Consequently, the following material
data are adopted for the numerical calculations: G0 = 26, 200 MPa, K0 = 56, 700 MPa,
G = K = 0, q0 = 0.004252, p0 = 0.002358 and n = 2.58. Those values of material
parameters were obtained to fit the one-dimensional model to the initial stiffness and the
ultimate stress of the regarded experimental test.

Figure 12. Geometry and FEM mesh of the regarded rod problem.

The solution of the rod in tension under self-weight (or in the case of a one-dimensional
model under the action of a uniformly distributed load) is of fundamental importance,
because it is one of few problems with inhomogeneous displacement, stress and strain
fields for which an analytical solution can be found. For this purpose, hardening in the
second phase of deformation must be excluded from the proposed model. Thus, neglecting
hardening (E = 0) in the one-dimensional model proposed in Section 3.1, the constitutive
relationship defined in Equation (36) can be inverted. Then, the resulting formula for the
strain function can be integrated to find the displacement function. The solution to this
problem is described by the following functions:

σ33(x3) =
µ

A
(L− x3), ε33(x3) =

µNU(L− x3)

E0 A 2n
√

N2n
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for 0 ≤ x3 ≤ L, compare Figure 12. In the above functions, µ = ρAg is the load uniformly
distributed along the rod’s length, ρ is the mass density, g is the gravitational acceleration,
A is the cross-section area, L is the rod’s length, and F is the hypergeometric function.
NU = σU A is the load capacity of the rod’s cross-section, while µU = NU/L is the limiting
load of the rod. Note that by setting n = 1, we can obtain the simplest solution to the problem:

ε33(x3) =
µNU(L−x3)

E0 A
√

N2
U−µ2(L−x3)

2
,

u3(x3) =
NU

E0 Aµ

[√
N2

U − µ2(L− x3)
2 −

√
N2

U − µ2L2
]

.
(75)

Using the limiting load µU , it takes the shortest form:

ε33U(x3) =
NU(L− x3)

E0 A
√

x3(2L− x3)
, u3U(x3) =

NU
E0 A

√
x3(2L− x3). (76)

Comparison of the results obtained using various methods is presented in Figure 13.
Relation between the reaction force RABCD of the fixed end and the maximum displacement
of the rod’s free end is given in Figure 13a. It shows an excellent correlation with the analytic
solution. In case of displacement (Figure 13b), the FEM solution provides slightly lower
values. For the σ33 stress component, great compatibility of the results can be observed
in the entire rod’s domain, as shown in Figure 13c. The functions describing the strain
component ε33 (Figure 13d) are in good agreement besides the zone near x3 = 0. At the
fixed end of the rod, the analytical solution for strain changes significantly when the load
approaches the ultimate value µU . Since we have assumed a uniform mesh with a side
length of an element equal to 2 mm, it is not possible to obtain such a rapid change in
distribution of strain. Certainly, a refinement of the mesh in this zone would significantly
improve the FEM model predictions, but our goal here is to illustrate a general correctness
of the implementation in case of a complex problem with inhomogeneous displacement,
strain and stress fields, so we leave further improvements out.

Figure 13. Comparison of analytical and numerical solutions for the rod: (a) reaction versus maximum displacement,
(b) displacement, (c) stress, (d) strain.
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We have performed a convergence analysis of the numerical solution using six meshes
as depicted in Figure 14. The bar chart presents the maximum displacement u3 (at the
tip of the rod) as a function of the number of elements. The obtained results show an
excellent convergence rate for the regarded structure. This test confirms very good stability
and accuracy of the computational model even for a coarse mesh. In contrast to the
elastic-plastic models, the nonlinear elastic models are less sensitive to the localization
of deformation. This feature depending on the problem analyzed can be regarded as an
advantage or a disadvantage.

Figure 14. Mesh sensitivity in the FEM solution of the rod problem.

5.2. Rectangular Plate with a Circular Hole

The next test problem is a rectangular plate with a circular hole in its center. The plate
is stretched along the x1 direction according to Figure 15. The existence of the hole results in
inhomogeneous fields of displacement, strain and stress and emerging stress concentration
effects. Considering symmetry of the problem, we can analyze the computational model
reduced to a quarter as it is shown in Figure 15. The modeled region has dimensions
50 mm × 20 mm (DF × BF) with the hole of radius 6 mm and the plate thickness of 2 mm.

Figure 15. FEM mesh and characteristic points of the rectangular plate with a circular hole.

In order to preserve the symmetry of the problem, the boundary conditions u1 = 0
along the CD edge and u2 = 0 on the AB edge are assumed. The stretch of the plate is
driven by enforcing the displacement u1 = 2 mm on the BF line. The FEM mesh of the plate,
shown in Figure 15, consists of 3531 8-node spatial elements with 3 elements along the
thickness. We assume that the plate is made of the aluminum alloy considered in Section 4
and adopt the same values of material parameters. The problem is solved according to
the proposed nonlinear elasticity constitutive model and using the standard elastic-plastic
model of ABAQUS. We regard two cases of the problem settings, one within the framework
of small deformations, and the other one of moderately large deformations, with usage of
the NLGEOM option, compare in [21,25,32]. Contour plots of the Huber–Mises equivalent
stress for those two cases are presented in Figure 16. Solution according to the proposed
nonlinear elastic model is shown in Figure 16a, while results obtained using the elastic-
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plastic model are given in Figure 16b. The maximum stress on the stress scale is associated
to the solution with usage of the standard elastic-plastic model. Therefore, for the nonlinear
elastic model solution, the gray sub-area on the stress scale represents stresses greater than
the maximum stress obtained in the elastic-plastic solution. We can notice a difference in
the shape of the deformed plate between the obtained solutions. Due to possible stress
redistribution in the elastic-plastic model, there is a significant change in the zone of stress
concentration if compared to the nonlinear elastic model.

Figure 16. Contour plots of Huber–Mises equivalent stress (MPa) under the applied displacement uBF
1 = 2 mm in the

considered plate for: (a) introduced nonlinear elastic model, (b) Abaqus elastic-plastic model.

Graphs of the displacement component u2 of the node C as a function of the im-
posed displacement of the BF edge are shown in Figure 17. We applied a quite large
deformation uBF

1 to investigate possible differences in predictions for various models and
settings. We can observe that depending on the constitutive model used for simulations,
the presented graphs may change significantly. Solutions according to the nonlinear elastic,
the elastic-plastic and the elastic-plastic plane stress models in the small strain setting
are described by monotonically decreasing functions. In other cases, we observe a more
complex dependence between the regarded displacements. In case of nonlinear elastic
model, with the NLGEOM option turned on, the response rapidly stiffens and it was not
possible to find a solution to the problem in the entire range of the assumed boundary
displacement. This locking effect is caused by the increasing Poisson’s ratio (close to νmax
limit set in Equation (7)) with extensive straining of the plate. Graphs of the displacement
component u1 of the node A as a function of the displacement prescribed on the BF edge
are presented in Figure 18. Dependencies between the functions are almost identical for
all the considered constitutive models and formulations. Based on these results, it can
be concluded that the responses obtained using the proposed nonlinear elastic model
in the framework of small strain theory are stable and monotonic over the entire range.
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The dominant effects for the investigated u1 displacement of node A coincide with the
results achieved by the elastic-plastic models. However, it should be emphasized that the
automatic generalization of the nonlinear elastic model to moderately large deformations
via the NLGEOM option does not lead to a stable behavior. Using material data as for small
deformation theory, we obtained the effect of rapid stiffening of the response, which leads
to the lack of convergence of the standard incremental algorithm of ABAQUS. Markers
placed along the curves represent solutions in the successive increments; their increasing
density informs about convergence problems, and, inversely, increasing distance between
them indicates improved rate of convergence. However, when comparing the solutions ob-
tained according to the elastic-plastic model for small and moderately large deformations,
it can be noticed that turning on the NLGEOM leads to rapid changes, not only in values,
but also in character of the response function (Figure 17). As it can be seen in Figure 17b,
for very small deformation, the uC

2 prediction is the same for all analyzed models. For
substantial deformation, one can observe the displacement oscillation symptoms. This type
of behavior is typical for small deformation theory used for large deformation (or/and
rotations) [25,26]. The fact that in the case of the proposed nonlinear elastic model the uC

2
function is monotonic in the whole range of deformation confirms its model. Of course, at
this stage of research, it is too early to formulate any solid conclusions, but we plan to deal
with the problem of model’s application for large deformation theories in the future.

Figure 17. Displacement u2 of node C as a function of the edge displacement BF: (a) uBF
1 ∈ [0, 2](mm), (b) uBF

1 ∈ [0, 0.4](mm).

Figure 18. Displacement u1 of node A as a function of the edge displacement BF.

Mesh sensitivity for the analyzed plate is investigated as well. In contrast to the rod
under self-weight in case of the plate, we compare values of the total reaction since the
loading is applied through the displacement enforcement. The value of this reaction for the
increasing number of elements is shown in Figure 19. We can see that better results may
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be obtained for meshes with larger number of elements, but when calculating the relative
error (for which the solution obtained for 122,896 elements is treated as the reference), one can
observe that even for the coarse mesh, consisting of 3531 elements, the error is less than 0.2%
when compared to the total reaction obtained for the fine mesh consisting of 122,896 elements.

Figure 19. Mesh sensitivity of the FEM solution for the plate problem.

5.3. Compression of Column with Initial Shape Imperfection

The last analyzed problem is a column subjected to compression. Geometry of the
column is the same as regarded in Section 5.1 (Figure 12). Material data are the same
as in Section 4. Boundary conditions on the ABCD and A′B′C′D′ planes are changed as
follows. On the surface of ABCD, all the displacement degrees of freedom are blocked. On
the A′B′C′D′ surface, the displacement components in direction 1 and 2 are blocked and
the axial displacement of value u3 = −80 mm in direction 3 is applied. Such boundary
conditions represent a column fixed on both ends. The assumed axial loading may lead to
buckling. That is why all below solved problems are formulated in the theory of moderately
large deformations (NLGEOM option is active). We also introduce geometric imperfections
of the column to effectively solve the regarded stability problem.

Prior to the analysis of the column compression, the eigenvalue buckling problem
was solved, in which ten buckling eigenmodes were determined (BUCKLE option in
the ABAQUS/Standard). The first form of buckling governs the global column stability
about the axis of minor inertia moment of the cross-section, that is in the x1x3 plane. This
normalized buckling form is treated as the given imperfection. Next, the amplitude of
the selected buckling mode is assumed. We solve nine stability problems with different
magnitudes of imperfections. The first eigenmode is scaled with the following amplitudes
of imperfection: e = 0.01, 0.05, 0.10, 0.15, 0.25, 0.50, 1.00, 2.00, 4.00 mm. The equilibrium
paths obtained for the individual imperfection values according the proposed nonlinear
elastic model are shown in Figure 20, while equilibrium paths for the elastic-plastic model
are presented in Figure 21. Stable response of the column is observed for small imperfection
amplitudes, while for larger imperfections buckling occurs. Axial forces Fnl (for nonlinear
elastic model) or Fpl (for elastic plastic model) are calculated as total reactions exerting from
the A′B′C′D′ surface due to the displacement applied to the boundary nodes. Their extreme
values are associated with the critical force F. The reference capacity FR = AσU = 203 kN
representing the ultimate load determined for the experimental strength σU = 253.9 MPa
of the regarded alloy is shown for comparison.
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Figure 20. Axial force versus applied displacement for the nonlinear elastic model.

Figure 21. Axial force versus applied displacement for the elastic-plastic model.

The bar graphs shown in Figure 22 represent values of the critical forces obtained
using both constitutive models. In case of bars with a contour marked as a dashed line, no
buckling occurred; for those columns a stable compression with bending is observed. We
can notice that for the nonlinear elastic solutions, values of the obtained critical forces are
slightly lower than the respective forces received for the considered elastic-plastic model.
This fact is often discussed in the literature, where attention is paid to better compliance
of solutions obtained within the framework of the theory of nonlinear elasticity (the
deformation theory of plasticity) with experiments. Values of the critical forces according to
the plastic flow theory are generally higher than the experimental ones [6–8]. According to
the nonlinear elastic model, the columns have not buckled for the initial amplitude of shape
imperfections 0.10, 0.05 and 0.01 mm. For the elastic-plastic model, this occurred only for
the smallest amplitude value. This effect was reported in [8] as well. The discrepancy is
due to almost linear hardening included in the nonlinear elastic model, which allows for a
more stable column response when the imperfection is small enough.
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Figure 22. Critical force as a function of the initial amplitude of shape imperfection for the regarded
constitutive models.

In order to effectively compare the obtained values of the critical forces, the relative
difference defined as RD = 100

(
minFpl −minFnl

)
/minFpl is shown in Figure 23. In those

cases where buckling took place, the differences did not exceed 4% for both constitutive
models. An exception is the relative error exceeding 10% for 0.25 mm imperfection ampli-
tude. It should be emphasized that in all analyzed cases, the standard algorithm of step
division into increments implemented in the ABAQUS/Standard program was used. This
means that its settings could influence both the values of the critical forces and the solution
convergence. In order to exclude this issue from the analysis, the settings were always the
same for both models.

Figure 23. Relative difference between the critical forces obtained according to the nonlinear elastic
and elastic-plastic model.

Additionally, the bar chart in Figure 24 presents information on the number of in-
crements, iterations and CPU time needed to solve the regarded stability problems. The
number of increments or iterations indirectly shows the rate of convergence in the calcula-
tion process. It can be seen that, in all cases, the solution for the proposed model is reached
with a significantly smaller number of increments (iterations), despite the fact that in order
to solve the problem, we use the standard FEM algorithm ABAQUS/Standard, which
primarily supports the elastic-plastic constitutive model. The reduction in computational
time is perhaps not spectacular, but in all cases, the time was shorter for our model than
for the elastic-plastic one.
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Figure 24. Number of: (a) increments, (b) iterations needed to solve the problem, (c) CPU time needed to solve the problem
as a function of the amplitude for geometric imperfection.

6. Summary

In the paper, a fully three-dimensional model of a nonlinear elastic material is formu-
lated in the framework of Green’s elasticity, so restricted to the path-independent material
behavior. In the obtained constitutive relationship, the Cauchy stress tensor is a function
of the strain tensor. The relation is non-invertible, what entails some difficulties in the
calibration process when stress tests are used, but is excellent for strain-driven tests and
convenient to finite element implementation. The model’s predictions are governed by
two-stage material behavior. During the first stage (low strain level) the stress–strain rela-
tion is close to the linear Hooke’s law. After a smooth transition, in the second stage (high
strain level), an almost linear hardening occurs. This type of response can be applied to
many metallic materials, although here we have regarded only a low-hardening aluminum
alloy. In contrast to the standard plastic incompressibility in elastic-plastic models, the
proposed model can describe material compressibility in both stages of material behavior.
As a result, the variability of Young’s modulus and Poisson’s ratio with strain or stress are
inseparably included in the model formulation. The model requires six material constants:
two bulk moduli K0 and K; two shear moduli: G0 and G; the elbow strain q0 marking the
stage switch, and the regularization parameter n. Material constant n is responsible for the
smooth transition from the first stage to the second stage of material response.

The presented model is reasonably flexible, in the second stage, it can be reduced to
obtain the asymptotically incompressible response. Since the derived constitutive relation-
ship is in the format σ(ε), it is convenient for finite-element method implementation, but
it is less suitable for calibration of material parameters using stress tests. Those features
are in contrast to models in the format ε(σ), where a calibration based on stress tests is
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convenient, but finite element programming is problematic, compare in [21]. More com-
plex constitutive relations, that reasonably reflect the real material behavior, are usually
non-invertible. Therefore, the calibration process of the proposed model is discussed in
details. We use the uniaxial test, which is the most often performed for aluminum, and
employ a one-dimensional analog of the three-dimensional model. The various approaches
shown for the calibration allow to effectively determine the material constants present in
the model’s equations.

The finite element implementation of the proposed nonlinear elastic model has been
performed in the ABAQUS environment via a UMAT subroutine. The developed code has
been tested on several problems confirming its correctness and applicability in numerical
simulations. After verification, we have performed a preliminary analysis of a global
buckling problem. The advantages of the proposed model have been shown. As pointed
out in [5], the material compressibility influences the values of the critical loads. Thus,
taking into account compressibility in both elastic and elastic-plastic stages of the material
response, which is not done for most classic models, the standard elastic-plastic model
of ABAQUS included, may deliver new, improved estimates of the critical loads. Our
future work is to focus on the application of the introduced model to engineering structures
susceptible to buckling.

Application of the developed and coded model is not only restricted to buckling
problems mentioned in this paper. It may be used to solve any problem which can be
regarded as nonlinear elastic in the framework of infinitesimal strain theory of isotropic
materials. The model predicts path-independent responses; thus, the stress redistribution
effect or cyclic loading cannot be described properly. It is rather suitable for monotonic
loading regimes, which are usually used in structural design procedures. The model can be
successfully used in micro-level mechanics of materials to simulate grain (or micro-element)
elastic response or employed in homogenization theory for determination of macroscopic
generally anisotropic material properties.
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