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Cancer Subtype Discovery Using
Prognosis-Enhanced Neural Network
Classifier in Multigenomic Data
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Abstract
Objective: The main objective in studying large-scale cancer omics is to identify molecular mechanisms of cancer and discover
novel biomedical targets. This work not only discovers the cancer subtypes in genome scale data by using clustering and clas-
sification but also measures their accuracy. Methods: Initially, candidate cancer subtypes are recognized by max-flow/min-cut
graph clustering. Finally, prognosis-enhanced neural network classifier is proposed for classification. We analyzed the hetero-
geneity and identified the subtypes of glioblastoma multiforme, an aggressive adult brain tumor, from 215 samples with microRNA
expression (12 042 genes). The samples were classified into 4 different classes such as mesenchymal, classical, proneural, and
neural subtypes owing to mutations and gene expression. The results are measured using the metrics such as silhouette width,
biological stability index, clustering accuracy, precision, recall, and f-measure. Results: Max-flow/min-cut clustering produces
higher clustering accuracy of 88.93% for 215 samples. The proposed prognosis-enhanced neural network classifier algorithm
produces higher accuracy results of 89.2% for 215 samples efficiently. Conclusion: From the experimental results, the proposed
prognosis-enhanced neural network classifier is seen as an alternative, which is full of promise for cancer subtype prediction in
genome scale data.
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Introduction

In recent days, genomic profiling has acquired a lot of data

types in a similar set of tumors. Breast cancer research com-

bined with the DNA copy of various gene expressions1

approximated that 62% of highly increased genes display fairly

or highly exalted gene expression. Also the DNA copy of var-

ious aberrations has *10% to 12% of the universal gene

expression modifications at the messenger RNA (mRNA)
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level. In breast cancer cell lines, the exact outcomes were

observed by Hyman et al.2 MicroRNAs (miRNAs) is a small

noncoding RNAs which conceal the gene expression by con-

solidating the mRNA target transcripts. It provides a supple-

mentary method of gene expression regulation. More than

1000 miRNAs are imagined to live in humans, and they are

conjectural to target one-third of the entire genes in the gen-

ome.3 A coordinated effort is made to bring out the entire

spectrum of genomic modifications in human cancer. This

is being done through the National Cancer Institute/National

Human Genome Research Institute (NHGRI)-sponsored The

Cancer Genome Atlas (TCGA) pilot project, in order to

acquire an integrated vision of those interplays. The novel

study of DNA sequencing, copy number, gene expression, and

DNA methylation data has been published in a huge set of

glioblastomas (TCGA4).

In this research work, any genomic data set contributed for

encompassing the abovementioned data type deliberated in the

identical set of tumors as multiple genomic platform (MGP)

data. Identifying the tumor subtypes by subsequently analyzing

the MGP data is a great dispute. The current technique works

on subtype identification crosswise, and various types were

grouped each type independently and then they physically

include them in the outcomes. A perfect integrative clustering

technique allows joint inference from MGP data and generates

an individually integrated cluster assignment by subsequently

obtaining patterns of genomic alterations that are (1) reliable

across various data types, (2) specific to individual data types,

or (3) are weak yet constant across data sets which brings out

only as an output of merging levels of evidence.

For a truly integrative technique, we have 2 primary chal-

lenges to tackle. Initially, high-dimensional data generally have

certain characteristics where the sample volume is moderately

smaller when distinguished with the gene volume. The earlier

deterministic methodology rectified this problem. For example,

Huang et al5 utilizes independent component analysis-based

penalized discriminant methodology to generate an entire

usage of the high-order statistical details. Zheng et al6 provides

a novel sparse representation–based methodology for cancer

classification by using the gene expression data. Only for a

single data type, these techniques work fine. In addition to this,

the subsequent dimension reduction in various integrated data

sets is at the distance from the capabilities of these techniques.

Secondly, diverse kinds of data sets have to be synthesized and

associated with the details in order to acquire useful biological

principles altogether. Lot of the earlier deterministic clustering

techniques shouldn’t be simply adapted similarly. For example,

Qin7 proceeded with a hierarchical clustering of the correlation

matrix amid gene expression and microRNA data.

Similarly, Lee et al8 utilized a biclustering technique on the

correlation matrix to integrate the DNA copy number and gene

expression data. In both conditions, the aim was to identify the

correlated patterns of alteration given with 2 sets of data types.

Although identifying the correlated patterns is enough for

learning the regulatory method of gene expression via the copy

number modifications or epigenomic alterations, it isn’t

suitable for integrative tumor subtype examination. Here, both

concordant and specific modification patterns might be impor-

tant in explaining the disease of subgroups. The goal is to

identify groups of samples sharing identical expression patterns

that could bring about the detection of novel cancer subtypes.

This type of examination was initially used in the study by

Pusztai et al and Lenz et al.9,10 Since then, clustering tech-

niques have gained a great deal of consideration in the scien-

tific community.11 Bioinformaticians have been presenting

new clustering techniques that consider intrinsic features of

gene expression data, for instance, noise and high dimension-

ality, to progress the clusters.12,13

Nevertheless, this examination can’t acquire the persistent

output owing to low signal to noise ratio at the time of the

initial clustering. So, a few methods have to be established for

the concordant formations to integrate the diverse varieties of

data. For instance, iCluster denotes a Gaussian latent variable

model for integrative clustering.14 Though it is successful, it

has few problems in the data preprocessing, which affects the

performance of iCluster. To rectify both the problem, one latest

data integration technique is brought in, which informs how to

use correlation amid the problem of selecting priori gene. Simi-

larity network fusion (SNF)15 develops the appropriate cancer

sample-by-sample network and intermixes these networks by

an iterative technique. Finally, the resulting network is grouped

by spectral clustering.

Wu et al16 presents novel vigorous gene expression-based

techniques to identify these subtypes. They clarify the subse-

quent network structures and identify the cancer-associated

biomarkers ably. This research represents a penalized model-

based Student t clustering with unconstrained covariance to

identify the cancer subtypes with cluster-specific network. It

considers gene dependencies comprising sturdiness in opposi-

tion to outliers. In the meantime, biomarker detection and net-

work reformation are acquired by imposing an adaptive penalty

on the means as well as the inverse scale matrices. The expec-

tation maximization algorithm fixes this by utilizing the gra-

phical lasso. Here, a network-based gene selection condition

identifies the biomarkers not as individual genes but as subnet-

works. This allows bringing in low discriminative biomarkers

that play a primary role in the subnetwork by interrelating

various diversely expressed genes, otherwise it has cluster-

specific basic network structures.

Detection of pancreatic ductal adenocarcinoma (PDA)

molecular subtypes17 has been aggravated through scarcity of

tumor specimens present in research. They overcome this prob-

lem by united study of transcriptional profiles of principal PDA

samples from several studies in conjunction with human and

mouse PDA cell lines. Then, 3 PDA subtypes were identified.

For example, classical, quasi-mesenchymal, exocrine-like, and

current proof for clinical output and therapeutic reaction dis-

similarities amid them. Furthermore, it explains the gene sig-

natures for these subtypes that help stratifying patients for

treatment and bring in the preclinical model systems. These

systems are used to identify the novel subtype-specific thera-

pies. Nonnegative matrix factorization (NMF) analysis is
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proceeded with consensus clustering to identify the subtypes of

the syndrome. This study is backed up to 3 subtypes (cophe-

netic coefficient > 0.99). Then a novel gene signature is con-

structed by using the subtypes with NMF study of the combined

clinical data sets. It manages the significance analysis of micro-

array study with false discovery rate below 0.001. This brings a

62 gene signature, nominated PDA signer.

Genomic and proteomic data sets (biomarkers) of non-small

cell lung cancer (NSCLC)18 and its 2 significant subtypes,

squamous cell cancer and adenocarcinoma, are analyzed in this

study. The biomarkers constitute genomic and proteomic data

sets, which are miRNAs, genes, and their proteins. On these

biomarkers of NSCLC cancers for generating the guesses, an

incorporated classification decision tree induction algorithm19

is utilized. The study constitutes constructing the decision tree

by using the J48 Weka tool for lung cancer subtypes and pre-

dicts the lung cancer variety for unfamiliar class. Secondly, the

output from J48 algorithm is built up. The average correction

classification accuracy is almost 99.7%. Nevertheless, most of

the rules made of user’s option are economized. The classifi-

cation rules acquired by improving the decision tree depend on

the option of the user to draw limitless rules based on the

attribute values. The improved decision tree has described a

superior enhancement of J48 algorithm.

Sadanandam et al20 examined gene expression profiles from

1290 colorectal cancer (CRC) tumors by consensus-based

unsupervised clustering. The output clusters depend on the

therapeutic response data to the epidermal growth factor

receptor-targeted drug cetuximab in 80 patients. The output

of these examinations explains 6 clinically based CRC sub-

types. Each subtype shares resemblances to diverse cell types

inside the normal colon crypt and explains the diverging

degrees of “stemness” and Wnt signaling. Subtype-specific

gene signatures identify these subtypes. Three subtypes have

clearly proved to be superior to disease-free survival after sur-

gical resection. They approve these patients conceived as

secured from the unpleasant situation of chemotherapy while

they are considered as localized diseases.

A novel unsupervised clustering is provided by Budinska

et al,21 which is based on the gene modules. Consider to com-

prehend, no less than 5 dissimilar gene expression CRC sub-

types, which are labeled as surface crypt-like, lower crypt-like,

CpG island methylator phenotype-H-like, mesenchymal and

mixed. A gene set enhanced by the study of literature search

of gene module members accepted as diverse biological pat-

terns in diverse subtypes. The subtypes which aren’t acquired

from the result, however, displayed dissimilarities in predic-

tion. Well-established gene copy number deviations and varia-

tions in key cancer-related genes differed in amid subtypes.

Nevertheless, the subtypes denote the molecular details which

are far from the confined variables. Morphological character-

istics desirably differ from the amid subtypes.

Amin et al19 used formal concept analysis (FCA) for taking

out the hypomethylated genes among breast cancer tumors. A

formal conception lattice is constructed with significant hypo-

methylated genes for every breast cancer subtypes. The

constructed lattice replicates the biological associations among

breast cancer tumor subtypes. The presented filter technique

comprises 2 phases: nonspecific filter and specific filters. The

former step identifies the hypomethlated CPGs by computing the

dissimilarity among the mean of methylation level for the con-

secutive problems. The next stage (specific filtering) acquires

the output of the first stage as input and proceeds to 1-sample

Kolmogorov-Smirnov test to assure the normality of each breast

cancer subtype. The paired t test is enforced, if the specified data

set goes behind the normal distribution, or Wilcoxon signed

ranked is utilized. The filtering of hypomethylated genes is

achieved after FCA is utilized to find the breast cancer subtypes.

Keller et al22 illustrates the use of FCA for the detection of

disease likeness. They recognized formal conceptions by gene–

disease relationships that point to unseen association among

diseases. They contain identical set of related genes and genes

that are related to identical set of diseases. The FCA technique

has benefits over network analysis method, for instance

(1) FCA lets depiction of associations among numerous dis-

eases, (2) it gives outcomes in algebraic form letting to think

association among conceptions, and (3) further gene annota-

tion could be included to improve conceptions that aid the

recognition of functional gene associations within disease

groups. Formal concept analysis has been used on renal dis-

ease data set that identifies unanticipated associations among

diseases that are hopeful. However, it experiences some draw-

backs. The trouble with FCA is that most of the formal con-

ceptions might not be helpful as very few formal conceptions

point to associations.

Planey and Gevaert23 suggest a new framework known as

Clustering Intra and Inter Datasets to identify the vigorous

patient subtypes or meta-clusters, crossways several data sets.

Clustering Intra and Inter Datasets is built on the in-group-

proportion metric that measures the replicability of individual

subtypes. This is utilized to an individual external data set.

Clustering Intra and Inter Datasets doesn’t need batch correc-

tion methods, since it lengthens the meta-analysis technique to

identify the consensus crosswise single clustering’s from each

data set, rather than an individual concatenated matrix. A high-

class database collection is suggested for 24 breast cancer gene

expression data sets which include 15 studies with correspond-

ing output and treatment information as a second R package.

Clustering Intra and Inter Data sets approves the well-

established breast cancer subtypes and identifies ovarian

cancer subtypes with extrapolative importance and novel

hypothesized therapeutic targets, crosswise numerous data sets.

A systematic method is reported by Chen et al24 to mechan-

ize the detection of cancer subtypes and candidate drivers.

Particularly, an iterative algorithm is suggested to substitute

among the gene expression clustering and gene signature selec-

tion. It enforces the method to data sets of the pediatric cere-

bellar tumor medulloblastoma (MB). The subtyping algorithm

usually gathers the various data sets of MB and the converged

signatures and copy number landscapes are also identified to be

highly reproducible over the data sets. According to the iden-

tified subtypes, a PCA-based approach is established for
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subtype-specific identification of cancer drivers. The top-

ranked driver candidates are identified to be improved with

known pathways in specific subtypes of MB. This discloses

the subtypes.

A dimension reduction and data integration technique is

suggested by Ge et al25 for identifying the cancer subtypes,

which is known as Scluster. Initially, Scluster denotes the

diverse of original data into the principal subspaces by an

adaptive sparse reduced-rank regression (S-RRR) technique.

Next, a fused patient-by-patient network is obtained for these

subgroups through a scaled exponential similarity kernel tech-

nique. Finally, candidate cancer subtypes are approved by

spectral clustering technique. The ability of the Scluster tech-

nique is shown by 3 cancers by mutually analyzing mRNA

expression, miRNA expression, and DNA methylation data.

Scluster is proved to be effective by comparison of outcomes

and examinations for predicting the survival and identifying the

new cancer subtypes of large-scale multiomics data. Alterna-

tively, the survival risk prediction and biological significance

of the diverse clusters yield to be a highly complex work.

In this article, a new data integration technique is proposed

for cancer subtypes detection, known as Prognosis Enhanced

Neural Network (PENN) classifier. The presented technique

comprises 4 major phases: initially, the original multiomics

data, respectively, refers to the principal subspaces by utilizing

an adaptive S-RRR technique. Sparse reduced-rank regression

technique is a high-tech multiple response linear regression

technique that simply manages the high-dimensional statistical

data underneath the Gaussian variable model. Next, a fused

patient-by-patient network, cancer subtype-by-cancer subtype

network, is obtained for these subgroups through a scaled expo-

nential similarity kernel technique. Finally, the candidate can-

cer subtypes are identified by graph clustering. Lastly, PENN

classifier is provided perfectly to guesstimate survival.

Materials and Methods

The research model begins with 2 or more kinds of data from a

similar group of patients. Presented is PENN classifier where a

dimension reduction technique is utilized to find the effectual

low-dimensional subspaces and data integration technique for

identifying the cancer subtypes. Exhaustively, the initial stage

uses an improved principal component analysis (PCA) to com-

pute a coefficient matrix for each available type of data. This

coefficient matrix could represent a sample gene space of the

original data into eigen array � eigengene subspace. The con-

sequent stage (Figure 1A) uses an adaptive S-RRR technique26

to compute the indicator matrix of each dissimilar data type.

Thirdly, these matrices are linked into a joint latent multiple

genomic variable and then constructed a sample-by-sample

matrix and cancer subtype by cancer subtype matrix by a scaled

exponential correspondence to kernel technique27 (Figure 1B,

C, and D). Fourth, candidate cancer subtypes are approved by

graph clustering technique (Figure 1E). Lastly, PENN classifier

(Figure 1F) is represented perfectly to estimate the survival. A

similar group of tumor samples is provided, which consists of 2

diverse varieties of data. They compute a set of coefficient

matrix by the best feasible PCA technique indicated for these

indicator matrices by adaptive S-RRR techniques, respectively.

B: Associating these indicator matrices into a joint latent

matrix. C: Generate a sample-by-sample matrix P. D: Identify

the candidate cancer subtypes. The solid lines symbolize the

various methodologies that are used.

Solution of the Indicator Matrix

To acquire an exact low-dimensional estimation for dissimilar

biological data, an adaptive S-RRR technique is implemented.

It uses the subspace-assisted regression with row sparsity

method to compute the solution of the subspace Z.26 This tech-

nique is built in a Gaussian linear regression model:

½X ¼ WZ þ t�: ð1Þ

Here, X is the diverse biological data of dimension p� n which

consist of rows as genes and columns as samples. Z is termed as

the indicator matrix of dimension l � n with rows as reduce

dimension scales. W is termed as the coefficient matrix of

dimension p � l and t is known as a set of independent error

terms. Both Z and t should fulfill the normal distribution, that

is, Z * N (0, I) as well as t * N (0, c) here¼ diag (j1, . . .jp).

W acquired by the first l eigenvectors of X is used for a pivoted

QR decomposition28 that is the projection matrix. It projects

sample � gene space of the original data onto eigen array �
eigengene subspace. In this work, the primary features are

considered adequately, the first l principal directions with the

range of [0.15n, 0.25n] are chosen as the closed-form solution

of the coefficient matrix. The sample biological data matrix is

represented as

X ¼
I1
..
.

In

x11 . . . x1p

..

. . .
.

xn1 . . . xpn

2
64

3
75

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{G1; .....................Gp

:

8>>>>>><
>>>>>>:

To estimate the indicator matrix Z quickly, a right bias

variance trade-off function is based on the properties of ortho-

normal matrix with reduced-rank term designating the variance

part and sparse lasso term designating the bias part is created:

B ¼ arg min
B2Rl�r

jjXV �WBjj2F
2

þ rðB;lÞ
( )" #

: ð2Þ

Here, B is termed as the reduced rank matrix and l is called

as the penalty level. An orthonormal matrix V is termed as the

right singular subspace of Z, r(B; l) is the sparse group lasso

penalty term. Here, r(B; l) is indicated as

rðB; lÞ ¼ l
Xl
j¼1
jjBj� jj2

" #
: ð3Þ
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Here, each row of the B is considered as a set with the

similar size and
Pl

j¼1 jjBj�jj2 states the l1 norm of the vector,

comprising l2 norms of r groups. B is specified in this way,

½B ¼ ZV ;V 2 Rðn;rÞ�: ð4Þ

Here r � min (p, n) is termed as the reduced rank. Finally,

we could slightly acquire a closed-form solution of Z based

upon the Equations 2 and 4.

Patient-by-Patient Network

With the aim of integrating these low-dimensional subspaces

all at once, combine the diverse subspaces and then build a

patient-by-patient network P to group the cancer patients. The

term P(i, j) represents the similarity among the patients xi and

xj. To generate the similar cluster comprising of strong simi-

larity, here we use a scaled exponential similarity kernel to

identify the weight of every pair of patients:

Pði; jÞ ¼ exp � d2ðxi; xjÞ
mWi;j

� �� �
: ð5Þ

Here, d(xi, xj) is termed as the Euclidean distance

among the patients, xi and xj, m is called as a hyperpara-

meter between [0.3,0.8], and, Wi,j is used to eliminate the

scaling problem which brings the local affinity. Wi,j is

indicated here as:

Wi;j ¼
meanðdðxi;NiÞÞ þmeanðdðxj;NjÞÞ þ dði; jÞ

3

� �
: ð6Þ

Figure 1. Working procedure of prognosis-enhanced neural network (PENN) classifier.
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Here, mean (d(xi, Ni)) is termed as the average value of the

distances amid xi and every adjacent “i.”

Graph Clustering

This article presents a graph clustering technique that uses a

max-flow/min-cut28 algorithm. Specifically, discover the min-

weight cut to partition a graph into disconnected components.

This kind of graph clustering greatly uses previous max-flow/

min-cut algorithms to find out the finest divides. On the other

hand, 1 general situation to occur is the partition into a singular

isolated node and the leftover part of the graph. The solution to

this issue is the normalized cut.

Normalized cut. Rather than reducing the weight of the cut as the

enhancement of every round, enhance the cut’s influence on the

2 segregated components. This minimizes the inclination to cut

small secluded nodes separately for the reason that the Ncut

value will forever be superior as the number of edges linked to

small secluded nodes will bring about a cut fraction.

Ncutðxi; xjÞ ¼
cutðxi; xjÞ
assocðxi;V Þ

þ cutðxi; xjÞ
assocðxj;V Þ

� �
: ð7Þ

assocðxi;V Þ ¼
X

u2xi;tc2V
wðu; tcÞ

" #
: ð8Þ

cutðxi; xjÞ ¼
X

u2xi;v2xj
wðu; vÞ

" #
: ð9Þ

Here, tc ¼ target class (cancer subtype), xi, xj ¼ 2 patients

data matrix, cut (xi, xj)—cut value among 2 patients data

matrix, assoc(xi, V)—associative value among the patient data

matrix. The algorithm begins by resolving (D�W)x ¼ lDx for

eigen vectors with the least eigen values, here “D” is the degree

matrix of the graph. The eigenvector with the second minimum

eigen value is solution. After that recurse till the number of k

clusters is attained. The eigensolver used by the algorithm is

the Lanczos methodology that minimizes the runtime of the

eigenvector issue.29 The Lanczos algorithm is a straight

method that is an adjustment of power techniques to discover

the most functional eigen values and eigenvectors of an nth

order linear system with a restricted number of operations m,

here, m is much less compared to n. For the duration of the

process of using the power technique, while obtaining the ulti-

mate eigenvector An�1v, we as well obtained a series of vectors

Ajv, j ¼ 0, . . . , n�2, which were ultimately removed. Since

these values are fairly huge, this could bring about a huge

amount of removed information. The mth step of the algorithm

transforms the matrix A into a tridiagonal matrix Tmm, which is

equivalent to the dimension of A, and is alike A. In order to

compute the tridiagonal and symmetric matrix Tmm ¼ V �mAVm,

the diagonal elements are represented by aj ¼ tjj and the off-

diagonal elements are represented by bj ¼ tj�1,j. Note that tj�1,j

¼ tj,j�1, because of its evenness. Subsequent to the eigensolver

and eigen vector are identified afterward final partition matrix

P, found K cluster samples. Those outcomes are denoted as

Y ¼ ðyT1 ; . . . ; yTn Þ; yi 2 ð0; 1Þ
k

to signify a clustering scheme.

In case patient xi be in the kth subtype, then yi (k)¼ 1, else yi (k)

¼ 0.

Prognosis-Enhanced Neural Network

A neural network (NN) is a computational formation, com-

prising greatly interrelated processing units known as neu-

rons.30 The multilayered NN structural design is usually

made up of 3 layers and they are inputs, hidden, and outputs

layers, as depicted in Figure 1. This NN formation is capable

of finishing the estimation tasks of any nonlinear function.30

The Xi clustered gene data set sample layers obtain the input

data from a training data set, and afterwards it is multiplied by

the weight Wi,j and added to the bias to give the j hidden

layers, as depicted in Figure 2. The transfer function in the

hidden layer is utilized to guesstimate the output Yj ¼ cancer

subtypes with 2 classes called cancer and noncancer of the

neuron. The mathematical NN formulation is specified as

Equations (10) and (11).

½aj ¼
X

Wi;jXi þ bj�: ð10Þ

Yj ¼ f ðajÞ ¼ f
X

WijXi þ bj
� �h i

: ð11Þ

Weights and Biases Initialization

The primary weight and bias have an effect on the convergence

of NNs. So, Nguyen-Widrow represented a technique to load

the weights and biases effectively for the time period of the NN

training process.4 The preliminary weights were selected as Wi

¼ 0.7Hi to hasten the convergence of NN.29 Here, Hi the hidden

nodes, bj bias initializations are uniform random numbers amid

�Wi and Wi.

Figure 2. Multilayer neural network structures.
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Transfer function. The transfer function is used to change the

possessions of the weighted inputs and biases into output

layers. The hard limit, linear, tanh-sigmoid and log-sigmoid

transfer functions are most commonly utilized, as indicated

in Table 1.30

Enhanced Backpropagation NN

With the training data set or supervised learning techniques,

enhanced NNs (ENNs) are initiated. The initialization of

weights and bias are based on the Nguyen-Widrow method31

to quicken the convergence of networks, as described in Figure

3. The Bayesian learning technique is incorporated into a back-

propagation NN.32 It is used to safeguard the overfitting and

provide good generalization, as described in Figure 3. Nor-

mally, the training intends to lessen the modified error function

formed by the summation of squared errors and network

weights, as depicted in Equation 12:

½F ¼ bED þ aEW �: ð12Þ

ED ¼
X

j
1=2ðZj � YjÞ2

h i
the sum of square errors: ð13Þ

EW ¼
X
ij

1

2
W 2

ij

" #
the sum of squares of the network weights:

ð14Þ

The regularization value is fixed at 0.85 by taking the con-

sequence of the network weights and bias error in the modified

error function. It is depicted in Equation 12 to avoid overfitting

in the trained networks, where a and b are “black box” para-

meters, ED—is the sum of square errors by Equation 13, and

EW—is the sum of squares of the network weights by Equation

14. In case the error is not fulfilled, the backpropagation algo-

rithm is utilized to adjust the weight and bias in the NN models,

as depicted in Figure 3. In Equation 13, Yj is to estimate the

output results, Zj is the testing result. Subsequently, the error

fulfills the tolerance; the trained networks are acquired to give

the optimizer module. All at once while doing classification

process, the decision-making is further done by taking the

prognosis factor as well. Therefore, prediction outcome is

enhanced for the cancer subtype study. In Figure 3, the E is the

error threshold.

Prognosis Factor

Prognosis is a main driver of clinical decision-making. On the

other hand, existing prognostication tools have inadequate

accuracy and erratic levels of validation. Notwithstanding the

accessibility of validated prognostic factors and tools, a lot of

health-care experts trust in clinician prophecy of survival to

guesstimate prognosis. The reason is that clinician prediction

of survival is instant, expedient, and simple to recognize.

Even though clinician prediction of survival frequently inte-

grates a lot of well-known prognostic factors in its purpose,

each might be allotted a variable weight by diverse health-

care experts. Prognostication, as discussed in Table 2, is a

procedure rather than an event. A patient’s prognosis might

be dependent upon treatment response, improvement of acute

oncological complications (for example, spinal cord compres-

sion, hypercalcemia, and pulmonary embolism), or competing

comorbidities (for instance, heart failure). By disparity, prog-

nostic variables in patients with distant sophisticated disease

normally contain patient-related factors, for instance, dys-

pnea, performance status, delirium, and cancer anorexia/

cachexia.

The convergence criteria are set to finish the network train-

ing process. To evade overfitting of the training data, the reg-

ularization value is fixed. Additionally, the training data are

split into the training data and validation data.

Results

To show the advantage of the integrative method, it is com-

pared with 3 state-of-the-art integrative methods, that is,

k means clustering, SNF, and iCluster. Because of the high

computational complexity of iCluster, preselection of the fea-

tures was necessary. Chosen an appropriate cohort of GBM, an

aggressive adult brain tumor,25 miRNA expression (534 genes)

of 215 patients from Wang et al,15 to compare Scluster with

iCluster and SNF. The GBM data set is downloaded from the

cBio Cancer Genomis Portal (http://www.cbioportal.org/). In

the implementation point of view, 200 samples are used which

Table 1. Common Transfer Function in Neural Networks.

Transfer Function Equation Range

Hard limit f(x) ¼ {0, if x < 0 or 1 if x} 0 to 1

Tanh-sigmoid f(x) ¼ (ex � e�x) (ex þ e�x) �1 to 1

Figure 3. Enhanced neural networks (ENN) and Bayesian learning

integration.
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is divided into training and testing samples, whereas 75% of

samples are used for training and 25% of samples are used for

testing phase. Table 3 shows the values of the data set samples

with 4 different gene symbols such as ebv-miR-BART10,

ebv-miR-BART11-3p, ebv-miR-BART12, and ebv-miR-

BART13, and their corresponding gene expressions are

TCGA-06-0676-01-11A-02 T, TCGA-08-0625-01-11A-01 T

TCGA-12-0772-01-01A-01 T, TCGA-06-0744-01-01A-01 T,

TCGA-06-0678-01-11A-01 T.

Depending on the previous data integration methods,

different results of identified subclasses were obtained. From

Verhaak et al’s33 work, the subtypes of GBM are found as

mesenchymal, classical, proneural, and neural subtypes due

to changes in the gene expression of NF1, EGFR, PDGFRA/

IDH1, and NEFL/GABRA1/SYT1/SLC12A5.

This work used 4 evaluation metrics to determine the result

ing(1) silhouette width, (2) Biological Stability Index (BSI), (3)

clustering accuracy, and (4) survival probability.

Silhouette Width

Silhouette width is the way of measuring the strength of

clusters or how well one element is clustered with each other.

½SWi ¼ ðbi � aiÞ=maxðai; biÞ�; ð15Þ

where ai is the average value of varying degrees between i

and all the other samples of the same subtypes, bi is the

average value of varying degrees i and all the other samples

of the different subtypes, and i is a random sample. If sil-

houette score is close to 1, then it means the data were

appropriately clustered.

Figure 4 shows the performance comparison results of

the clustering algorithms such as k means clustering, SNF,

iCluster, and max-flow/min-cut clustering algorithms.

Figure 4 implies that the proposed max-flow/min-cut

clustering algorithms produce higher silhouette results

of 0.82 for 200 samples, whereas the other clustering

algorithms such as SNF and Scluster produce silhouette

width results of 0.62 and 0.7 values, respectively, as

shown in Table 4.

Biological Stability Index

The stability of a clustering algorithm is analyzed by inspecting

the consistency of the biological results produced when the

expression profile is reduced by 1 observational unit. This

Table 3. Data Set Samples for Cancer Discovery.

Hugo_Symbol

TCGA-06-0676-01-

11A-02T

TCGA-08-0625-01-

11A-01T

TCGA-12-0772-01-

01A-01T

TCGA-06-0744-01-

01A-01T

TCGA-06-0678-01-

11A-01T

ebv-miR-BART10 5.926 6.019 5.986 5.981 5.960

ebv-miR-BART11-3p 6.193 6.037 6.302 6.202 6.149

ebv-miR-BART12 5.862 5.850 5.903 5.915 5.894

ebv-miR-BART13 7.757 7.99 8.74 9.549 7.501

Figure 4. Silhouette width versus methods.

Table 2. Prognostic Models for Patients With Advanced Cancer (International Prognostic Index [IPI]) .

Models Variables Scoring Survival Interpretation

Palliative Prognostic

Score (PPS)

Clinical prediction of survival (0-8.5)

Karnofsky performance scale �50% (2.5)

Anorexia (1.5)

Dyspnea (1)

Leukocytosis (0-1.5)

Total score 0-17.5 points

Higher score ¼ worse

survival

Risk group A (0-5.5 points): months of survival

Risk group B (5.6-11 points): weeks of survival

Risk group C (11.1-17.5 points): days of survival

Table 4. Silhouette Width Versus Number of Samples.

No. of Samples

Silhouette Width

K-Means SNF Scluster Max-Flow/Min-Cut

50 0.52 0.56 0.65 0.73

100 0.53 0.57 0.67 0.75

150 0.55 0.59 0.69 0.79

200 0.59 0.62 0.7 0.82

Abbreviation: SNF, similarity network fusion.
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stability measure is unrelated to the one introduced,34 which

compared the clusters without regard to biological relevance.

Each gene has an expression profile that can be thought of as a

multivariate data value in Rp, for some P > 1. For example, in a

time course microarray study, P could be the number of time

points at which expression readouts were taken. In a 2 sample

comparison, P could be the total (pooled) sample size, and so

on. For each i ¼ 1, 2, . . . , P, repeat the clustering algorithm for

each of the p data sets in Rp�1, obtained by deleting the obser-

vations at the ith position of the expression profile vectors. For

each gene g, let Dg,i denote the cluster containing gene g in

clustering based on the reduced expression profile. Let Dg,0

be the cluster containing gene g using the full expression

profile. Thus, the clusters using full and reduced data,

respectively, containing 2 functionally similar genes should

have substantial overlaps. This is captured by the following

stability measure and larger values of this index indicate

more consistent answers:

BSI ¼ 1

F

XF
i¼1

1

nðCiÞðnðCiÞ � 1Þp
Xp
j¼1

X
x 6¼y2Ci

nðDx;0 \ Dy;jÞ
nðDx;0Þ

" #
:

ð16Þ

A successful clustering is characterized by high values

of indices.

For a given clustering algorithms and an expression data

set, BSI measures the consistency of the clustering algo-

rithm’s ability to produce biologically meaningful clusters

when applied repeatedly to similar data sets. A good cluster-

ing algorithm should have high BSI. Figure 5 evaluates the

performance of 4 k means clustering, SNF, iCluster, and max-

flow/min-cut clustering algorithms on GBM data sets with

miRNA expression. Figure 5 clarifies that the proposed

max-flow/min-cut clustering algorithms produce higher BSI

results of 0.85 for 200 samples, whereas the other clustering

algorithms such as SNF, iCluster, and k means clustering

produce BSI results of 0.71, 0.76 and 0.66 values, respec-

tively, as shown in Table 5.

Clustering Accuracy

In Figure 6, the clustering accuracy results of 4 k means , SNF,

iCluster, and max-flow/min-cut clustering algorithms on GBM

data sets with miRNA expression are evaluated. It makes it

clear that the proposed max-flow/min-cut clustering algorithms

produce higher accuracy results of 88.93% for 215 samples,

whereas the other clustering algorithms such as k means, SNF,

and iCluster produce accuracy results of 64.89%, 71.42%, and

77.52% values, respectively, as seen in Table 6. The clustering

accuracy results of the proposed system are high for clustering

gene samples.

Survival Probability

The survival probability at any particular time is calculated by

the formula given below:

Figure 5. Biological stability index versus clustering algorithms.

Table 5. Biological Stability Index Versus Number of Samples.

No. of Samples

Biological Stability Index

K Means SNF Scluster Max-Flow/Min-Cut

50 0.62 0.67 0.72 0.78

100 0.64 0.69 0.723 0.81

150 0.645 0.698 0.74 0.83

200 0.66 0.71 0.76 0.85

Abbreviation: SNF, similarity network fusion.

Figure 6. Clustering accuracy versus clustering algorithms.

Table 6. Clustering Accuracy Versus Number of Samples.

No. of Samples

Clustering Accuracy (%)

K-Means SNF Scluster Max-Flow/Min-Cut

50 60.25 65.32 72.36 83.23

100 62.82 67.45 74.15 85.36

150 63.51 69.51 75.68 87.89

200 64.89 70.25 76.93 88.93

Abbreviation: SNF, similarity network fusion.
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St ¼
ðNo: of subjects living at the start� No: of subjects diedÞ

No: of subjects living at the start

� �
:

ð17Þ

The survival probability results of 4 k means clustering,

SNF, iCluster, and max-flow/min-cut clustering algorithms

are evaluated in Figure 7. It becomes clear that the proposed

max-flow/min-cut clustering algorithms produce higher

accuracy results of 0.87 for 215 samples, whereas the other

clustering algorithms such as k means, SNF, and iCluster

produce accuracy results of 0.69, 0.74, and 0.79 values, as

furnished in Table 7.

Clustering Results

Table 8 shows the number of clusters and the distribution of

samples among the clusters for their gene expression subtypes.

It is found that the number of clusters k ¼ 3 is appropriate

number of clusters to use.

Classification Results

In a classification task, the precision for a class is the number of

true positives (TPs; ie, the number of items correctly labeled as

belonging to the positive class) divided by the total number of

elements labeled as belonging to the positive class (ie, the sum

of TPs and false positives [FPs]). These are items incorrectly

labeled as belonging to the class. Recall in this context is

defined as the number of TPs divided by the total number of

elements that actually belong to the positive class.

Precision ¼ TP

TPþ FP

� �
: ð18Þ

Recall ¼ TP

TPþ FN

� �
: ð19Þ

The precision results of 3 algorithms such as support vector

machine (SVM), ENN, and probabilistic-enhanced NN (PENN)

are evaluated in Figure 8. It exemplifies that the proposed PENN

algorithm produces higher accuracy results of 90.58% for 215

samples, whereas the other classification algorithms such as

SVM and ENN produce precision results of 73.93% and

78.51% values. The results are presented in Table 9.

The recall results of 3 classification algorithms such as

SVM, ENN, and PENN are evaluated in Figure 9. It makes

Figure 7. Survival analysis versus clustering algorithms.

Table 7. Survival Analysis Versus Number of Samples.

No. of Samples

Survival Analysis

K-Means SNF Scluster Max-Flow/Min-Cut

50 0.62 0.69 0.74 0.81

100 0.65 0.7 0.75 0.83

150 0.67 0.72 0.77 0.84

200 0.69 0.74 0.79 0.87

Abbreviation: SNF, similarity network fusion.

Table 8. Clusters Versus Gene Expression Subtypes.

Clusters

Gene Expression Subtypes

Mesenchymal Classical Neural Proneural

Cluster 1 54 49 34 26

Cluster 2 11 8 5 6

Cluster 3 6 2 7 7

Figure 8. Precision versus classification algorithms.

Table 9. Precision Results Versus Number of samples

No. of Samples

Precision (%)

SVM ENN PENN

50 71.32 75.63 86.38

100 72.82 76.58 88.25

150 73.52 77.15 89.93

200 73.93 78.51 90.58

Abbreviations: ENN, enhanced neural network; PENN, Prognosis Enhanced

Neural Network; SVM, support vector machine.

10 Technology in Cancer Research & Treatment



evident that the proposed PENN algorithm produces higher

accuracy results of 92.14% for 215 samples, whereas the other

classification algorithms such as SVM and ENN produce recall

results of 79.25% and 83.52% values that are shown in Table 10.

Accuracy is also used as a statistical measure of how

well a binary classification test correctly identifies or

excludes a condition. That is, the accuracy is the proportion

of true results (both TPs and true negatives among the total

number of cases examined).

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

� �
: ð20Þ

The accuracy results of 3 classification algorithms such as

SVM, ENN, and PENN are evaluated in Figure 10. It shows

clearly that the proposed PENN algorithm produces higher

accuracy results of 89.2% for 215 samples, whereas the other

classification algorithms such as SVM and ENN that produce

accurate results of 71.23% and 77.81% values are discussed

in Table 11.

Receiver Operating Characteristic Curve

In statistics, a receiver operating characteristic (ROC) curve is

a graphical plot that illustrates the diagnostic ability of a binary

classifier system as its discrimination threshold is varied. The

ROC curve is created by plotting the TP rate (TPR) against the

FP rate at various threshold settings.

Figure 11 shows the ROC curve analysis results of 3 clas-

sification algorithms such as SVM, ENN, and PENN; it con-

cludes that the proposed PENN algorithm produces higher TPR

results of 83% for 200 samples, whereas the other classification

algorithms such as SVM and ENN produces TPR results of

75% and 79% values that are discussed in Table 12.

Figure 12 shows the survival curve of patients in terms of

the percentage with respect to the number of months of survival

in the interval of 10 to 80 months. From the curve, we can

analyze that 40% of patients survive for 10 months. And as

month increases, the survival rate decreases which can be

viewed from the curve that only 5% patients survive in

50 months of time.

Discussion

The proposed max-flow/min-cut clustering algorithm produces

average silhouette width results of 0.7725, which is 0.225,

0.1875, and 0.095 values higher when compared to k means,

SNF, and Scluster methods, respectively. Similarly, the pro-

posed clustering produces average BSI results of 0.8175, which

is 0.17625, 0.1255, and 0.08175 higher when compared to k

means clustering, SNF, and Scluster methods, respectively.

Similarly, it also produces higher results for clustering accu-

racy and the survival analysis are illustrated in Figures 6 and 7.

Figure 9. Recall versus classification algorithms.

Table 10. Recall Results Versus Number of Samples.

No. of Samples

Recall (%)

SVM ENN PENN

50 75.78 80.63 89.78

100 77.63 81.87 90.51

150 78.42 82.34 91.54

200 79.25 83.52 92.14

Abbreviations: ENN, enhanced neural network; PENN, Prognosis Enhanced

Neural Network; SVM, support vector machine.

Figure 10. Accuracy versus classification algorithms.

Table 11. Accuracy Results Versus Number of Samples.

No. of Samples

Accuracy (%)

SVM ENN PENN

50 69.23 74.78 84.58

100 70.25 75.93 85.36

150 70.81 76.25 87.32

200 71.23 77.81 89.2

Abbreviations: ENN, enhanced neural network; PENN, Prognosis Enhanced

Neural Network; SVM, support vector machine.
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The proposed PENN algorithm produces average accuracy

results of 86.615%, which is 16.235% and 10.4225% higher

when compared to SVM and ENN methods, respectively.

Conclusion

Discovering diverse cancer classes or subclasses with a huge

amount of diverse biological measurements provides a tough

challenge and has significant implication in cancer analysis and

treatment. Clustering dependent upon multigenomic data has

been represented to be a dominant technique in cancer class

detection. To completely consider different varieties of data

(DNA methylation, mRNA expression, miRNA expression,

and so on), a few unsupervised clustering techniques that incor-

porate the specified data to take out major characteristics

simultaneously have been presented. Graph clustering has the

supremacy of various data sets to give new techniques for

unsupervised clustering over various data sets. Graph cluster-

ing has the capability of identifying both the replicable and

prognostically significant subtypes devoid of any extra data

set-specific transformations, unlike the currently developed

technique of concatenation. Bringing in an adaptive S-RRR

technique to identify an effective low-dimensional subspace

of each biological data afterward incorporated these biological

subspaces into a patient-by-patient similarity matrix. The

PENN classifier on the GBM data set is effectual for predicting

the survival, while matched up with other previous classifiers

for forecast. The experimentation outcomes on GBM point out

that research methodology could confine biology feature and

discover classifications of subtypes impressively, dependent

upon gene expression data and DNA methylation data. The

work can be further extended by implementing semi-

supervised clustering by which the accuracy can be improved.
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