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A B S T R A C T

Nasal and nasopharyngeal swab specimens tested by the Cepheid Xpert Xpress SARS-CoV-2 were ana-
lyzed by whole-genome sequencing based on impaired detection of the N2 target. Each viral genome
had at least one mutation in the N gene, which likely arose independently in the New York City and
Pittsburgh study sites.
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1. Research note

As the COVID-19 pandemic continues and cases increase, the on-
going need to accurately detect SARS-CoV-2 RNA in clinical speci-
mens relies significantly on the use of nucleic acid amplification test
(NAAT)-based diagnostics. While NAATs using real-time RT-PCR, for
example, are highly specific and sensitive, a single nucleotide poly-
morphism (SNP) within critical primer- or probe-binding regions
could lead to false-negative results or reduced sensitivity. Mutations
that impact detection are rare but have been reported in other
viruses, such as influenza and HIV (Korn et al., 2009; Yang et al.,
2014). For SARS-CoV-2, a report described the failure to detect a
SARS-CoV-2 variant harboring a C26340T mutation using the Roche
cobas� SARS-CoV-2 assay (Roche Diagnostics, Switzerland), which
targets the viral E gene (Artesi et al., 2020). Other reports described
mutations in the N gene that reduced assay sensitivity by the Xpert�

Xpress SARS-CoV-2 (Xpert) test (Cepheid Inc.) (Hasan et al., 2021;
Ziegler et al., 2020). We describe identification of SARS-CoV-2 var-
iants harboring C29200T, C29197T and G29227T mutations in both
New York City and Pennsylvania.

As part of routine clinical care, the New York City (NYC) Public
Health Laboratory (PHL) and the University of Pittsburgh Medical
Center (UPMC) performed SARS-CoV-2 testing of nasopharyngeal or
nasal swabs collected in viral transport media using the Xpert test as
previously described (Loeffelholz et al., 2020). The NYC PHL identified
2814 SARS-CoV-2-positive specimens from August 2020 to mid-Janu-
ary 2021 with the Xpert test. Twelve of these specimens representing
10 unique patients tested as presumptive positive, wherein the E tar-
get was detected but the N2 target was not detected. Six presumptive
positive specimens from six unique patients were further analyzed
(Table 1). Due to sequencing limitations when viral RNA levels are
low, only specimens with Ct values below 33 were included. From
October to December 2020, one presumptive positive specimen was
identified among 599 positive specimens with the Xpert test at
UPMC. A second UPMC specimen was identified that was strongly
positive (Ct <20) for the E target but weakly positive for N2 (Ct >40)
(Table 1).

To confirm the Xpert results, the six NYC specimens were tested
with the New York SARS-CoV-2 Real-Time RT-PCR Diagnostic Panel
which detects two SARS-CoV-2 N-gene targets: N1 and N2
(Wadsworth Center New York State Department of Health 2020).
Both targets were detected in all six specimens, and their Ct values
were within two cycles of each other (Table 1). One UPMC specimen
(PGH1) was tested using the Hologic Aptima SARS-CoV-2 assay per
the manufacturer’s instructions and was positive (Aptima SARS-CoV-
2 Assay Panther System, instructions for use, 2020). The Aptima assay
utilizes transcription-mediated amplification, which is measured in
relative light units instead of Ct values.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.diagmicrobio.2021.115468&domain=pdf
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Whole genome sequencing (WGS) was used to identify SNPs in
the N2 target region as defined by the CDC 2019-nCoV Real-time RT-
PCR Diagnostic Panel primer sequences (2019-nCoV Real-time rRT-
PCR panel primers and probes, 2020). The NYC PHL used two nucleic
acid extraction platforms: NUCLISENS easyMag (bioMerieux) for
specimens NYC1-4 and the KingFisher Flex system with the MagMAX
Viral/Pathogen Nucleic Acid Isolation Kit (ThermoFisher) for speci-
mens NYC7-8. The COVID-19 ARTIC protocol was followed with the
v3 Illumina library construction on an Illumina MiSeq instrument
(Farr et al., 2020). WGS for UPMC specimens was performed using
Illumina viral RNA for enrichment. Briefly, RNA was extracted using
the QIAamp Viral RNA Mini kit (Qiagen) according to the manufac-
turer’s instructions. Following reverse transcription, the libraries
were constructed using Nextera Flex. The normalized libraries were
run on an Illumina NextSeq 550 platform. The resulting reads were
processed using BreSeq and SNPs were identified by alignment to the
Wuhan-1 reference genome. Full coverage of the N genes was
obtained for all specimens. Genetic lineages were assigned using the
Phylogenetic Assignment of Named Global Outbreak LINeages (Pan-
golin) (Rambaut et al., 2020). RAxML created the phylogenetic tree
using a general time reversible model of evolution (GTRCAT) and 100
bootstrap replicates.

WGS analysis of the eight SARS-CoV-2 genomes revealed that the
two UPMC genomes and three of the six NYC PHL genomes had the
previously described C29200T SNP (Table 1) (Ziegler et al., 2020). The
other three NYC specimens (NYC4, 7 and 8) had a C>T change at posi-
tion 29197. Additionally, viral genomes from specimens NYC4 and
NYC7 possessed a second SNP in the N2 region: a G>T change at posi-
tion 29227. The G29227T SNP was only observed in conjunction with
C29197G, and the two genomic sequences in which the SNPs were
found together are closely related (Fig 1A; B.1.1.519). However, for
one sequence (NYC8), C29197T was present without the G29227T
mutation, indicating that the C29197T mutation alone is sufficient for
impaired N2 detection by the Xpert test. The Pittsburgh WGS data-
base of 347 SARS-CoV-2 sequences was reviewed to determine
whether additional specimens tested with other assays carried either
the C29197T or C29200T N2 mutations. Three additional specimens
carrying the C29200T mutation were identified (Table 1, PGH 3-5),
resulting in a prevalence of 1.4% in the Pittsburgh database of 347
sequences. No Pittsburgh genomes with the C29197T mutation were
identified. A phylogeny based upon pair-wise SNP differences among
all eleven genomes demonstrates that the C29200T mutation arose
independently in NYC (Fig. 1A). While the Pittsburgh B.1.2 lineage
bearing the C29200T mutation is distinct from NYC lineages, the
Pittsburgh lineage shows evidence of local transmission with 0to 3
SNP differences (Fig. 1B). In contrast, the NYC lineages bearing the
C29197T mutation show evidence of genetic relatedness and poten-
tial transmission with 2-15 SNP differences (Fig. 1B).

The three SNPs are located within the N2 primer/probe-binding
regions of both the New York and CDC SARS-CoV-2 RT-PCR Panels:
C29299T and C29197T are in the probe-binding site and G29227T is
in the reverse primer-binding site. However, these mutations do not
interfere with detection with the New York RT-PCR assay (Table 1).
Without knowledge of the specific sequences targeted in the Xpert
test, it is not possible to determine if the identified SNPs are responsi-
ble for the failure to detect N2. Presumably, a molecular beacon anal-
ogous to the ones described for the Xpert� MTB/RIF assay is used for
the SARS-CoV-2 Xpert test, and its binding may be similarly abro-
gated by the presence of a SNP within that region, thereby impeding
N2 detection (Lawn and Nicol, 2011).

Most clinical diagnostic tests for SARS-CoV-2 target at least two
independent genes/genetic regions providing detection redundancy.
However, some laboratory-based tests in widespread use (such as
SalivaDirect) and some available for use in CLIA-waived settings (like
Abbott ID NOW COVID-19) detect only a single target and are there-
fore more vulnerable to false-negative results due to genetic variants.



Fig. 1. Relatedness of the N2-mutant genomes (A) SNP- based phylogenetic tree with each lineage represented by colored branches. (B) Heat map table of the pairwise SNP differ-
ences.
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Cepheid has released a newer SARS-CoV-2 test, which also incorpo-
rates FluA/B and RSV targets in a multiplex assay. Although the same
two SARS-CoV-2 targets are amplified, thus maintaining detection
redundancy, the assay does not differentiate between them. Instead,
one SARS-CoV-2 Ct value is reported, as demonstrated by specimen
PGH-4 (Table 1). Clinical and public health laboratories should
remain vigilant for evidence of genetic changes in the targets of
NAAT diagnostic assays and may consider incorporating on-going
genomic surveillance to identify and characterize variants.
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