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Mass spectrometry and Monte Carlo method
mapping of nanoparticle ligand shell morphology
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Janus, patchy, stripe-like, or random arrangements of molecules within the ligand shell of

nanoparticles affect many properties. Among all existing ligand shell morphology character-

ization methods, the one based on mass spectroscopy is arguably the simplest. Its greatest

limitation is that the results are qualitative. Here, we use a tailor-made Monte Carlo type

program that fits the whole MALDI spectrum and generates a 3D model of the ligand shell.

Quantitative description of the ligand shell in terms of nearest neighbor distribution and

characteristic length scale can be readily extracted by the model, and are compared with the

results of other characterization methods. A parameter related to the intermolecular inter-

action is extracted when this method is combined with NMR. This approach could become

the routine method to characterize the ligand shell morphology of many nanoparticles and we

provide an open access program to facilitate its use.
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The ligand shell imparts functionalities to nanoparticles
(NPs) because it allows various different molecules to form
the particle’s outer layer1–4. It has been shown that addi-

tional properties derive from the close packing5,6 of such mole-
cules and their supramolecular organization7–11. The latter we
call ligand shell morphology (LSM) hereafter. As an example, we
can discuss NPs surface hydrophobicity. It can be tuned by either
adopting ligands with varying polarity or using a mixture of
ligands12–14. In the latter case results vary significantly depending
on the arrangement of the ligands15,16. For binary mixtures,
Janus, patchy and stripe-like morphologies would provide very
different hydrophobic profiles to the NPs. In order to make use of
the predicted large morphological diversity17–20, characterization
techniques that are easily accessible and versatile are needed. So
far, several techniques, such as scanning tunneling microscope
(STM), small angle neutron scattering (SANS), nuclear magnetic
resonance (NMR), matrix assisted laser desorption/ionization
(MALDI), and electron paramagnetic resonance (EPR), have been
explored to characterize the structure of mixed self-assembled
monolayers (SAMs) on NPs, i.e., the LSM21–25. Most of these
methods can only provide qualitative information about the
morphology. Spectroscopic techniques need a full series of NPs
with varying composition to reach a qualitative conclusion26–28.
The only two methods that can quantitatively characterize the
ligand shell structures are STM29–32 and SANS33. While STM can
be used to extract length scales of stripe-like domains, it falls
short in describing any other morphology. Moreover, due to the
requirement of high-resolution images, only a few NPs are
measured, resulting in uncertainties over the whole population.
Currently, SANS is the only method that offers a comprehensive
determination of any morphology over the whole sample. It takes
advantage of the Monte Carlo based methods to fit the scattering
curves and generate 3D models that can describe the organization
of the ligand shell34,35. However, there are several stringent
requirements for this technique, e.g., NPs with high mono-
dispersity and very high solubility are required. Both STM and
SANS are not suitable for routine and rapid characterization.
STM requires careful sample preparation as well as time con-
suming optimization of imaging conditions29,31, while the avail-
ability of synchrotron beamtime and the need for deuterated
ligand molecules hinders the routine application of SANS.

Among all the existing methods, MALDI-TOF MS holds great
promises due to its wide accessibility as well as simplicity in the
measurements36–41. The application of MS to probe the struc-
ture of LSM takes advantage of the fragmentation phenomena of
NPs in MALDI-TOF40,42. It has been reported that certain
fragments composed of metal–ligand complexes are prone to be
desorbed from the NPs surfaces during the matrix assisted ioni-
zation process43. A general chemical formula of the fragment can
be represented as MkLn, where M is the metal atom and L is the
ligand molecule and k and n are the numbers of metal atoms and
ligand molecules in the fragment, respectively. In the case of NPs
coated by binary mixtures of ligand, a series of the fragment
species can be detected in the mass spectra, i.e., the MkLxL’n–x
fragments with the index x being an integer number from 0 to n.
It has been shown that by studying all the fragments at constant n
(and consequently k) it is possible to gather structural informa-
tion on the LSM36,37. Indeed, the distribution of the fragments
with x from 0 to n follows a binomial distribution when the two
ligands are randomly distributed within the ligand shell. The
more patchy-type segregation the LSM presents, the more the
fragmentation profile differs from the binomial distribution, with
the Janus morphology being the limiting case. The method has
been reported to characterize mixed SAM structures on both gold
and silver NPs and was utilized to follow the mechanism of ligand
exchange reaction on NPs44. Current data analysis of MALDI-

TOF MS uses a single number, i.e., the sum-square-residue (SSR),
to evaluate the statistical distance of the fragment distribution
from the random morphology. When compared to binomial
distribution, some threshold values for SSR are then arbitrarily
assigned to classify the LSM into random, patchy, and Janus36.
Such summarization of the whole MALDI spectra into one value
is an over-simplification that here we show how to overcome.

Inspired by the data analysis methods used to reconstruct 3D
NPs models by fitting SANS data34,45, here we have developed a
Monte Carlo type fitting approach to produce 3D LSM models by
fitting all the fragmentation data present in a MALDI-TOF
spectrum, i.e., not limiting ourselves at a single n. The method
offers a rapid way to characterize different types of LSM. We
show that a 3D model generated by fitting the MALDI-TOF data
agrees well with that extracted from the fitting of the SANS data.
Furthermore, we demonstrate that this fitting approach provides
detailed information on the LSM. For example, we have used the
models to retrieve the nearest neighbor distribution for a series of
NPs, which can be used to interpret the chemical shifts in NMR
measurements of the nanoparticles.

Results
Monte Carlo analysis of MALDI-TOF MS. The fragmentation of
the nanoparticles in MALDI process can be regarded as a sto-
chastic sampling of the SAM on nanoparticle surfaces, which
forms the basis of the algorithm we propose. The distributions of
different fragments contain information of both the ratio of the
two types of ligands and the correlation between them (more
precisely the nearest neighbor distribution). While the ligand
ratio can be directly calculated by integrating the composition
over all the fragments at any n43, linking the fragment distribu-
tion with ligand organizations is not as straightforward. As shown
in Fig. 1, here we have developed a fitting procedure that uses a
Monte Carlo approach to compare the theoretical mass spectro-
scopy fragmentation profile of a NP with a given LSM to the
experimental values. The method is designed to fit at the same
time all the fragments that the experiments produce. This is a
departure from current literature where the analysis is limited to a
single n. Practically we use n= 4, 5, 6 for the calculation as these
fragments could be reproducibly detected by MALDI-TOF MS
from the silver and gold NPs with good resolution. The analysis
has three key steps.

First, a spherical surface composed of N number of uniformly
distributed beads is generated. The size of the sphere and the
number N need to be determined by other techniques such as
TEM and TGA. Each bead can be assigned either to the value 0 or
1, representing the two different ligands. Practically a random
assignment of the values is used as the starting ligand
organization while other types of specific morphologies could
also be used and lead to the same final solution.

Then, the intensity distribution of different metal–ligand
fragments is calculated from this starting model using a simulated
fragmentation process of the NP surfaces. Taking silver NPs as an
example, the general formula of the fragments can be expressed as
Agn+1LxL’n−x, where x is the number of L ligand in the fragment
composed of n ligands in total. The distributions of different
types of fragments that are generated from each molecule and its
nearest neighbors are first calculated. As established previously38,
one could assume that all the molecules on the nanoparticle
surface have the same probability to be detached and form
different fragments. Therefore, the fragmentation pattern from all
the N molecules are then summed to generate the probability
distribution of each type of AgnLxL′n-x fragment using Eq. (1):

ωn;x
calc ¼

P
N

n
x

� � � φx
L � φn�x

L′
N

ð1Þ
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where φL and φL' are the percentage of L and L′ molecules in the
nearest neighbor of each molecule, represented by:

φL kð Þ ¼ NLðkÞ
NL kð Þ þ NL′ kð Þ ; φL′ðkÞ ¼

NL′ðkÞ
NL kð Þ þ NL′ðkÞ

ð2Þ

The discrepancy between the experimental mass distribution
and that of the model generated is calculated and represented by
the number, SSR:

SSR ¼
X6

n¼4

Pn
x¼0ðωn;x

calc � ωn;x
expÞ2

nþ 1
ð3Þ

Equation 3 is then used as the scoring function for the final
Monte Carlo process. The aim of the iteration is to minimize the
SSR value. To start with, the value of a randomly selected bead in
the model is flipped and the new fragment distribution patterns
are calculated. If the SSR of the new model is lower than the
previous one, then the change of value assignment is accepted.
Otherwise the modification is rejected. The updated model is used
again as the starting model for the next iteration step. Iteration
could be stopped once the SSR value converges, which typically
requires more than 100 N reconfigurations or the SSR value being
below 10−4, as discussed below.

Efficiency of the modeling. The method was first tested using
a simulated data from a model Janus nanoparticle with 4 nm
core diameter and full coverage of ligands, i.e., total ligand
number N= 240. As shown in Fig. 1, the three different frag-
mentation distributions for a perfect Janus nanoparticle are
simulated and used as the input experimental data for the Monte
Carlo program. The Monte Carlo program was run multiple
times (>10) starting always from random configurations, i.e.,
binomial distribution and gradually converging to the input
pattern. The error bars in Fig. 1a are the standard deviations of
SSR values after certain iteration steps. After ~50 N (~10,000)
iterations, the resulted model starts to show the same Janus fea-
ture as the original model. The final SSR is 9.9 × 10−5, indicating
the good quality of the fitting. The mass intensity distributions of
different types of fragments are all very close to that of the input
values as shown in Fig. 1b.

We show that the Monte Carlo fitting procedure (i.e., the
convergence process) could also provide a better understanding

of the implications of SSR values. The program was run multiple
times and the outcome at different number of iteration steps
were recorded so that one could monitor the evolution of the
morphologies together with SSR values during the fitting.
Note that compared to previous literatures in which SSR values
are calculated based on binomial distribution, here the SSR value
represents the statistical distance between a model and a perfect
Janus arrangement. As shown in Fig. 1a, the expected Janus
feature was obtained after around 100 N iterations, which takes
around 20-min computer time using for example MacBook with
2.9 GHz Intel Core i7. The SSR decreases rapidly, with ~1000
iterations already giving more than 2 magnitudes drop of the
original SSR value, which takes less than 2 min of calculation
time. The variations of the SSR at each stage are around 10%. As
the final model shows practically the same features as the input
Janus morphology, one can safely assume that the morphology of
two types of nanoparticles are the same when the SSR is below or
in the order of 10−4. When SSR value is around 10−3, the
morphology looks close to large patchy type. Hence, similar to
the threshold values of SSR against binomial distribution in the
previous reports, one could conclude that when SSR values are
above 10−3, detectable differences between the two morphologies
could be seen. Significant deviations would present between two
models when SSR values are above 10−2. Such assignment of SSR
values is close to the threshold values used in previous literatures,
but it is shown through an experiment for the first time here.

Test of idealized geometry. While Monte Carlo process often
leads to trapped configurations at local minimum, the results for
Janus morphology look rather robust. It might be due to the fact
that the features and the corresponding mass spectra of Janus
type nanoparticles are relatively unique. Therefore, we continued
to test this algorithm using several other types of morphologies as
the fitting target. As shown in Fig. 2, the Monte Carlo fitting
could successfully retrieve different structural features of the
ligand shell morphologies on nanoparticles. For patchy nano-
particles with several separated patchy domains or the one with
two large domains, the reconstructed models show similar type of
ligand organization as expected (Fig. 2a–c). The stripe-like
morphologies could be modeled and captured as well (Fig. 2d)
although the fitted model is not as perfect as the idealized stripes.
Due to the ambiguity in the nature of the mass spectra, the
relative positions of the patches as well as the symmetry of the
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Fig. 1 The Monte Carlo fitting of an idealized Janus type nanoparticle. a Efficiency and convergence of the Monte Carlo process. For every 1000 iteration
steps, the computer calculation time required is around 2min. Representative 3D models at each stage are shown. The error bars are the standard
deviations of SSR values based on 10 replicated Monte Carlo runs. b Convergence of the fragmentation distribution patterns before and after the Monte
Carlo process. MALDI spectra are simulated from perfect Janus type nanoparticle. Red dots indicate the fragmentation peaks of models from Monte Carlo
calculation, starting from random configuration
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patchy and stripe organizations are not exactly the same. Since
the SSR values for the final fits are all below 2 × 10−5, indicating a
very good agreement in the fragmentation patterns, this result
again points out the resolving power of the MALDI-TOF tech-
nique in discriminating mixed LSMs.

The 3D models only serve as a direct visualization of the
structural similarities/differences between two LSMs. In fact, one
can determine quantitative parameters of the LSM structures
from the models. As discussed in the algorithm of mass spectra
calculation, the fragmentation is indeed a stochastic sampling of
the LSM and reflects the nearest neighbor distribution of the
ligands. We thus developed an algorithm to retrieve such
information. In Fig. 2a–d, the profiles of the first nearest
neighbors with same identity of ligand A (green bead) are shown.
While Janus LSM shows very high contribution of ligands
surrounded by the same ligands (x= 6), the nearest neighbor
distribution from stripe-like LSM features ligands that are at the
interfaces (x= 2–4). For all the four cases, the resulted 3D model
matches well with the input idealized configuration. Overall the
data shown in Fig. 2 indicate that the method developed is very
strong in retrieving an overall LSM, and in particular its strength
is in determining the local structure within the LSM, i.e., the
nearest neighbor distribution. The method does not have a true
feedback for symmetry and in fact often the symmetry retrieved is
lower than the input. Interestingly, the SANS method developed
recently has the opposite characteristic with a signal that mostly
based on the overall symmetry of the particles and much less on
the local LSM composition33. Meanwhile, the fitting procedure is
based on random switch of bead assignments and does not lead to
higher symmetry. As an example, the program is used to fit the
spectra coming from a random geometry. As shown in
Supplementary Figure 1, the Monte Carlo calculation could

reproduce the random bead arrangement as well as the close to
binomial distribution of nearest neighbors.

Furthermore, as one could notice from Fig. 2a–d that the
models from Monte Carlo calculations do not always capture all
the structural details in complex morphologies. This is unfortu-
nately due to the intrinsic ambiguity in the structural information
that the MALDI data contains. Different models could give very
similar experimental footprint and thus the solution from Monte
Carlo fitting is not unique. In order to address this limitation, the
fitting program was repeated five times for each morphology.
Each generated model can be regarded as a possible solution in
the space of all possible structures corresponding to a given
MALDI spectra. It is important to notice that the physical cause
for the MALDI spectra is the nearest neighbor distribution, which
is the most reliable result of our method. For all of the particles
studied, we have generated standard deviations in nearest
neighbor distributions. As shown in Fig. 2a–d, the standard
deviations for all the calculations are small indicating that all the
models from repeated calculations are very similar to each other.
These standard deviations are the best way to estimate the
resolution of our model. LSMs that produce nearest neighbor
distribution that fall within these standard deviations will not be
distinguishable with this approach. We should point out that our
empirical observation is that SSR values that are within 10−4 to
each other lead to indistinguishable nearest neighbor
distributions.

Fitting experimental data. As the first experimental example,
mixed ligand-protected silver NP was prepared using a modified
Stucky method46 at room temperature using dichloromethane as
the solvent. The detailed synthesis and characterizations can
be found in the Methods section. The NP has a core diameter of
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Fig. 2 Test of the method on NPs with different LSMs. Input (left) and resulted model (right) of idealized LSMs featuring a Janus separation; b two large
patchy domains; c separated patchy domains; d stripe-like domains are shown together with their nearest neighbor distribution profiles. The x axes of the
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while green beads stand for PET. The error bars are the standard deviations of nearest neighbor distribution based on five replicated calculations
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5.8 ± 0.7 nm, as measured by TEM (Supplementary Figure 2)
based on counting of more than 500 NPs, are used as the first
example. The nanoparticles were coated with phenylethanethiol
(PET) and 1-dodecanethiol (DDT) (Fig. 2f). It can be estimated
that there are ~500 ligands on the NPs surface, using a combi-
nation of TEM and TGA, Supplementary Figure 3. MALDI-TOF
of the nanoparticle was measured in reflection positive mode and
using trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]
malononitrile (DCTB) as the matrix. As shown in Fig. 2e, frag-
ment peaks corresponding to Ag5L4, Ag6L5, and Ag7L6, could all
be resolved well. The mass accuracy was 50 ppm and the isotope
patterns of each peak match perfectly with theoretical calculations
as shown in an example in Supplementary Figure 4. The inte-
grations of the peak intensities were performed and used as the
input information for the fitting program. A detailed list of all the
fragment masses as well as the regions used for the integration of
each peak are listed in Supplementary Table 1. Before the Monte
Carlo analysis, a consistency check on the ligand ratio was per-
formed to make sure that there were no systematic errors among
different fragments. Specifically, the ligand ratio θ could be cal-
culated from each type of fragments from the Eq. (4) below:

θ ¼
Xn

i¼0

i � Pi with Pi ¼
niPn
i¼0 ni

ð4Þ

where ni is the intensity of fragments containing i ligand L; Pi is
the fraction of the fragment containing i ligands L; θ is the ratio of
the ligand L. If the integration of all the intensities is accurate, the
extracted ligand ratio from each type of fragment should be
practically the same. Indeed, as shown in Supplementary Figure 5
and Supplementary Table 2, the PET fraction varies from 54% to
56%, indicating the high consistency. In fact, previously Cliffel
and co-workers47 have compared the ligand ratios calculated
from the fragmentation in MALDI-TOF MS with the NMR
measurements for nanoparticles with varying ligand shell
hydrophobicity and bulkiness. An average difference of less than
1% in relative abundance was reported in their work. Similarly, as
shown in Supplementary Table 3, for the nanoparticles we used in
this paper, the ligand ratios calculated from the two techniques
match very well with <5% differences. These results indicate that
fragments with the same n (metal atoms) but different ligand
combinations ionize with the same efficiency during the MALDI
process.

The main difference of fitting of experimental data compared
to idealized models is the presence of errors in the measured of
peak intensity and integration. Therefore, in the Monte Carlo
calculation, instead of simply using SSR as the scoring function,
the normalized SSR value by the errors of each peak in the spectra
should be used as the new scoring function (SF)34.

SF ¼
X6

n¼4

Pn
x¼0ððωn;x

calc � ωn;x
expÞ=σ integÞ2

nþ 1
ð5Þ

The errors of the mass peak integration are calculated using the
RMSD (root-mean-square deviation) of the baseline noise48.
Specifically:

σ2integ ¼ σ2i � N ð6Þ

where the σinteg is the standard deviation of the integration of
peak intensity, σi is the standard deviation of the baseline noise, N
is number of points in the region of integration.

Monte Carlo calculation was then applied to the experimental
data using this new scoring function and 104 iteration steps was
performed yielding a final SSR value of 5 × 10−4. The slight

increase of final SSR values compared to the idealized geometry is
due to the presence of errors in the experimental data. In the
idealized morphology, the mass peak intensities of the outcome
model overlap almost perfectly with the input spectra as there was
no errors and uncertainties. The program was run for multiple
times (>5) and all the resulted models look very similar while the
standard deviation of nearest neighbor distribution is small.

As shown in Fig. 2g, the resulted model shows a complicated
organization of the two ligands, featuring both small patches as
well as stripe-like domains. As a result, the nearest neighbor
distribution of this nanoparticle is close to that of idealized stripe-
like LSM in Fig. 2d compared to other morphologies. This is due
to the fact that no large patchy structures of the ligands are
formed. To further understand the suitability of the nearest
neighbor descriptor and its possible limitations in comparing
different predictions, a more complex descriptor, i.e., nearest
neighbor distribution in the first two neighboring shells (18
neighbors) of the two models are computed and compared. The
same type of analysis was reported previously49. As shown in
Supplementary Figure 6, in the 18 nearest neighbor distribution
profile, the differences between the two structures become clearer.
While the idealized stripe-like nanoparticle shows a more
centralized distribution featuring the high fraction of 7–10 same
nearest neighbors, the distribution profile for PET-DDT nano-
particle is broader.

Quantitative comparison with SANS. In order to further prove
the validity of our method, we focus on the comparison between
SANS and MALDI-TOF, as SANS is the only existing technique
that can be used to quantitatively characterize mixed ligand shells
with complicated morphologies. We chose to analyze with
MALDI the same Ag NP that had been reported previously, i.e.,
Ag NPs protected with deuterated PET and DDT33. As shown in
Fig. 3a, the previous SANS characterization indicates that the
nanoparticle shows a patchy-type ligand shell distribution, with
PET ligands forming patchy domains. MALDI-TOF analysis was
also performed on the same NPs as reported before. The Ag NP
has a core diameter of around 5.9 nm corresponding to a total
number of N= 510 ligands. The resulted model from Monte
Carlo calculation of the MALDI-TOF data is shown in Fig. 3b
with the final SSR value being 2 × 10−4. The two models show
similar structural features, i.e., PET ligands forming patchy
domains together with scattered distribution within DDT
patches.

Both Monte Carlo analysis of SANS and MALDI data give low-
resolution models, but the two techniques differ in the nature of
the models that they generate. From SANS models, each bead
only acts a space holder and represents the possibility of finding a

a bSANS model MALDI model

Fig. 3 Comparison between the SANS and MALDI models. a SANS model
of the dPET and DDT protected silver nanoparticle that was reported
previously. b 3D model from the Monte Carlo calculation of MALDI-TOF
data. In both models, blue beads stand for PET ligands while green beads
stand for DDT
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certain type of ligand molecules. Therefore, SANS model
represent an average molecular organization lacking single
molecule details. On the other hand, models calculated from
MALDI reflect the nearest neighbor distribution of the ligands.
As one could not calculate nearest neighbor profile from SANS
model, we used a method described previously to measure the
lengths/width of the patchy domains of the two models33. The
averaged width of PET domains is found to be 1.9 ± 0.6 nm and
1.7 ± 0.6 nm for the SANS and MALDI models, respectively. Such
differences in value is again due to the different nature of the
models. While in SANS one measures the distances on the top of
the ligands (end functional groups), the measurements of MALDI
model is based on the position of sulfur atoms and will be
necessary smaller3.

Furthermore, the matching between the SANS and the MALDI
data also strongly suggests that the particles studied are
monodisperse in LSM. In fact, it should be stated that both
methods are affected by polydispersity in the LSM, but they are
affected in different ways. The scattering pattern of a polydisperse
sample is the average of all the form factors (shape), while
MALDI spectra averages the nearest neighbor profiles. We show
clearly this concept in Supplementary Figure 7, where the MALDI
spectra of a mixture of different patchy models is fitted with our
program. The resulted model presents the averaged patchy
feature with interconnect patches. Yet, if one calculates the small
angle neutron scattering (SANS) pattern of the particle mixture
and the Monte Carlo model, significant differences could be seen
(Supplementary Figure 7B) in the theoretical SANS pattern.
Hence, while each method can produce a model for the particles
(with MALDI being significantly easier), it is from their
combination that one can get an answer on whether the sample
is polydisperse or not. Were the sample to be polydisperse then a
simultaneous ensemble fitting of both data could resolve such
polydispersity. Fractionation methods could also help to separate
different species in a sample50 in order to be measured with
MALDI separately.

Interpretation of NMR chemical shifts. As reported previously,
the NMR chemical shift of ligands on nanoparticles depends on
the ligand shell structure26,28. By plotting the trend of chemical
shift against the ligand ratio, one can categorize the type of the
LSMs to be random, stripe-like, and Janus types. Importantly
both for the random (linear) and Janus (1/x) LSM, it was possible
to find a formula to capture the trend using a single parameter.
This was not possible for patchy particles as the dependence of
the nearest neighbor distribution on the overall ligand composi-
tion was not known. Hence, in the previous paper, stripe-like
particles were reported to have a sigmoidal type chemical shift
trend, but it was not possible to determine whether a single
parameter was sufficient to fit the data. Here, we use our Monte
Carlo analysis of MALDI MS to quantify the nearest neighbor
composition for 12 patchy NPs differing in composition, and
show that indeed a single parameter is sufficient to describe all the
NMR chemical shifts.

Assuming that the final chemical shift of the ligand on the
nanoparticle is the sum over all the possible situations of its
nearest neighbor distribution (ni), one could get:

ðchemical shiftÞL ¼
X6

i¼0

cL;i � ni ð7Þ

where ni is the normalized probability of ligand L with i number
of L’ ligands in its first nearest neighbor and cL,i is the
corresponding chemical shift of ligand L. With an assumption

that the interaction potential between two ligands is additive, cL,i
can be calculated with two parameters, i.e., cL,0 being the chemical
shift of homoligand L protected nanoparticle and σ being the
increment in chemical shift by having one L’ in the vicinity of L.
Therefore, the Eq. (7) becomes:

ðchemical shiftÞL ¼
X6

i¼0

ðcL;0 þ iσÞ � ni ð8Þ

As
P6

i¼0
ni ¼ 1, one can rewrite Eq. (8) as:

ðchemical shiftÞL ¼ cL;0 þ σ
X6

i¼0

i � ni ð9Þ

The above formula reduces to a linear dependence on ligand
composition for random distribution and to a function close to 1/
x for Janus distribution as shown in Supplementary Figure 8. For
a generic patchy particle one needs to know the LSM for every
composition. We ventured to determine this composition for the
series of silver NPs coated by PET and DDT. The nanoparticles
were synthesized using the same procedure as described above
therefore they have similar core sizes and only varies in the ratio
of the two ligands. All the MALDI-TOF MS and NMR spectra are
shown in Supplementary Figure 9. A table comparing the ligand
ratio calculated from NMR and different fragments in MALDI-
TOF spectra is presented as Supplementary Table 2, which shows
high consistency of the calculated ligand ratios between the two
techniques (<5% differences). Figure 4a shows all resulted Monte
Carlo models of silver NPs with varying ligand ratio. The 3D
models produced were then used to obtain the ni for all the
particles. The cL,0 could be measured directly from homoligand
nanoparticle. Therefore, σ was the only parameter left to interpret
the chemical shift of the ligands.

The homoligand PET nanoparticle gave a chemical shift at 6.59
ppm, corresponding to the cL,0 value. As shown in Fig. 4b, the 1H
NMR chemical shifts of aromatic hydrogens on PET shift
downfield as the ligand ratio of PET decreases. The value σ was
then determined using Eq. (9). Remarkably, the calculated values
of σ for all the 12 nanoparticle samples are within 10% variation,
i.e., 0.100 ± 0.007 ppm as listed in Fig. 4a. By using the averaged σ
value, the chemical shifts predicted by MALDI-TOF models agree
well with the measured NMR data as demonstrated in Fig. 4c.
Since σ is mainly determined by the van der Waals forces between
the two types of ligands23, the combined analysis of NMR and
MALDI-TOF further opens up a new way of quantifying the
interactions between mixed ligands on nanoparticle surfaces.

In summary, we show here that by combining MALDI-TOF
MS and Monte Carlo calculations, it is possible to quantitatively
reconstruct 3D models of mixed SAM protected nanoparticles in
a rapid and effective way. A user-friendly version of the fitting
program will be released as an open access software. We have
further tested the program for various other types of nanopar-
ticles such as gold nanoparticles and silver nanoparticles
protected with other types of ligands demonstrating the versatility
of the method, as discussed in the Supplementary Discussion,
Supplementary Figure 10–11 and Supplementary Table 4. Con-
sidering the easy accessibility of MALDI-TOF MS, the method
reported here could transform the characterization of the ligand
shell of NPs coated with mixed SAM from a formidable challenge
into a routine measurement.

Methods
General. All the chemicals were purchased from Sigma-Aldrich and used as
received. Deuterated PET was provided by National Deuteration Facility of Aus-
tralian Nuclear Science and Technology Organisation. 1H NMR spectra were
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Fig. 4 Comparison between NMR and MALDI-TOF results. a Models calculated from Monte Carlo fitting for PET-DDT silver NPs of varying ligand
composition. Blue beads stand for DDT ligands while green beads stand for PET. b 1H NMR for the aromatic hydrogens of PET Ligands. The x axes of the
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measured using Bruker 400MHz instrument and deuterated dichloromethane was
used as the solvent. TEM images were recorded with FEI Tecnai Osiris microscope.
TGA measurements were performed using TGA 4000 instrument from Perkin
Elmer.

Synthesis of mixed SAM protected nanoparticles. For the synthesis of silver
nanoparticles, first 110 mg silver trifluoroacetate was added in 20 ml dichlor-
omethane. A total of 0.5 mmol ligand molecules with varying composition were
then added and the mixture was stirred for 10 min followed by adding 434 mg tert-
butylamine-borane as the reducing agent and stir for 16 h at room temperature.
Upon the completion of reaction, 40 ml methanol was added to quench the
reaction. The nanoparticles precipitates were collected by centrifugation and were
washed several times using methanol. The product was dried under vacuum
overnight.

For the synthesis of gold nanoparticles, 50 mg gold(III) chloride trihydrate was
fist dissolved in 40 ml ethanol followed by the addition of 0.25 mmol ligand
mixtures. A total of 217 mg tert-butylamine-borane was then added and the
reaction mixture was stirred overnight. The nanoparticles were precipitated and
wash using diethyl ether several times and dried under vacuum.

MALDI-TOF MS. The MALDI measurements were performed using Bruker
AutoFlex Speed instrument. DCTB was used as the matrix substance. To prepare
for the sample, chloroform was used as the solvent to make a solution of the matrix
with the concentration of 25 mg/ml. 1.0 mg nanoparticles sample was dissolved in
0.1 ml chloroform to make 10 mg/ml sample solution. Then the sample and matrix
solution was mixed at volume ratio 1:1. 2 μl of the mixture solution was spotted on
the stainless steel target plate. All the measurements were performed with positive
ionization and reflection mode to detect in the 700–3500 mass range. The laser
intensity was kept at 30% of the maximum. The resulted spectra were processed
using FlexAnalysis software.

Code availability. An open access software that is used in the manuscript for the
Monte Carlo calculations is available and can be downloaded from https://sunmil.
epfl.ch. The source code is available from the authors upon request.

Data availability
All raw data (MALDI-TOF MS in Figs. 2, 4, NMR of PET-DDT Ag NPs, TGA data and
MALDI-TOF MS of gold NPs) are deposited and can be downloaded from the public
data repository (Figshare.com) at [https://doi.org/10.6084/m9.figshare.7059236.v1].
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