
Submitted 23 December 2021
Accepted 10 March 2022
Published 30 March 2022

Corresponding author
Jianli Ding, dingjl@163.com,
watarid@xju.edu.cn

Academic editor
Xinfeng Wang

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.13203

Copyright
2022 Jin et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Machine learning driven by environmental
covariates to estimate high-resolution
PM2.5 in data-poor regions
XiaoYe Jin1,2, Jianli Ding1,2,3, Xiangyu Ge1,2, Jie Liu1,2, Boqiang Xie1,2,
Shuang Zhao1,2 and Qiaozhen Zhao1,2

1Department of MOE Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
2College of Resources and Environment Science, Xinjiang University, Urumqi, China
3MNR Technology Innovation Center for Central Asia Geo-Information Exploitation and Utilization, Urumqi,
China

ABSTRACT
PM2.5, which refers to fine particles with an equivalent aerodynamic diameter of less
than or equal to 2.5 µm, can not only affect air quality but also endanger public health.
Nevertheless, the spatial distribution of PM2.5 is not well understood in data-poor
regions where monitoring stations are scarce. Therefore, we constructed a random
forest (RF) model and a bagging algorithm model based on ground-monitored PM2.5
data, aerosol optical depth (AOD) and meteorological data, and auxiliary geographical
variables to accurately estimate the spatial distribution of PM2.5 concentrations in
Xinjiang during 2015–2020 at a resolution of 1 km. Through 10-fold cross-validation
(CV), the RF model and bagging algorithm model were verified and compared. The
results showed the following: (1) The RFmodel achieved bettermodel performance and
thus can be used to estimate the PM2.5 concentration at a relatively high resolution. (2)
The PM2.5 concentrations were high in southern Xinjiang and low in northern Xinjiang.
The high values were concentrated mainly in the Tarim Basin, while most areas of
northern Xinjiang maintained low PM2.5 levels year-round. (3) The PM2.5 values in
Xinjiang showed significant seasonality, with the seasonally averaged concentrations
decreasing as follows: winter (71.95 µg m−3) > spring (64.76 µg m−3) > autumn
(46.01 µg m−3) > summer (43.40 µg m−3). Our model provides a way to monitor
air quality in data-scarce places, thereby advancing efforts to achieve sustainable
development in the future.

Subjects Atmospheric Chemistry, Environmental Impacts, Spatial and Geographic Information
Science
Keywords PM2.5, Random forest, High-resolution, Xinjiang

INTRODUCTION
PM2.5, which refers to fine particles with an equivalent aerodynamic diameter of 2.5 µm
or less, is the main cause of air pollution (Goldberg et al., 2019; Nel, 2005; Zhang et al.,
2017a). Because PM2.5 threatens urban ecosystems and human health, the management
of air pollution is crucial to achieving and advancing sustainable development. High
PM2.5 concentrations not only directly cause respiratory diseases but also weaken the
gastrointestinal, cardiovascular, and immune systems (Leiva et al., 2013; Muhlfeld et al.,
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2007; Nabavi, Haimberger & Abbasi, 2019). Exposure to high levels of PM2.5 can also
result in cancer and even death (Eilstein, 2009). For instance, air pollution was deemed
responsible for 1.24 million deaths in China during 2017, 851,600 of which were caused by
atmospheric PM2.5 (Yin et al., 2020). Consequently, PM2.5 jeopardizes the United Nations’
Sustainable Development Goals. Furthermore, PM2.5 is suspended in the atmosphere
for an extended period of time and can be carried to neighboring places by atmospheric
circulations, resulting in regional air pollution (Gautam et al., 2016). In particular, PM2.5

pollution poses a considerable hazard to public health and the environment in the areas
surrounding rapid urbanization in China. Therefore, it is of great significance to monitor
PM2.5 for urban sustainable development and human well-being in a timely and accurate
manner.

Traditionally, PM2.5 concentrations at observation points have been routinely sampled
in real time at ground monitoring stations, with the resulting measurements being highly
precise and continuous in time. Despite these benefits, these monitoring stations are
deployed with low density, making it impossible to accurately determine the distribution
of PM2.5. Specifically, the station density is high in economically developed regions, but the
density is low in less developed areas; in other words, monitoring stations are sparse and
are focused mostly in discrete cities. Nevertheless, with the rapid advancement of remote
sensing technologies, the gaps in the monitoring station distribution can be filled (Pu &
Yoo, 2021; Sun, Gong & Zhou, 2021). Satellite remote sensing provides an efficient method
to rapidly and economically predict PM2.5 concentrations by using aerosol optical depth
(AOD) estimates in the areas devoid of monitoring stations, enabling the acquisition of
surface PM 2.5 data on a large scale.

Previous studies on the relationship between PM2.5 and AOD mostly adopted linear
or multiple regression models, with the linear relationship between AOD and PM2.5

being the main focus. For instance, Engel-Cox, Holloman et al. (Engel-Cox et al., 2004)
discovered a linear association between AOD and PM2.5 with a correlation coefficient
of 0.4. In contrast, physical and chemical models are slower and have more complicated
features than linear or multiple regression models (Lin et al., 2015; Yang, Xu & Jin, 2019;
Zhang & Li, 2015). Nevertheless, it is challenging for statistical models to account for
the impacts of geographical and temporal variations on the estimation. Moreover, while
geostationary methods can effectively solve the problems making it difficult to ascertain
the spatial distribution of PM2.5, spatial differences and other methods demand that some
prerequisite conditions (i.e., the number and distribution of stations) be satisfied. In
the last decade, the extensive use of machine learning has made it possible to accurately
estimate the spatial and temporal distributions of PM2.5. Examples of such algorithms
include the random forest (RF) model, the geographically weighted regression (GWR)
model, hierarchical models, and Bayesian models (Song et al., 2015; Zhai et al., 2018).
Because of its superior ability to choose and use various independent parameters that
may affect the prediction of dependent variables, machine learning can better predict the
concentrations of air pollutants than can the other techniques mentioned above (Yang et
al., 2022). For instance, to demonstrate the high predictability of PM2.5 concentrations
in the Beijing–Tianjin–Hebei region of China, Zhao et al. (2020) used an RF model to
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add auxiliary variables, and the coefficient of determination (R2) reached 0.86. On the
other hand, machine learning algorithms need to be driven by a large number of samples.
Moreover, even though PM2.5 ground stations are sparsely distributed, observations are
acquired every minute, and thus, the volume of temporally continuous data compensates
for the spatial heterogeneity of stations.

Nevertheless, various meteorological factors, geographical factors and the resolution of
AOD can affect the accuracy of the model. Thus, incorporating multiple factors can better
reflect the correlation between AOD and PM2.5. For example, Hu et al. (2017) applied
an RF model using AOD and 39 auxiliary factors to estimate the PM 2.5 concentrations
in the United States and obtained an overall R2 of 0.80 with a root mean square error
(RMSE) of 2.83 µg m−3. Furthermore, Hu et al. (2013) developed a GWR model that
included AOD, meteorological factors, and land use/cover change (LUCC), yielding an R2

of 0.82. Subsequently, Brokamp et al. (2018) utilized AOD and 11 parameters with an RF
model to estimate the PM2.5 concentrations within an area containing seven counties in
the United States, and the estimated PM2.5 exhibited relatively strong agreement with the
PM2.5 observations (R2

= 0.92). MOD04_3K, MOD04_L2, MYD04_3K, and MYD04_L2
were commonly utilized in early studies (Sahu et al., 2020; Xu, Huang & Guo, 2021b).
Given the release of the MCD19A2 product in 2018, it presently possible to refine the
estimates of PM2.5. This product utilizes image-based processing in conjunction with time
series analysis (Lyapustin et al., 2011; Pu & Yoo, 2021). As a result, aerosol inversion and
atmospheric correction can be performed on sparsely vegetated land and relatively bright
surfaces. This product has a high spatial resolution of 1 km, and high-quality AOD data
at this resolution with great performance can better explain the aerosol distribution than
similar data at a coarse spatial resolution. Therefore, the MCD19A2 product has been
favored by many researchers (Goldberg et al., 2019; Jia et al., 2020; Nabavi, Haimberger &
Abbasi, 2019; Pu & Yoo, 2021).

This study has three objectives: (1) to establish a Xinjiang-specific RFmodel and bagging
algorithm model incorporating AOD, meteorological variables, and other auxiliary data
and to evaluate the performance of both models; (2) to understand the long-term spatial
and temporal distribution changes in PM2.5 throughout Xinjiang from 2015 to 2020; and
(3) to study the relationships between the annual and seasonal variations in AOD and PM2.5

in Xinjiang. After obtaining high-resolution (1-km) AOD data and combining them with
auxiliary data comprising meteorological and geographical variables, we used a model to
estimate the PM2.5 concentrations across Xinjiang during 2015–2020. The research findings
are useful not only as a reference for the future satellite retrievals of PM 2.5 concentrations
but also as a tool for estimating PM 2.5 exposure.

DATA AND METHODS
Study area
Xinjiang is located in northwest China (73◦40′E∼96◦18′E, 34◦ 25′N∼48◦) and is China’s
largest autonomous region, accounting for one-sixth of China’s total area. Far from the
ocean, Xinjiang is landlocked far inland and exhibits a typical temperate continental
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Figure 1 Map of Xinjiang with the location of monitoring sites. The stars indicate monitoring points.
Full-size DOI: 10.7717/peerj.13203/fig-1

climate characterized by cold winters and hot summers, a dry climate, a large temperature
difference between day and night, low precipitation, and annual precipitationmostly below
150 mm (Gao et al., 2011). Xinjiang has a special economic strategic position: it not only
shares borders with many other countries but also represents the forefront of China’s
expansion into Central Asia and constitutes the current core region of China’s Belt and
Road Initiative (Liu & Cao, 2013). However, Xinjiang is also one of China’s main sources
of atmospheric dust, which has a significant effect on local air quality (Liu et al., 2021;Mao
et al., 2005). Forty-one air quality monitoring stations are deployed across Xinjiang, and
their locations are plotted in Fig. 1.

Data
MODIS AOD data
We gathered AOD information throughout Xinjiang from January 2015 to February 2021
utilizing the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments
carried by the Terra and Aqua satellites. Terra and Aqua provide daily observations of the
global equator at local crossing times of 10:30 am and 1:30 pm, respectively. Based on a
new advanced algorithm, the atmospheric correction is realized from multiple angles. By
analyzing time series images of bright and dark vegetation surfaces, AOD estimates over
both types of vegetation surfaces can be accurately retrieved with a resolution of 1 km
(Zhang et al., 2019b). The Terra and Aqua combined aerosol product MCD19A2 (550
nm, downloaded from https://aeronet.gsfc.nasa.gov) consists of various data layers. Our
research is based on the terrestrial 550 nm (green band) AOD.
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Ground-level PM2.5 monitoring
The PM2.5 ground measurement data we collected from January 2015 to February
2021 were downloaded from China’s National Air Quality Real-time Release Platform
(http://106.37.208.233:20035/). The platform has published hourly PM2.5 concentrations
from air quality monitoring stations in more than 1,600 major Chinese cities since 2013.
In the main analysis, we limited the study area to the Xinjiang region of China. Xinjiang
contains 41 ground air quality monitoring stations in 16 cities spread across an area
exceeding 1.6 million km2. The locations of the research area and the ground monitoring
stations are shown in Fig. 1. The hourly PM2.5 concentrations on this platform aremeasured
and reported in accordance with China’s National Ambient Air Quality Standard, and the
accuracy and quality control of these PM2.5 measurements have been previously reported
(Chen et al., 2018). The ground PM2.5 monitoring information is shown in Table 1.

Meteorological data
The meteorological data were obtaind from the second edition of the National Centers
for Environmental Prediction (NCEP) climate forecasting system, which provides
meteorological data every 6 h. Fifteen meteorological variables were considered
herein: the dew point temperature at 2 m, maximum/minimum temperature at 2 m,
maximum/minimum humidity, land surface temperature (LST), relative humidity (RH),
precipitation, potential evapotranspiration rate, upward/downward longwave radiation
(ULR/DLR), upward/downward shortwave radiation (USR/DSR), surface pressure (SP),
and wind speed (WS). The above data can be downloaded from Google Earth Engine
(https://earthengine.google.com/).

Auxiliary data
The land use parameters employed herein include the normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), MODIS NDVI (product name:
MYD09GA) and MODIS EVI (product name: MOD09GA) provided by NASA. The
predictive factors of the model include the population density and the drought index
(DI), namely, the Keetch-Byram drought index (KBDI), which is estimated from the
ground temperature and precipitation at a weather station and is manually interpolated
and refined by experts. The above data can be downloaded from Google Earth Engine
(https://earthengine.google.com/).

Model development
Bagging algorithm
The bagging algorithm is a popular, simple and effective ensemble learning algorithm.
Proposed by Breiman in 1996, the bagging algorithm can be used for both classification
and regression. The algorithm selects from the original data set with replacement; each
sample is independent of each other, each subset in the training set is used to train the
classifier, and finally, the results of each classifier are combined by voting. The model is
guaranteed to achieve high performance, as is the statistically reliable estimation arising
from the generalization ability of the model, and the risk of overfitting is avoided.
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Table 1 Information on ground-level PM2.5 monitoring.

Monitoring
sites code

City Longitude
(◦E)

Latitude
(◦N)

Time span

1490A Urumqi 87.5801 43.8303 20150101–20210229
1491A Urumqi 87.6046 43.768 20150101–20210229
1492A Urumqi 87.4754 43.9469 20150101–20201231
1493A Urumqi 87.5525 43.8711 20150101–20210229
1494A Urumqi 87.6432 43.831 20150101–20210229
1495A Urumqi 87.4171 43.8729 20150101–20170208
1496A Urumqi 87.6444 43.962 20150101–20201231
1951A Karamay 84.8861 45.6033 20150101–20210229
1952A Karamay 84.8897 45.5828 20150101–20201231
1953A Karamay 85.1186 45.6886 20150101–20210229
1954A Karamay 84.8983 44.3336 20150101–20210229
1955A Karamay 85.6931 46.0872 20150101–20210229
1956A Korla 86.1461 41.7511 20150101–20210229
1957A Korla 86.2022 41.7192 20150101–20210229
1958A Korla 86.2381 41.7128 20150101–20210229
2686A Turpan 89.191 42.9409 20150101–20210229
2687A Turpan 89.1673 42.9559 20150101–20210229
2688A Hami 93.5128 42.8172 20150101–20210229
2689A Hami 93.4961 42.8328 20150101–20210229
2690A Changji 87.9897 44.1564 20150101–20210229
2691A Changji 87.2997 44.0114 20150101–20210229
2692A Changji 87.2717 44.0297 20150101–20210229
2693A Bortala Mongol Autonomous Prefecture 82.0485 44.9079 20150101–20210229
2694A Bortala Mongol Autonomous Prefecture 82.0806 44.8969 20150101–20201231
2695A Aksu 80.2828 41.1636 20150101–20210229
2696A Aksu 80.2956 41.1933 20150101–20210229
2697A Kizilsu Kirghiz Autonomous Prefecture 76.1861 39.7153 20150101–20210229
2698A Kashgar 75.9828 39.5371 20150101–20210229
2699A Kashgar 75.9771 39.4699 20150101–20210229
2700A Kashgar 75.9435 39.4365 20150101–20210229
2701A Hetain 79.9485 37.1152 20150101–20200623
2702A Hetain 79.9117 37.1013 20150101–20200620
2703A Ili Kazak Autonomous Prefecture 81.2815 43.9404 20150101–20201231
2704A Ili Kazak Autonomous Prefecture 81.2867 43.895 20150101–20210229
2705A Ili Kazak Autonomous Prefecture 81.3364 43.941 20150101–20201231
2706A Tacheng 82.9994 46.7432 20150101–20210229
2707A Altay 88.1214 47.9047 20150101–20210229
2708A Altay 88.1267 47.8515 20150101–20210229
2709A Shihezi 86.0497 44.2967 20150101–20210229
2710A Shihezi 86.0697 44.3075 20150101–20201231
2711A Wujiaqu 87.5475 44.1756 20150101–20210229
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Random forest
Random forest is a popular machine learning method that was proposed by Breiman
(Breiman, 2001). This method has been used for prediction and categorization tasks in a
variety of applications. The RF technique consists of a succession of computer-generated
decision trees that can extract information from complex input data and learn the highly
nonlinear relationship between input and goal variables. Specifically, RF randomly selects
multiple attributes from each node’s attribute set to form a subset and then establishes
rules to determine the best attribute from this subset and finally predicts based on the
average value of all leaf nodes among all trees.

This study aimed to construct an RF model for estimating the PM2.5 concentrations
across Xinjiang and for studying its spatial distribution and regional differences.
Considering that the air quality situation is likely to vary slightly over a six-year period,
based on the valid data we obtained, the average value of the data was taken every 8 days,
and null values and outliers were excluded; the final number of valid samples obtained by
all 41 stations in Xinjiang for each of the six years during 2015–2020 was (in order) 1,258,
1,276, 1,365, 1,360, 1,398, and 1,338. In addition, we used two indicators of the RF model
to measure variable importance, namely, the percent increase in the mean squared error
(%IncMSE) and the increase in node purity (IncNodePurity), to rank the importance of
the factors. Finally, based on the six-year overall situation, we selected 9 factors, which
were entered as predictors: AOD, DEM, NDVI, SI, SP, DLR, USR, WS, and RH. A RF
model was established for the AOD–PM2.5 relationship, as shown in Eq. (1). This model
was implemented in the R3.6.3 language, and the modeling data involved in this paper are
shown in Table 2.

The RF model constructed in this study can be abbreviated as:

PM2.5=RF(AOD, DEM, NDVI , SI, SP, DLR, USR, WS, RH) (1)

where AOD is the aerosol optical depth; DEM is the elevation; NDVI is the normalized
difference vegetation index; SI is the drought index; SP is the surface pressure; DLR denotes
downward longwave radiation; USR denotes upward shortwave radiation; WS is the wind
speed; and RH denotes relative humidity.

To validate themodel, 10-fold cross-validation (CV)was used in this work. The complete
training data set was randomly divided into ten subgroups for each CV, nine of which
were utilized as training subsets and the remaining one was employed as a validation
subset. The average value was taken as the final accuracy of the RF model, and the Pearson
correlation coefficient (R), R2 and RMSE were calculated over the entire data set consisting
of 10 test subsets to evaluate the correlations between the estimated and observed PM2.5

concentrations.

RESULTS
Spatial distribution of AOD across Xinjiang
Spatial distribution characteristics of AOD
The applicability of MCD19A2 data has been verified in numerous studies (Chen et al.,
2021; Li et al., 2021b; Tao et al., 2019), so verification is not performed here. The spatial

Jin et al. (2022), PeerJ, DOI 10.7717/peerj.13203 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.13203


Table 2 Summary of dataset used for modeling.

Data name Data Source Variables Units Resolution

AOD products National Aeronautics and
Space Administration
(NASA)

Terra MODIS AOD products
Aqua MODIS AOD products

1 km

PM2.5 data China’s national air quality
real-time release platform

PM2.5 ug/m3

Maximum temperature, 2m K
Minimum temperature, 2m K
humidity Kg/kg
Maximum humidity, 2m Kg/kg
Minimum humidity, 2m Kg/kg
Potential Evaporation Rate surface W/m2

Precipitation Kg/m2/s1

Pressure surface Pa
Upward Long-Wave Radp Flux W/m2

Downward Long-Wave Radp Flux W/m2

Upward Short-Wave Radp Flux W/m2

National Centers for En-
vironmental Prediction,
(NCEP)

Downward Short-Wave Radp Flux W/m2

0.2 arc degrees

temperature K
NASA LP DAAC at the
USGS EROS center

LST_Day K 1 km

Meteorological
data

NASA GES DISC at NASA
Goddard Space Flight Center

wind M/s 0.1arc degrees

NASA NDVI 1 km
NASA EVI 1 km
NCEP DEM gpm 0.2 arc degrees

Auxiliary data

Institute of Industrial Sci-
ence, The University of
Tokyo, Japan

SI 4 km

Annual Statistical Bulletin Population density

distribution of AOD in Xinjiang from 2015 to 2020 is shown in Fig. 2. There is an important
difference between the southern and northern parts of Xinjiang. The AOD in northern
Xinjiang has remained at a low level (<0.2) for six years. This may be due to the extensive
vegetation coverage and weaker sand and dust interference in northern Xinjiang than in
southern Xinjiang, where the AOD has remained high for six years due to the contribution
of dust particles from the Taklimakan Desert, with the AOD values in some areas during
2018 and 2020 exceeding 0.4. There was an AOD inflection point in 2018 (0.222). During
the preceding three years (2015–2017), AOD gradually decreased, which may have been
linked to the ‘‘coal to gas’’ policy that Xinjiang began to implement in 2012; in contrast,
since 2018, AOD has been volatile, which may be related to the advancement of Xinjiang’s
economic development strategy (Li et al., 2021b).
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Figure 2 Spatial distributions of AOD of 2015–2020. The blue part represents a low value, and the red
part represents a high value.

Full-size DOI: 10.7717/peerj.13203/fig-2

Characteristics of the seasonal distribution of AOD
In this study, March, April, and May are grouped into spring, June, July, and August are
grouped into summer, September, October, and November are grouped into autumn, and
December and January and February are grouped into winter. Figure 3 shows the seasonally
averaged spatial distributions of AOD from 2015 to 2020. The AOD magnitude decreased
in the order of spring (0.342) > summer (0.219) > autumn (0.166) (AOD was not analyzed
in the winter because of the difficulties in the inversion, the absence of AOD data, and the
overall low AOD). Because spring brings more sand and dust, the area’s overall AOD value
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Figure 3 Seasonal mean AOD distribution. The blue part represents a low value, and the red part repre-
sents a high value.

Full-size DOI: 10.7717/peerj.13203/fig-3

was higher than in the other seasons. In contrast, AOD was lower in summer; however,
some regions in southern Xinjiang still exhibited high AOD values due to the influences of
summer dust and storms. The climate was dry in autumn, with regular Arctic air intrusions
and a stable air structure. Overall, the AOD has declined, indicating a state of diffusion
(Zhang et al., 2016).

Descriptive statistics
A summary of the ground-monitored PM2.5 in Xinjiang during the study period is shown
in Table 3. From 2015 to 2020, the average concentration of PM2.5 monitored by all 41 air
quality monitoring stations in the study area was 52.95 µg m−3, ranging from 2 to 494.9 µg
m−3, and the mean annual PM2.5 concentration among all 41 monitoring stations during
these six years were (in order) 59.5 µg m−3, 58.5 µg m−3, 52.3 µg m−3, 52.3 µg m−3,
49.9 µg m−3 and 45.2 µg m−3. Accordingly, the average annual concentrations of PM2.5

were much higher than the first-level annual limit of PM2.5 (35 µg m−3) set in China’s
Ambient Air Quality Standard (GB3095-2012). Seasonally, the PM2.5 value was highest in
winter (93.63 µg m−3) and lowest in summer (28.60 µg m−3). During the study period, the
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Table 3 A summary of groundmonitoring PM2.5 concentrations (µg m−3) in Xinjiang, China during
2015–2020.

Year No.
sites

No.
samples

Minimum Median Maximum Mean Standard
deviation

2015 41 1,796 2 38.2 376.1 59.5 56.8
2016 41 1,784 5 34.7 478.1 58.5 59.2
2017 41 1,720 5.7 35.5 450.2 52.3 47.1
2018 41 1,697 4.2 33.4 494.9 52.3 51.9
2019 41 1,750 3 30.2 442.2 49.9 50.3
2020 41 1,653 3 27.4 436.5 45.2 49.8

seasonal PM2.5 concentrations in Xinjiang decreased in the following order: winter (93.63
µg m−3) >spring (56.02 µg m−3) >autumn (42.40 µg m−3) >summer (28.60 µg m −3).

Model fitting and validation
The main purpose of this work was to verify the ability of the RF model to estimate PM2.5

in Xinjiang. Figure 4 shows a frequency scatterplot of the 10-fold CV results for the RF
model and the bagging algorithm model from 2015 to 2020 with the R, R2 and RMSE of
both models. The R values of the RF model during all six years are (in order) 0.855, 0.879,
0.853, 0.900, 0.888, and 0.901, which are much higher than those of the bagging algorithm
model at 0.796, 0.772, 0.747, 0.810, 0.810, and 0.789, respectively. These values indicate
relatively strong agreement between the RF-estimated and station-measured PM2.5 values.
The corresponding R2 values of the RF model are 0.731, 0.773, 0.728, 0.810, 0.788, and
0.813, which are similarly higher than those of the bagging algorithm model (0.633, 0.596,
0.558, 0.656, 0.657, and 0.622, respectively). Furthermore, the RMSEs of the RF model are
lower than those of the bagging algorithm model, which indicates that the RF model is
more stable. This comparison of the CV results of the two models demonstrates that the
RF model is better than the bagging algorithm model in different aspects for the entire
six-year period.

Estimated spatiotemporal distribution of PM2.5 across Xinjiang
Annual spatiotemporal variations
According to Fig. 5, the concentration of PM2.5in the study area was higher in southern
Xinjiang than in northern Xinjiang from 2015 to 2020, and high PM2.5 values were
concentrated in the Tarim Basin. At the same time, high concentrations extended outwards,
affecting neighboring areas and establishing secondary high-value zones. The Taklimakan
Desert, the largest desert in China, is located in the Tarim Basin. Correspondingly, studies
have revealed that during high dust periods, wind can blow up dust on the ground and
suspend it in the atmosphere. If no precipitation falls, this dust can persist for several days
after the dust has passed, causing an increase in PM2.5. As a result, the Tarim Basin has
become a hotspot for high PM2.5 concentrations (Hui et al., 2010). The estimated average
PM2.5 concentrations in Xinjiang during these six years were (in order) 71.69 µg m−3,
73.19 µg m−3, 56.68 µg m−3, 66.35 µg m−3, 60.30 µg m−3, and 55.70 µg m−3. The lowest
and highest values were recorded in 2020 and 2016, respectively.
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Figure 4 Estimates and evaluations of predicted PM 2.5 concentrations based on cross-validation re-
sults of RFmodel (A–F) and Bagging Algorithm (G–L) 2015–2020 (×10−4). The black line represents
y =X , and the colored dots represent estimated and measured values.

Full-size DOI: 10.7717/peerj.13203/fig-4

In addition, the PM2.5 concentrations in northern Xinjiang were lower than those in
southern Xinjiang. Northern Xinjiang occupies a crucial strategic location: it is not only
an important aspect of China’s western development strategy but also Xinjiang’s most
prosperous region, as the vegetation coverage rate in northern Xinjiang is relatively high,
which alleviates certain air pollution to a large extent. However, the population of northern
Xinjiang is much denser than that of southern Xinjiang, which corresponds tomore human
activities in northern Xinjiang, that is, the increased burning of fossil fuels (coal, gasoline,
diesel) and biomass (straw, firewood) and increased levels of building dust (Wang et al.,
2020;Wang et al., 2019). Therefore, human activity is another source of PM2.5 in northern
Xinjiang.

Seasonal spatiotemporal variations
Figure 6 shows the spatial distributions of the PM2.5 concentration in Xinjiang from 2015
to 2020 estimated by the RF model. PM2.5 decreased in the following order: winter (71.95
µg m−3) > spring (64.76 µg m−3) > autumn (46.01 µg m−3) > summer (43.40 µg m−3).
The highest values in winter are attributed to the heating of homes throughout Xinjiang,
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Figure 5 The annual PM2.5 concentration distributions in Xinjiang from 2015 to 2020. Purple repre-
sents high values and yellow represents low values.

Full-size DOI: 10.7717/peerj.13203/fig-5

as heating in winter increases energy consumption and leads to higher concentrations of
PM2.5 (Zhang et al., 2019a). However, because the underlying surface is covered by snow,
it is difficult for dust to be entrained into the atmosphere, and snow increases the surface
albedo, which increases the difficulty of AOD inversion and even leads to data gaps in
northern Xinjiang, resulting in the overall low PM2.5 in winter mentioned above.

In spring, frequent sandstorms lead to higher PM2.5 levels overall. When strong winds
blow over the bare desert or bare soil, it causes wind erosion and entrains dust, aggravating
air pollution in the surrounding area (Chai et al., 2017; Liu et al., 2020). In spring, the
PM2.5 concentrations in most areas of Xinjiang were greater than 56.64 µg m−3. The Tarim
Basin in southern Xinjiang has always been the main source of dust aerosols, but due
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Figure 6 The predicted PM2.5 concentrations from 2015 to 2020 in the four seasons based on satellite
data. Purple represents high values and yellow represents low values.

Full-size DOI: 10.7717/peerj.13203/fig-6

to topographical reasons, the internal wind speed is relatively low, and thus, horizontal
diffusion is relatively weak, which concentrates PM2.5 therein.

Summer was the season with the lowest PM2.5 concentration. Because the surface air
temperature in summer is higher, the atmospheric transparency is better, and the surface
vegetation coverage is considerably enhanced. In addition, precipitation in summer is
greater than that in other seasons, and rainfall has an obvious ability to remove dust from
the atmosphere (Zhang, Ding & Wang, 2017b). Therefore, the PM2.5 concentrations in
summer were lower than those in the other seasons.

Among the four seasons, the average PM2.5 value in autumn was the second-lowest.
The low concentrations in autumn differ from those in summer because the atmosphere
in the research area is characterized by locally high pressures, and the atmospheric system
is rather stable in October (Mogo et al., 2017). As shown in Fig. 6, the PM2.5 levels in most
areas of Xinjiang remained low in autumn.

DISCUSSION
The RF model adopted in this study is suitable for solving the complex nonlinear
relationship between AOD and PM2.5, which has been tested in previous studies. Our paper
considers the unique weather conditions in Xinjiang, as well as a number of topographical
and meteorological factors that are taken as independent input variables (Jiang et al.,
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2017; Yun et al., 2019). Research shows that the prediction accuracy of an RF model is
comparable to that of the algorithms presented in previous studies (Li et al., 2019; Zhao et
al., 2019). For instance, Li et al. (2021a) combined RF machine learning with a generalized
additive mixture model and incorporated visibility data and other meteorological factors
to estimate the PM2.5 concentrations in Iraq and Kuwait from 2001 to 2018, and their
CV yielded an R of 0.71. In addition, our correlation is somewhat higher than that
of Xu et al. (2021a) who used the Himawari Advanced Imager (AHI) AOD and other
influencing factors to calculate the correlation between the PM2.5 and AOD in 14 urban
agglomerations, yielding an R range of 0.03∼0.47. According to our findings, the RF
model obtains a high correlation and is superior to most statistical regression models,
including multiple linear regression (MLR) models (Ji et al., 2019) and generalized additive
models (GAMs) (Chen et al., 2018). Additionally, the RFmodel is more accurate than some
geostationary and combined models, such as the GWR model (Bai et al., 2016; Zhai et al.,
2018), time-weighted regression (TWR) model (Bai et al., 2016), two-stage model (He &
Huang, 2018), and principal component analysis GWR (PCA–GWR) model (Zhai et al.,
2018). Therefore, the RF model in this study can better explain the spatial and temporal
distributions of PM2.5 in Xinjiang.

To develop a 1-km PM2.5 surface map of Xinjiang, the MCD19A2 aerosol product
was utilized. The data in this product are of higher quality and resolution than data
with a 3-km, 10-km or even coarser resolution, which helps the RF model to serve
better predictive functions (Munchak et al., 2013; Yang, Xu & Jin, 2019). AOD–PM2.5

relationships are commonly used in environmental monitoring to estimate regional and
global PM2.5 patterns over time and space. Thus, high-resolution PM2.5 concentrations
are often retrieved from the archived data to study the health effects of long-term and
short-term exposure to particles and to better monitor air quality in the future.

We expect that our research will have some impact on public health. Previous studies
have focused mainly on coastal regions or areas with a concentrated monitoring system
(Lu et al., 2021; Pang et al., 2018). In contrast, few studies have investigated Xinjiang, the
central province of the Belt and Road Initiative and the main source of dust in China.
Air pollution has occurred in Xinjiang as a result of human and natural factors acting
together. Consequently, monitoring stations were gradually established across Xinjiang
beginning in 2012. However, considering the vast, unpopulated area and the uneven
distribution of stations, data from these stations are lacking, and continuity is an issue. In
this study, a RF model was developed to invert the PM2.5 concentration in Xinjiang and
obtain its spatial distribution based on auxiliary data of meteorological and geographical
variables. The results of this study will make it possible to assess exposure to air pollution
in areas lacking an extensive array of monitoring stations or historical data of PM2.5

concentrations. Furthermore, based on global data, our model can also be used to predict
PM2.5 concentrations in other parts of the world using predictors from those data sets.

At present, air pollution not only threatens humanhealth but also restricts the sustainable
development strategy of Xinjiang. Therefore, determining how to take concrete steps to
prevent further deterioration due to pollution is an important task. In 2013, the Air
Pollution Prevention and Control Action Plan was issued, and Xinjiang has since taken
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measures to replace coalwith gas and to retrofit or close enterpriseswith excessive emissions;
moreover, the good days in Xinjiang each year have been summarized and reported. These
actions all represent the government’s contributions to curb air pollution from a policy
perspective. Nevertheless, we must not only rely on government decision-making but
also develop a better understanding of environmental protection, vigorously respond to
national calls to action, follow the country’s applicable rules, and do what we can on an
individual level, such as campaigning to reduce carbon emissions. Traveling, volunteering
to help plant public trees, refraining from using pyrotechnics and firecrackers, and other
small actions can help reduce pollution and improve air quality.

CONCLUSIONS
The inversion of PM2.5 concentrations based on the RF model achieved good model
performance, yielding R values for the six years during 2015–2020 of (in order) 0.855,
0.879, 0.853, 0.900, 0.888, and 0.901 and corresponding R2 values of 0.731, 0.773, 0.728,
0.810, 0.788, and 0.813. Both metrics of the RF model are higher than those of the bagging
algorithmmodel, and the RMSE of the RFmodel is lower than that of the bagging algorithm
model; all of these outcomes show that the RF model performs well. Based on long time
series of satellite data, the RF model can be used to reconstruct the spatial distribution of
PM2.5 at large spatiotemporal scales.

Over the past six years, the PM2.5 concentrations were high in southern Xinjiang and
low in northern Xinjiang. High values were concentrated mainly in the Tarim Basin, but
they also diffused outward to form a secondary high-value area. In contrast, the vegetation
coverage in northern Xinjiang is relatively high, and PM2.5 in most areas remains low
throughout the year.

Finally, the PM2.5 concentrations in Xinjiang showed significant seasonality with the
seasonal average decreasing as follows: winter (71.95 µg m−3) > spring (64.76 µg m−3)
> autumn (46.01 µg m−3) > summer (43.40 µg m−3). Air pollution is relatively stable in
summer and autumn, whereas pollution is the most serious in spring and winter. However,
the inversion accuracy was poor in winter due to a lack of data.
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