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Abstract

Protein stability is a fundamental molecular property enabling organisms to adapt to their biological niches. How this is
facilitated and whether there are kingdom specific or more general universal strategies are unknown. A principal obstacle
to addressing this issue is that the vast majority of proteins lack annotation, specifically thermodynamic annotation,
beyond the amino acid and chromosome information derived from genome sequencing. To address this gap and facilitate
future investigation into large-scale patterns of protein stability and dynamics within and between organisms, we applied
a unique ensemble-based thermodynamic characterization of protein folds to a substantial portion of extant sequenced
genomes. Using this approach, we compiled a database resource focused on the position-specific variation in protein
stability. Interrogation of the database reveals: 1) domains of life exhibit distinguishing thermodynamic features, with
eukaryotes particularly different from both archaea and bacteria; 2) the optimal growth temperature of an organism is
proportional to the average apolar enthalpy of its proteome; 3) intrinsic disorder content is also proportional to the
apolar enthalpy (but unexpectedly not the predicted stability at 25 �C); and 4) secondary structure and global stability
information of individual proteins is extractable. We hypothesize that wider access to residue-specific thermodynamic
information of proteomes will result in deeper understanding of mechanisms driving functional adaptation and protein
evolution. Our database is free for download at https://afc-science.github.io/thermo-env-atlas/ (last accessed January 18,
2022).
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Introduction
Although protein sequence and secondary structure have
been analyzed extensively in the study of protein evolution,
neither primary sequence nor secondary structure informa-
tion report on the underlying energetics that ultimately shape
macromolecular or organismal evolution. Rather, a combina-
tion of steric considerations, van der Waals interactions, hy-
drogen bonding, and hydrophobic effects, among others, are
contextualized by the physical constraints of a cell, a tissue,
and the surroundings of an organism. These complex phe-
nomena result in a balance of finely tuned thermodynamic
stabilities that may or may not allow formation of secondary
structure elements (Srinivasan and Rose 1999). Therefore, al-
though folded proteins may be constructed out of conserved
domains or motifs, in the absence of high-throughput effective
atomic force fields, the provisional understanding of how
physical constraints have driven protein and proteome evolu-
tion will require a thermodynamic description that is indepen-
dent of secondary structural classification (Alva et al. 2015).

To that end, we computed a database of position-specific
thermodynamic information for each residue of each protein

in a library of organisms across the tree of life. We assign a
Gibbs free energy (DG), apolar enthalpy (DHapolar), polar en-
thalpy (DHpolar), and conformational entropy (TDSconf) to
each residue position, which can be thought of summarizing
the contributions of van der Waals interactions, hydrogen
bonding, charge–charge interactions, hydrophobic effects,
conformational flexibility, and other effects, to the local sta-
bility across a protein chain (fig. 1). Importantly, as opposed
to providing the energetic contribution of each residue to the
stability of the protein, this local thermodynamic description
reports on the stability at each position much in the same
way as the Protein Data Bank (Berman et al. 2000) reports on
the secondary and tertiary structure of each position (Wrabl
et al. 2001, 2002; Larson and Hilser 2004; Gu and Hilser 2008).
Furthermore, because this energetic representation is orthog-
onal to structural characterizations (Vertrees et al. 2009), it
provides a vehicle for exploring evolutionary relationships
between sequences and folds that transcend sequence and
structural similarity.

Leveraging the thermodynamic information in the data-
base revealed several noteworthy observations. First,
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proteomes across the three domains of life assumed a broad
monomodal distribution of site-specific thermodynamics,
such that organism-specific enrichment roughly discrimi-
nated between the domains. Second, this taxonomic trichot-
omy was partially accounted for by organismal growth
temperature and intrinsic disorder content, both of which
could be predicted by a principal component decomposition
of the site-specific thermodynamics. Third, properties of in-
dividual proteins, such as secondary structure content and
global stability, could be estimated solely from site-specific
thermodynamics. We anticipate that additional insights can
be drawn from this unique database resource.

Results

Thermodynamic Information Is Fundamentally
Different than Sequence Information
We used the full set of Uniprot Reference Proteomes to con-
struct a comprehensive, nonredundant, sequence-based en-
ergetic profile of each protein within each proteome,
regardless of the existence of tertiary structure (fig. 2A and
B). The profiling procedure, developed previously in our re-
search group and named eScape (i.e. energetic landscape),
computes position-specific thermodynamic descriptors
(TDs) DG, DHapolar, DHpolar, TDSconf for each residue in a
protein sequence (Gu and Hilser 2008) (fig. 1B). The delta
in these descriptors refers not to the difference between fully
folded and fully unfolded states but rather to the difference
between subensembles in which the residue is folded or un-
folded without regard to the rest of the protein (Hilser and
Freire 1996). Perhaps uniquely among bioinformatics tools,
eScape computes these TDs for both the native state and a
specific, locally unfolded denatured state of the protein simul-
taneously. The vector of TDs is then objectively assigned to a
coarse-grained bin, or cluster, termed a “thermodynamic
environment” (TE) such that each residue position is mapped
to one of eight unique TEs (Hoffmann et al. 2016) (fig. 1A).
Importantly, the TDs have been experimentally benchmarked
(Hilser and Freire 1996; Whitten et al. 2005; Liu et al. 2012) and
the TEs have been previously shown to be useful in fold rec-
ognition (Wrabl et al. 2002; Wang et al. 2008; Hoffmann et al.
2016).

We emphasize that although the TE positional mapping
resulting from this procedure is isomorphic to the amino acid
sequence, its semantic mapping is not. In other words, the TE
sequence is an orthogonal and distinct descriptor from the
amino acid sequence and cannot be considered equivalent, or
converted, by a simple substitution (Larson and Hilser 2004;
Vertrees et al. 2009). Two reasons for this are that 1) the
eScape algorithm considers sequence context (i.e. using trip-
lets, instead of single amino acids), as the input for its pre-
dictions and 2) eScape was trained on structure-based
ensemble data, which indirectly incorporates nonlocal con-
tributions to protein stability. Thus, when compared with
primary sequence, TEs represent a novel annotation that
could potentially provide different, yet complementary, infor-
mation to existing databases.

As an example to illustrate this point, we consider the
essential Escherichia coli protein adenylate kinase (AK)
(Muller et al. 1996; Cou~nago et al. 2008), which has been
engineered to contain the double mutation G56C/T163C
(Kovermann et al. 2017). Typical databases that compute
the sequence-based hydrophobicity profiles (Kyte and
Doolittle 1982) of the wild-type and engineered proteins,
would conclude that the hydrophobicity at both positions
had increased by the same average amount (fig. 2D, top). In
contrast, the TEs for these two proteins show different and
distinct stability effects that are not remedied by averaging
(fig. 2D, bottom).

The origin of this difference is due to the nature of the
information harnessed by eScape. The sequence-based ther-
modynamics computed by eScape were derived from statis-
tical analysis of every possible tripeptide to be in each TE, as
sampled from a large nonredundant protein structure data-
base. At this tripeptide level, it is important to note that long-
range electrostatics are not explicitly captured. However,
charge interactions are taken into account in an average,
statistical way in the eScape parameterization, to the extent
that specific pairwise interactions (e.g. salt bridges) repeatedly
and nonrandomly occur in globular proteins. It is often the
case that changing one amino acid in the tripeptide signifi-
cantly changes the observed distribution of that tripeptide
across the different TEs in the protein database. In such cases
eScape would predict a large change. In essence, and impor-
tantly, eScape projects the impact of a particular type of
mutation, averaged over the entire database, onto a single
sequence being investigated.

For the AK double cysteine example, distributions of the
predicted thermodynamic consequences of all possible
G! C and T! C substitutions observed in the PDB dem-
onstrate a range of effects (fig. 2C). Although the expected
effect for both point mutants is to increase the local stability
at the site by approximately 1 kcal/mol, as seen for T163C, the
exact effects depend on the neighboring amino acids and
could in many cases be destabilizing, as seen for G56C
(fig. 2C and D).

Thus, the thermodynamic predictions could contain useful
information not captured by traditional sequence analysis,
granting an unprecedented ability to incorporate protein en-
ergetics into phylogenetic analysis. Because these TEs reflect
equilibrium fluctuations in local stability that are important
for function (Whitten et al. 2005; Gu and Hilser 2009), they
represent a key determinant of molecular evolution (Saavedra
et al. 2018), a determinant that has been largely, albeit inad-
vertently, excluded from existing phylogenetics. Moreover, it
is easy to imagine that large numbers of primary sequence
changes, such as between homologous proteins of remotely
related organisms, might amplify such cryptic thermody-
namic effects.

TEs Content of Proteomes from All Kingdoms of Life
We set out to investigate the large-scale usage of native TEs
across a wide sampling of the kingdoms of life. To this end, we
used hierarchical clustering to examine whether various
organisms used greater or fewer of certain TEs in their
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proteomic composition (fig. 3). We found that, as a general
rule, no organism or group of organisms were equipped with a
proteome sampled from a flat, equiprobable TE distribution.
Instead, distribution statistics for individual TEs were markedly
peaked. The most frequently used native state TEs were those
of median stability, TE4 and TE5, each typically accounting for
>20% of a proteome. The least frequently used TEs were
those of the most extreme stabilities, TE1 and TE8, corre-
sponding to the least and the most stable, respectively.
Median stability TEs were observed at least about twice as
often as any other given TE, an observation supported by the
branching cluster tree distinguishing their usage (fig. 3, top).

In contrast to the pronounced differences revealed by TE
frequency usage clustering, the clustering with respect to spe-
cies (fig. 3, left side) yielded a complex tree topology that, at
first glance, failed to group according to broad taxonomic
distinctions, or any other obvious organizing principle.
Although eukaryotes appeared to exhibit a slight enrichment

in the moderately low stability TEs 3 and 4, inspection of the
high-level branch points did not highlight major TE usage
paradigms departing from the previously described pattern.
Despite this, we noted a rich variety in the fine structure of TE
usage that transcended species and domain boundaries, and
a rough pattern of Gram-staining with cluster position was
observed in bacteria (fig. 3, labels). We reasoned that this fine
structure contained alternate information about TE usage
not apparent through simple Euclidian distance metrics,
and that performing a principal components analysis (PCA)
on the complete TE usage matrix could reveal additional
patterns coupled to this fine structure. As expected, the or-
thogonal basis eigenvectors of the PCA did not mirror the
overall patterns of TE enrichment as observed above, instead
describing a cryptic mixture of informative TE use.
Eigenvalues indicated that the first two eigenvectors con-
tained more than 90% of the information from the eight
native state TEs (supplementary table S7, Supplementary

FIG. 1. Estimating TEs in proteins from eScape sequence-based TDs. (A) A summary of what is known about TEs in the native state of proteins. Light
blue axes represent a high-dimensional thermodynamic space (4D) that can be decomposed into a physically interpretable low-dimensional space
(2D) represented by thick black axes. Every residue of any protein structure can be plotted within this space using ensemble-based modeling. When
this is done for a large database of proteins, all residues can be clustered into eight significant regions (colored irregular shapes). These regions
exhibit specific combinations of enthalpy and entropy, are termed “thermodynamic environments” (TE), and can be roughly organized by relative
stability. Rainbow colors and numbers depict relative stability, ranging from lowest stability TE1 (purple) to highest stability TE8 (dark red). Dashed
triangle depicts the approximate shape of 2D space with respect to physical properties (Vertrees et al. 2009). (B) eScape is a sequence-based
predictor of stability, enthalpy, and entropy of proteins (Gu and Hilser 2008). For every residue in any protein sequence, the output of eScape (gray
box) can be mapped to a TE (dashed lines). Thus, a complex description of protein thermodynamics can be simplified to a 1D string equal to the
number of residues in the protein. The example protein molecular cartoon shown is Escherichia coli AK (apo). Note that this workflow does not
depend on the existence of an experimental protein structure.
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Material online), thus permitting visualization of essentially all
of the thermodynamic information in two dimensions (fig. 4).

PCA Reveals Thermodynamic “Niches” of Kingdoms
and Organisms
Surprisingly, PCA revealed a clear discrimination in TE usage
patterns between bacterial, archaeal, and eukaryotic domains
of life. Each domain was found to occupy contrasting sectors
of divergent shapes, sizes, and scaled densities (fig. 4A). The
predominantly unicellular bacteria and archaeal clades occu-
pied a partially overlapping area, bacteria flanked by archaea
in the PC2 dimension, whereas the more multicellular eukar-
yotes separated into a distinct space of their own (fig. 4B).
Bacteria and eukaryotes are further identifiable by their oblate
areas, inhabiting ellipsoid boundaries stretching lengthwise
along the PC1 axis. However, although the bacterial density
along the PC1 axis was fairly uniform, the eukaryotic density

was largely focused in a limited area, with a greater spread of
outliers defining the reaches of the ellipsoid boundary
(fig. 4B). In contrast, archaea instead were symmetrically dis-
tributed, and notably positioned in partial intersection with
both the bacterial and eukaryotic densities (fig. 4B).

We asked whether the distinctive domain geometries ob-
served in the PCA analysis could be explained by known
physical parameters. To this end, we explored whether the
PC transformed data could be predicted by a library of growth
temperatures for a variety of organisms (Materials and
Methods). We found that the position of organisms along
the PC2 axis correlated with both optimal growth tempera-
ture (fig. 5A) and intrinsic disorder content (fig. 5B) for a set of
well-studied model organisms, and PC2 could be physically
explained by native state apolar enthalpy (supplementary fig.
S2B, Supplementary Material online), related to hydrophobic-
ity (supplementary fig. S3, Supplementary Material online).
PC1, which accounted for the largest information content

FIG. 2. Construction of residue-specific thermodynamic database of proteomes. (A) Workflow input and output are shown in boxes. A proteome’s
primary sequence data is input into the eScape algorithm, and TDs are computed as an intermediate step (first arrow). A second step (second
arrow) coarse-grains the TD values into an “eight-letter alphabet” (colors) of TEs, described in figure 1B. These TE values are output into the
database, associated with the original proteome annotation. (B) Three Escherichia coli proteins are shown as examples. Coloring is defined in
figures 1 and 2A, and clearly shows that neither secondary structure elements nor loops are expected to be uniform in stability. Note that this
workflow does not depend on the existence of an experimental protein structure. For simplicity, the panel depicts native state data only, even
though denatured state data are also included in the database. (C) Populations of the thermodynamic consequences of all G! C (orange) and all
T!C (blue) substitutions greatly depend on sequence context. The expected value of any G!C or T!C mutation is stabilizing (þ0.7 andþ1.4
environment, respectively), but the large variances indicate that many substitutions could actually be destabilizing. Such consequences are
illustrated on a real-life example in (D). (D) Sequence changes may have different hydrophobic and thermodynamic consequences. Escherichia coli
AK changes in hydrophobicity (top) and native state TE (bottom) are shown as the result of two mutations G56C (orange) and T163C (blue)
(Kovermann et al. 2017). Both mutations increase the hydrophobicity (Kyte and Doolittle 1982) at the site of the mutation (thin vertical lines, top)
over a typical moving average window (17 residues, thick continuous line). In contrast, only the mutation T163C has similar thermodynamic
consequences by uniformly increasing the local stability (blue thin vertical line, bottom), although this increase does not occur at position 163 but
rather at two positions C-terminal. As described in the Main Text, the G56C mutation directly affects residues 57, 58, 59 as well as residue 56
(orange thin vertical lines, bottom). Moreover, window averaging unexpectedly obscures any changes at this mutation site by pushing the
compensating effects to the window edges (orange thick continuous line, bottom).
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(72%) of the PCA, and was clearly related to the amount of
stable TEs in the proteome (fig. 5C; supplementary fig. S2A,
Supplementary Material online). Notably, of the three king-
doms only eukaryotes exhibited a significantly different,
weaker, slope of the trend in figure 5C (green dashed line).

Inspection of organisms contained under density peaks
revealed interesting patterns, suggestive of “thermodynamic
niches.” Gram-positive and negative bacteria clearly clustered
under distinct peaks (fig. 4A), with Actinobacteria almost ex-
clusively populating the peak with smallest values of PC1.
Although fungi and halophilic archaea comprised the largest
peaks of their respective kingdoms (fig. 4A), in general the
height and location of density peaks appeared unrelated to
estimates of organism abundance or biomass. For example,
although trees plausibly account for the majority of biomass
on Planet Earth (Bar-On et al. 2018), trees did not dominate
any of the three eukaryotic density peaks (fig. 4C, white cross).
Instead, uneven organism sampling within the proteome ref-
erence set probably obfuscated any relationship between
thermodynamic niche and organism abundance. Obligate
endosymbionts with reductive genomes, such as
Rickettsiales, Nasuia, and Phytoplasma, populated the sparse
bacterial points with largest values of PC1 and PC2 (fig. 4B,
upper right). Parasites, such as trypanosomes and
Plasmodium, populated the sparse eukaryotic points with

large values of PC1 and small values of PC2 (fig. 4B, lower
right), suggesting that other outlier points may harbor med-
ically or evolutionarily interesting model organisms. On the
other hand, cyanobacteria and Thermotogales, belonging to
some of the earliest organismal lineages known on the basis of
the fossil record (Berman-Frank et al. 2003; Di Giulio 2003;
Dodd et al. 2017), were located near the origin of thermody-
namic space (fig. 4C, white star). Although we do not propose
a phylogenetic tree here, this last observation would be con-
sistent with thermodynamic evolution of higher organisms
radiating outward from the figure 4 origin rather than unidi-
rectional thermodynamic evolution along a PC1/PC2 axis.

Thermodynamic Properties of Individual Proteins:
Secondary Structure and Global Stability
Of course, the proteome characteristics observed at the or-
ganism level were built from properties of individual proteins.
Turning now to focus on these properties emphasizes the
difference between TEs and traditional amino acid sequence
analysis. First, secondary structure elements such as alpha he-
lices or beta sheets cannot be used to predict TEs or their
position-specific boundaries. Types of secondary structure
found in folded proteins are only weakly correlated with spe-
cific TEs (fig. 6A), with helices and strands in particular both
preferentially found in stable native state regions. Conversely,

FIG. 3. Hierarchical clustering of native TE occurrence frequency, by proteome. Each row corresponds to one of 10,520 proteomes analyzed.
Coloring in the far left column corresponds to the domain of the organism (blue¼ bacteria, green¼ eukaryote, red¼ archaea). Regardless of the
domain of life, TEs naturally vary in their usage frequency from organism to organism. TE4 and TE5, the median two TEs by stability, occur
approximately two to three times more frequently than any other given TE. The extremes of TE stability, TE1 and TE8, occur least frequently.
Clustering on the left hand side was done independently for each kingdom. There is a modest co-occurrence between visual clustering and
preponderance of Gram-staining in bacteria (labels).
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although structured regions might be distinguishable from coil
and turn regions, TEs cannot be derived from secondary struc-
ture content alone. In contrast to the long-standing practical
discovery that secondary structure propensities can be use-
fully predicted from amino acid sequence, TE sequence does
not appear to be able to predict secondary structure.

What then are TEs able to predict? Previous work has
established that TEs contain information on the conforma-
tional specificity of sequence for structure (Lattman and Rose
1993; Hoffmann et al. 2016). Extending this observation, we
find here that TEs, although local reporters of the thermody-
namic ensemble, can be also interpreted as weighted additive
contributions to the experimental global stability of each pro-
tein. This interpretation leverages theoretical work from other
laboratories (Ghosh and Dill 2009), treating the free energy as
a sum of individual residue stabilizing enthalpic contributions,
offset by a destabilizing conformational entropy term (equa-
tion [4]). The validity of this simple treatment is supported by
a significantly effective ability to predict the measured stability
of a globular protein solely from its TEs (fig. 6B). Additionally,
equation (4) shows some ability to separate structured pro-
teins from intrinsically disordered ones (supplementary fig.
S1C, Supplementary Material online), as expected given that
the types of environment correlate with presence or absence

of structure, as already seen (fig. 6A). Correlations are anec-
dotally observed between the predicted stability and experi-
mental melting temperatures of mesophilic and thermophilic
variants within the same protein family, such as AK, cold-
shock protein, and dihydrofolate reductase. All of the above
suggest that TE statistics will be useful at the single protein
level as well as at the whole-proteome level.

Discussion
In this study, we explored the biological implications of a
broad survey of position-specific TEs in proteins, which
were derived from over 10,000 distinct proteomes, represent-
ing all three domains of life. This analysis is analogous to a
structural characterization in that it reports on the TE at each
position in a protein, as opposed to the energetic contribu-
tion of an amino acid. Importantly, these calculations do not
represent a trivial, scaled-up sequence analysis. Rather, this
work asks whether there are basic principles of physical or-
ganization in evolutionary biology, with the thermodynamic
properties of proteins as the focus. Although the position-
specific stabilities of proteins are subject to selective and neu-
tral evolutionary forces over time, it is neither expected
nor known whether living systems, as a whole, differentially
exploit TEs as a mechanism for adaptation. Are there

FIG. 4. PCA of TE occurrence frequency, by proteome. PCA reveals distinct regions that distinguish between each domain of life; 72.6% of variance is
explained by principal component 1 (PC1), 22.0% by PC2, and 2.4% by PC3 (not shown). As discussed in the main text, PC1 can be interpreted as a
local stability and PC2 can be interpreted as a hydrophobicity (labeled axes in [B]). Data in all panels reflect smoothed kernel scaled densities to
reduce visual artifacts caused by unequal proteome density among kingdoms: bacteria are colored red, archaea are blue, and eukaryotes green. (A)
Each kingdom is highlighted separately for clarity. Major characteristics of organisms comprising the prominent peaks are labeled. (B) Merge of the
separate panels in (A), demonstrating that the bulk of archaea density lies in between bacteria and eukaryotes. (C) Overhead view of (B),
demonstrating that the bulk of eukaryote density is separated from both bacteria and archaea. Dashed cross-hairs represent the origin of the
thermodynamic coordinate system, and the approximate positions of Cyanobacteria and Thermotoga, some of the most ancient organisms
known, are near this origin, as indicated by a white star. In contrast, the approximate position of a more modern, biomass-abundant organism,
trees, is indicated by a white cross.
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TE signatures that unify clades, despite the foundational
physical realities of proteomic thermodynamics transcending
phylogenetics? We consequently explored the overall

statistics of TE occurrence to probe for biologically distinctive
patterns.

The over-riding, if unconventional, pattern seen in the
thermodynamic data is that bacteria and archaea, in general,
cluster more closely together than do eukaryotes and archaea
(fig. 4B).

State-of-the-art phylogenetic trees, built from primary se-
quence relationships, consistently reveal that eukaryotes are
more closely related to archaea rather than bacteria, probably
through transitional Asgard archaea (Eme et al. 2018;
Doolittle 2020; Liu et al. 2021). Although some archaea oc-
cupy a thermodynamic border between bacteria and eukar-
yotes (fig. 4B), unexpectedly these organisms are not Asgard
(supplementary fig. S4, Supplementary Material online), but
turn out to largely be halophilic archaea (fig. 4A).

In fact, the thermodynamic data point to an evolutionary
scenario whereby eukaryotes are energetically distinct from
the other domains of life, perhaps due to their increased
content of intrinsic disorder (fig. 5B, upper left)
(Schlessinger et al. 2011). The thermodynamic separation of
eukaryotes from the other domains is even more pronounced
when the specific, locally unfolded denatured state is included
in the analysis (supplementary fig. S4, lower right,
Supplementary Material online). Although the concept of
the tree-of-life is currently undergoing revision (Blais and
Archibald 2021) due to, for example, horizontal gene transfer
(Soucy et al. 2015; Doolittle and Brunet 2016) and an in-
creased appreciation for network relationships among organ-
isms (Puigb�o et al. 2010), this eukaryotic separation from
bacteria and archaea has also been noted in a tree con-
structed from the feature information of entire proteomes
(Choi and Kim 2020) as well as in a tree constructed from
protein fold co-occurrence (Kurland and Harish 2015).
Toward reconciliation of these conflicting evolutionary sce-
narios, we and others posit that thermodynamic aspects of
protein evolution are an important mechanism of organism
adaptation (Ghosh et al. 2016; Trudeau et al. 2016; Saavedra
et al. 2018), which to date have not commonly been repre-
sented in phylogenetic relationships. However, the results
presented here suggest that this type of information could
be a valuable addition to tree-building efforts.

Closer inspection of the thermodynamic data reveals an
intriguing eukaryotic innovation: Why do eukaryotes exhibit
higher intrinsic disorder content (fig. 5B) despite more abun-
dant higher stability environments (fig. 5C)? Possibilities for
this observation include; 1) the multidomain structure of
many eukaryotic proteins, where locally stable domains are
interspersed with disordered stretches, such that the average
location in PC space reflects both properties; or 2) increased
eukaryotic use of mechanisms to stabilize protein structure
that do not rely on hydrophobicity, such as hydrogen bonds
(Myers and Pace 1996; Pace et al. 2014), salt bridges (Bosshard
et al. 2004), conformational entropy (Matthews et al. 1987;
Pace et al. 1988; Nagibina et al. 2019), or covalent linkages
(Fass 2012; Wensien et al. 2021). Related to the second point,
the longer average lengths of eukaryotic proteins (Brocchieri
and Karlin 2005) increase the temperature dependence of
stability for globular proteins with a hydrophobic core, due

FIG. 5. TEs predict organism characteristics. (A) Principal component
2 (PC2) predicts organism growth temperature. Optimal organism
growth temperature and PC2 share a modest linear correlation
(P< 0.05). (B) PC2 predicts intrinsic disorder content of the prote-
ome (P< 0.01). (C) PC1 reflects the amount of the most stable res-
idues of a proteome (P< 10�6). Note that this quantity is distinct
from the average stability of a proteome. Dashed green line indicates a
significantly different slope when only eukaryotes are considered,
suggesting that eukaryotes are a thermodynamically distinct king-
dom in terms of proteome energetics.
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to the curvature of the free energy of stability as a function of
temperature that results from the larger heat capacity change
DCp of unfolding larger proteins (Alexander et al. 1992;
Robertson and Murphy 1997). Because the function of a
globular protein depends on its folded population, which in
turn depends on its stability, the longer lengths of folded
eukaryotic proteins might have a functional limitation in be-
ing especially sensitive to temperature unfolding. Thus, eukar-
yotes may have circumvented this limitation by evolving
protein-based regulatory mechanisms less dependent on sta-
bility at a fixed temperature, namely allosteric multidomain
intrinsically disordered proteins (Hilser and Thompson 2007;
Schlessinger et al. 2011). In other words, intrinsic disorder-
mediated allostery, specifically featured in eukaryotic organ-
isms, could permit better temperature adaptation to specific
environmental niches by minimizing the temperature
“denaturation catastrophe” (Ghosh et al. 2016) of key regu-
latory proteins. Examples of such disorder-mediated regula-
tory proteins have already been reported for the essential
homeostatic enzyme AK (Saavedra et al. 2018) and the tran-
scription factor glucocorticoid receptor (Li et al. 2012).

We note in contrast, that a large proportion of bacterial
proteomes occupy PCA space with the lowest stability TEs
(fig. 4B, left side). These organisms are almost exclusively
Actinobacteria, such as Arthrobacter, Cornyebacteria,
Mycobacteria, and Streptomyces. Bacteria, as a kingdom, oc-
cupy the widest range of PC1 while simultaneously occupying
a rather narrow range of PC2. Because bacteria exclusively
exhibit a weak positive slope of PC2 relative to PC1

(fig. 4C), one thermodynamic interpretation is that increased
protein stability in this kingdom is gained by increasing the
average hydrophobicity of the proteome. However, the result-
ing expectation that decreased PC1 (i.e. decreased protein
stability) correlates with intrinsic disorder content is not sup-
ported by our analysis (fig. 5B). This apparent paradox is re-
solved with the testable hypothesis that eukaryotes have
evolved a different type of disorder from bacteria that is
not consistent with two-state unfolding of a globular protein.
In other words, the bacterial proteome is more likely to con-
tain disordered proteins that are merely destabilized versions
of structured proteins, whereas eukaryotes are more likely to
contain disordered nonfolding proteins, such as phase sepa-
rating proteins, which are found throughout the cell but are
predominant in the nucleus.

Our analysis also showed that TEs occurrence frequencies
are nonuniform across proteomes in general, with median
stability TEs preferred in proteomic composition about twice
as often as low or high stability TEs. This observation in itself
establishes a baseline expectation for the distribution of TEs
that could be used to inform functional protein design. The
monomodal distributional shape is somewhat surprising con-
sidering that, for example, proteomic amino acid frequencies
tend to be more homogeneously distributed, and are differ-
entially enriched in linkers versus domains (Brune et al. 2018).
Though we emphasize again that TEs are semantically orthog-
onal to primary amino acid sequence, one might hypothesize
that physicochemically related selective pressures could mold
the TE frequency distribution into a shape similar to the

FIG. 6. eScape TEs capture secondary structure (order/disorder) and stability information about individual proteins. (A) Native State TEs reflect the
presence or absence of secondary structure in the primary sequence of 572,263 structured proteins. Red color indicates population enrichment
and blue color indicates depletion relative to background, as described in Materials and Methods. Helix and strand are enriched in the most stable
environments, whereas turn and coil are enriched in the least stable environments. (B) TEs approximate experimental two-state stability for a set of
structured and intrinsically disordered proteins (Materials and Methods; equation [4]). Predictions were made using the average set of boot-
strapped parameters (supplementary table S5, Supplementary Material online).
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flatter amino acid distribution. However, we observe the con-
trary. This not only reinforces the semantic independence of
TEs as sequential TDs, but also emphasizes the opportunity to
develop and use orthogonal TE organizing principles to drive
effective protein design solutions.

One open possibility could be to design proteins using
non-natural TE frequency distributions. Considering that nat-
ural global protein stability is often marginally stable, natural
TE distributions may be constrained by epistatic evolutionary
limitations but in actuality only represent a subset of the
physically valid space (Taverna and Goldstein 2002).
Devising functional sequences in the naturally unoccupied
regions of TE distribution space could subsequently imbue
proteins with unusual character. For example, it is known that
multiple divergent protein structures can be validly mapped
to a single shared TE sequence (Wrabl and Hilser 2010; Wrabl
et al. 2019). Engineering dynamic interconversion between
multiple highly diverse structures may be possible through
use of non-natural TE frequency distributions.

Although the overall TE frequency distribution appeared
to be shared universally across the tree of life, our analysis also
revealed that subtle variation in TE usage patterns contained
sufficient information to discriminate between bacteria, ar-
chaea, and eukaryotes. This phylogenetic separation reinfor-
ces the argument that the relative balance between position-
specific protein energetics is itself a substrate for adaptive
evolution. As a result, differing taxa appear to have co-
opted distinct thermodynamic vocabularies or dialects, by
analogy to natural language varieties which share features,
but are distinguished by peculiarities that may not necessarily
be functionally interchangeable (Searls 2013).

What physical forces or practical adaptations can account
for trends in TE statistics? Although the suite of possible
driving factors is vast, to some degree we expect that fun-
damental physical factors such as organismal growth tem-
peratures will track with TE trends. We observe this is the
case, corroborating a pattern previously appreciated in only
a limited number of prokaryotic organisms (Gu and Hilser
2009). However, the majority of the variation remains ripe
for quantitative exploration. Patterns in protein length that
tend toward longer, multidomain eukaryotic proteins may
also bias demands on site-specific thermodynamic character
(Brocchieri and Karlin 2005). There is evidence linking pro-
tein stability to evolvability (Bloom et al. 2006; Tokuriki and
Tawfik 2009). Could distributional breadth in proteomic TE
compositions poise populations for adaptation to ecological
niches? Can TE signatures be used to predict molecular evo-
lutionary rates? We hope that the TE database presented
here will serve as a foundational resource to aid insight into
these and other significant questions.

Conclusions
A unique database of residue-specific TEs information has been
compiled for a large number of proteomes from the three
kingdoms of life, enabled by a fast sequence-based predictor
of protein energetics, eScape. Certain useful characteristics of
individual proteins, such as secondary structure content and

tertiary stability, are predictable from the TE information.
Analysis of these data at the species level reveals that optimal
growth temperature and intrinsic disorder content of individ-
ual organisms are strongly related to other energetic properties
of the proteome, specifically the apolar enthalpy. Most intrigu-
ing is the observation that the thermodynamic properties of
eukaryotic proteomes are quite different from those of archaea
and bacteria, possibly calling into question the evolutionary
relationships between the three kingdoms.

Materials and Methods
A database of 10,520 Uniprot Reference Proteomes, which
have been “selected among all proteomes to provide broad
coverage of the tree of life” (uniprot.org/proteomes) were
downloaded as source material for further analysis (1,184
eukaryotes, 440 archaea, 8,896 bacteria). The eScape software
package (Gu and Hilser 2008) was deployed on this source
material to analyze all protein primary sequences and return
each sequence, relabeled as a series of eight native state (i.e.
folded) and eight denatured state TEs (Larson and Hilser 2004;
Wang et al. 2008). The nomenclature convention of the na-
tive and denatured TEs followed (Hoffmann et al. 2016), in
which TE1 corresponded to the lowest mean stability (least
negative DG) and TE8 corresponded to the highest mean
stability (most negative DG) within each state. Raw proteome
sequence data and TEs data are freely available at https://afc-
science.github.io/thermo-env-atlas/ (last accessed January 18,
2022). It is important to note that the eScape denatured
environments do not refer to the completely unfolded state
of the protein (i.e. a conformation devoid of all structure).
Rather, the denatured environments refer to a specific dena-
tured state of the protein where the conformational entropy
contribution is heavily weighted, so as to bias the ensemble
toward states where only short regions of local structure (e.g.
a few turns of helix) are populated (Wang et al. 2008).

TEs are defined as specific combinations of average sta-
bility, enthalpy (divided into apolar and polar contribu-
tions), and conformational entropy, observed for each
residue of a protein. Although these quantities are acces-
sible either experimentally, for example, from NMR
hydrogen-exchange experiments, or computationally, for
example, from all-atom molecular dynamics simulation, in
the two decades elapsed since the initial report (Wrabl
et al. 2001) most of what has been learned about TE’s
has come from high-throughput ensemble-based model-
ing of proteins (Larson and Hilser 2004; Wang et al. 2008).
One of the first insights gained from cluster analysis was
that all globular proteins are composed of a surprisingly
small number of distinct TEs (i.e. eight) (fig. 1A, colored
regions). Moreover, the original high-dimensional thermo-
dynamic space (fig. 1A, thin blue axes) could be decom-
posed into only two principal components (fig. 1A, dark
axes), corresponding to solvent-exposed surface area ex-
posure and atomic polarity, providing a physical interpre-
tation of how the statistical–mechanical thermodynamic
properties of the protein ensemble are reflected by the
reported energetics at a single residue position (Vertrees
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et al. 2009). One consequence of this low-dimensional or-
ganization is that the TEs can be roughly ranked according
to the average local stability—TE1 is least stable and TE8 is
most stable (fig. 1; supplementary table S1, Supplementary
Material online).

Perhaps unexpectedly, many of the properties of a glob-
ular protein’s ensemble are in fact determined locally, per-
mitting development of an effective sequence-based
predictor of protein energetics named eScape (“energetic
landscape”) (fig. 1B, top). As previously detailed (Gu and
Hilser 2008), eScape is parameterized from the experimen-
tally verified ensemble-based protein modeling algorithm
developed in this laboratory (Hilser and Freire 1996) to
understand hydrogen exchange (Liu et al. 2012), protein
allostery and functional adaptation (Pan et al. 2000;
Schrank et al. 2009; Saavedra et al. 2018), cold-
denaturation of proteins (Babu et al. 2004), protein design
(Wrabl et al. 2019), and thermodynamic fold recognition
(Wrabl et al. 2002). The eScape algorithm is publicly avail-
able both as a web-service for individual proteins (http://
best.bio.jhu.edu/eScape, last accessed January 18, 2022)
and as a batch package from the authors upon request.
Because sequence-based prediction of protein energetics is
extremely fast (<1 s per amino acid sequence), eScape is
the enabling technology permitting multiproteomic anal-
ysis. Although it is expected that, as a verified representa-
tion of the energetics of the protein ensemble, eScape high-
stability regions would correspond with experimental
regions of hydrogen exchange protection, this has not
been formally checked to date, although eScape has been
shown to agree with the structure-based calculation em-
bodied in the COREX algorithm (Gu and Hilser 2008), and
COREX has been shown to correlate with experimental
protection factors (Liu et al. 2012).

In detail, the relabeling of each amino acid sequence in
terms of TEs was accomplished as follows (fig. 1B). The eScape
output for every amino acid j in the sequence was treated as
two 4D vectors, one each for the native (N) and locally de-
natured (D) states, that is, fDGj

N, DHapolar, j
N, DHpolar, j

N,
TDSconf, j

Ng and fDGj
D, DHapolar, j

D, DHpolar, j
D, TDSconf, j

Dg.
The native and denatured TEs corresponding to such vectors
were defined as the TEs whose cluster centers in high-
dimensional space, over a large database of proteins, were
closest in Manhattan distance (fig. 1B, dashed lines), accord-
ing to equations (1) and (2).

TEN
j � min

k
abs DG

N

k�DGN
j

� �
þabs DH

N

apolar;k�DHN
apolar;j

� �h

þabs DH
N

polar;k�DHN
polar;j

� �
þ3abs TDS

N

conf;k�TDSN
conf;j

� �i
:

(1)

TED
j � min

k
abs DG

D

k�DGD
j

� �
þabs DH

D

apolar;k�DHD
apolar;j

� �h

þabs DH
D

polar;k�DHD
polar;j

� �
þabs TDS

D

conf;k�TDSD
conf;j

� �i
:

(2)

The index k runs over the eight native state TEs for equa-
tion (1), and the index k runs over the eight denatured state
environments in equation (2). Average values

DG
N

k ; DH
N

apolar;k ;DH
N

polar;k ; TDS
N

conf;k

n
and

DG
D

k ; DH
D

apolar;k ;DH
D

polar;k ; TDS
D

conf;k

n
for each environ-

ment have been published (Wang et al. 2008; Hoffmann
et al. 2016) and are given in supplementary tables S1 and
S2, Supplementary Material online.

A total of 10,520 vectors of eight dimensions, whose entries
are the proportion of native TEs, were calculated on a per-

proteome basis as Tn=ð
P8
n¼1

TnÞ, where T is the count of TEs

and n is the environment number. UPGMA agglomerative
hierarchical clustering with Euclidian distance was then used
to examine these vectors. PCA was performed using the
sklearn decomposition package on a matrix composed of
the same vectors (Pedregosa et al. 2011).

Intrinsic disorder content was retrieved for 24 model
organisms (Ward, McGuffin, et al. 2004; Ward, Sodhi, et al.
2004). Optimal growth temperatures for these same model
organisms were collated from three large studies (Miralles
2010; Sauer et al. 2015; Engqvist 2018) plus Wikipedia (wiki-
pedia.org), and the averages were used for analysis; these data
are given in supplementary table S3, Supplementary Material
online.

Primary sequence and experimental secondary structure
data for 572,263 proteins, 96,019,709 residues, were retrieved
from the Protein Data Bank (Berman et al. 2000) (rcsb.org)
and the develop275 release of the ECOD database (Cheng et al.
2014) (prodata.swmed.edu/ecod). These data were collated
with eScape TE data for the same proteins computed as de-
scribed above, such that every residue of every protein was
assigned both a secondary structure type (helix, strand, turn,
coil) and a native and denatured state TE. This set was nec-
essarily a substantial subset of the entire database, as it was
restricted to those ECOD domains containing no breaks in
primary sequence. Log-odds scores reflecting enrichment or
depletion of thermodynamics, given a secondary structure
type, were computed according to equation (3) and the
results displayed in figure 6A.

Log� Odds Score ¼ ln
Pjjk
Pk
¼ ln

Njjk=Nj

Nk=N
: (3)

In equation (3), N is the total number of residue positions
analyzed (i.e. 96,019,709 residues), Nk is the number of residue
positions with TE type k, Nj is the number of residue positions
with secondary structure type j, Njjk is the conditional number
of residue positions of secondary structure type j given TE
type k, Pjjk is thus the conditional probability of finding sec-
ondary structure type j given TE type k, and Pk is the prob-
ability of finding TE type k in the database. Index j runs 1
through 4 DSSP (Kabsch and Sander 1983) defined secondary
structure types of helix (H, G, I), strand (E, B), turn (T, S), and
coil (anything else) as reported by the Protein Data Bank.
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Index k runs 1 through 8 native state TE. Thus, for the native
state data in figure 6A, equation (3) was evaluated separately
for 4� 8¼ 32 categories of secondary structure and TE.

For the results in figure 6B, experimental data for 27 glob-
ular proteins was taken from Maxwell et al. (2005), where
three proteins without structures given in table 2 of that work
were omitted from analysis (i.e. their experimental amino acid
sequences could not be inferred). This set was augmented
with the following globular and intrinsically disordered pro-
tein experimental data: wild-type staphylococcal nuclease
(Shortle and Meeker 1986), EXG:CBM (Hojgaard et al.
2016), human glucocorticoid receptor NTD isoforms A, C2,
C3 (Li et al. 2012), P-protein (Chang and Oas 2010), alpha-
synuclein (Moosa et al. 2015), and RCAM-T1 (Pace et al.
1988). The complete set used is given in supplementary table
S4, Supplementary Material online. Leave-one-out bootstrap-
ping was performed on the eScape native and denatured TEs
of these 35 proteins in order to determine weights for a sta-
bility prediction expression as below:

DG ¼
X8

i¼1

wiNTEi þ
X8

j¼1

wjDTEj � LRTlnZ: (4)

In equation (4), DG is the experimental stability in kJ/mol
under standard conditions of 100 mM salt, pH 7, 25 �C, wi and
wj are optimized weights for NTEi and DTEj, the number of
native and denatured state environments, respectively, in the
protein of type i or type j, where indices i and j run from 1
through 8 as described. L is the chain length of the protein in
residues, R is the gas constant, T is the temperature (fixed at
25 �C), and Z is an adjustable parameter. The first two terms of
equation (4) could be thought of as a solvation free energy
and the last term could be thought of as a conformational
entropy term applied uniformly to every residue, where Z is an
estimate of the number of unfolded state conformations avail-
able to the backbone and side chain (Ghosh and Dill 2009).
The NMinimize function of Mathematica12 (Wolfram) was
used in the bootstrapping to estimate optimal parameters
for wi, wj, and Z, given in supplementary figure S1C and table
S5, Supplementary Material online. In particular, the opti-
mized value of Z turned out to be a reasonable value of ap-
proximately 20 unfolded state conformations per residue,
depending on if the average values for the 35 left-out proteins,
or the single value optimized over the full set, was used (sup-
plementary table S5, Supplementary Material online).

To test the validity of equation (4), a set of 262 intrinsi-
cally disordered proteins and a length-matched set of 262
globular proteins of known structure were used. The intrin-
sically disordered proteins were taken from the DisProt
database (Hatos et al. 2020) and restricted to lengths 50–
400 (the approximate lengths used in the parameterization
of equation [4]). The structured proteins were randomly
chosen from the ECOD database mentioned above, such
that each DisProt protein was matched with a structured
protein of identical length and that no protein in the train-
ing set was used in this testing. These 524 proteins are given
in supplementary table S6, Supplementary Material online.
Stabilities of these proteins were predicted with equation

(4) and the results shown in supplementary figure S1C,
Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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