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1  | INTRODUC TION

Recently, metabolic reprogramming has been recognized as a new 
hallmark of cancer cells.1 Increased glycolysis under normoxic con‐
dition (Warburg effect) and glutamine metabolism are the main 
features of malignant tumours.2,3 Now, the deregulation of lipid 
metabolism has also been considered as one of the most important 
metabolic hallmarks of cancer cells. Highly proliferative cancer cells 

can acquire lipids by enhancing lipid uptake, lipolysis and de novo 
fatty acid synthesis.4

Glioma is one of the most treatment‐refractory cancers and 
highly resistant to chemo and radiotherapy.5 Most diffuse LGGs 
and nearly all glioblastomas will eventually recur and often trans‐
form into a higher grade. It has reported that unsaturated fatty acid, 
cholesterol esters and phosphatidylcholine are only present in high‐
grade gliomas through magnetic resonance spectroscopy (NMR) 
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Abstract
Lipid metabolism reprogramming plays important role in cell growth, proliferation, 
angiogenesis and invasion in cancers. However, the diverse lipid metabolism pro‐
grammes and prognostic value during glioma progression remain unclear. Here, the 
lipid metabolism‐related genes were profiled using RNA sequencing data from The 
Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. 
Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblas‐
toma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, 
whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol 
metabolic progress. According to the differential genes of lipid metabolism between 
LGG and GBM, we developed a nine‐gene set using Cox proportional hazards model 
with elastic net penalty, and the CGGA cohort was used for validation data set. 
Survival analysis revealed that the obtained gene set could differentiate the outcome 
of low‐ and high‐risk patients in both cohorts. Meanwhile, multivariate Cox regres‐
sion analysis indicated that this signature was a significantly independent prognostic 
factor in diffuse gliomas. Gene ontology and GSEA showed that high‐risk cases were 
associated with phenotypes of cell division and immune response. Collectively, our 
findings provided a new sight on lipid metabolism in diffuse gliomas.
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analysis.6,7 At present, more and more studies focus on revealing 
the biological phenotype and molecular mechanism that altered 
lipid component leads to in glioma. Offer et al found that extracel‐
lular lipid loading augments hypoxic paracrine signalling and pro‐
motes glioma angiogenesis and macrophage infiltration.8 GPIHBP1, 
a GDP‐anchored protein of capillary endothelial cells, facilitated tri‐
glyceride‐rich lipoproteins (TRLs) processing and provided a source 
of lipid nutrients for glioma cells.9 Marifia and colleagues revealed 
that sphingosine‐1‐phosphate (S1P) fuelled proliferative and stem‐
ness qualities of glioblastoma stem cells.10 However, the distinct lipid 
metabolism programmes and prognostic value in glioma progression 
need further study.

In this study, we profiled the lipid metabolism status in 859 
diffuse glioma samples with gene expression data from TCGA and 
CGGA database. Distinct enrichments of lipid metabolism pheno‐
type were observed between LGGs and GBM. Then, we constructed 
a lipid metabolism‐related gene set for evaluating the risk of poor 
outcome, which was also validated in CGGA cohort. The gene set 
was closely associated with the pathological factors and could be 
identified as an independent prognostic feature. Taken together, our 
results indicated a strong connection between patients' survival and 
lipid metabolism in diffuse glioma.

2  | METHODS

2.1 | Patients and datasets

We collected 550 and 309 diffuse gliomas with RNA‐seq data 
and clinical information from TCGA and CGGA database, respec‐
tively.11,12 TCGA cohort was used as training set and CGGA cohort 
as validation set. All tissues and clinicopathologic information were 
obtained with written informed consents. This study was approved 
by ethics committee of Tiantan Hospital. The patient characteristics 
of these two cohorts were summarized in Table S1.

2.2 | Gene set selection

Four lipid metabolism‐related gene sets (Reactome metabolism 
of lipids and lipoproteins, Reactome phospholipid metabolism, 
Hallmark fatty acid metabolism and KEGG glycerophospholipid me‐
tabolism) were collected from the Molecular Signature Database v5.1 
(MSigDB).13 After removing the overlapped genes, 614 lipid metabo‐
lism‐related genes were obtained. The differential lipid metabolism 
genes between LGG and GBM were selected. By using the R pack‐
age ‘survival’, univariate Cox analysis performed to prefilter the genes 
based on the P values. Then, the Cox proportional hazards model with 
elastic net penalty was applied for selecting signature gene, which was 
performed with the R package ‘glmnet’.14,15 A linear combination of 
signature genes expression level weighted by regression coefficients 
(Coeffs) was developed to calculate the risk score of each patient in 
training set. Then, the regression Coeffs from training set was used to 
compute the risk scores for cases of validation set.

2.3 | Bioinformatic analysis

Gene ontology (GO) analysis was performed for function annota‐
tion of differential genes.16 Gene set enrichment analysis (GSEA) 
was applied for identifying statistically different gene sets between 
two groups with GSEA v3 software.13 Principal components analysis 
(PCA) was carried out using the R package ‘princomp’ to analyse the 
expression pattern of grouped patients.17,18 Utilizing the gene ex‐
pression data, stromal and immune score of each sample was calcu‐
lated with R package ‘ESTIMATE’ which reflected the gene signature 
enrichment of stromal and immune cells.19

2.4 | Statistical analysis

Patients in both training and validation cohorts were assigned into 
high‐ or low‐risk group based on the median value of risk score. 
Kaplan‐Meier curves and 2‐sided log‐rank test were applied to as‐
sess the survival difference between high‐ and low‐risk groups. 
Chi‐square test was conducted to detect the pathologic differences 
between high‐ and low‐risk patients. Univariate and multivariate 
Cox regression analyses were performed to assess the independent 
prognostic factors by using SPSS software. ROC curve analysis was 
used to predict overall survival (OS) with R package ‘pROC’. P value 
<.05 was considered significant statistically.

3  | RESULTS

3.1 | LGG and GBM show distinct lipid metabolism 
phenotypes

To detect the lipid metabolism differences during the progression 
of diffuse gliomas, we collected 550 patients with RNA sequencing 
data and clinical information from TCGA database and four lipid me‐
tabolism‐related gene sets, which were integrated into one set con‐
taining 614 genes. Gene clustering using the R package ‘pheatmap’ 
found that the profile of lipid metabolism‐related genes between 
LGG and GBM showed obvious differences (Figure 1A). Principal 
components analysis based on these selected genes showed that 
GBM and LGG were distributed in different regions, suggesting 
distinct lipid metabolism phenotypes between them (Figure 1B). 
To further explore the lipid metabolism phenotypes, we performed 
GO analysis and found that GBM mainly exhibited an enrichment 
of glycosphingolipid metabolic progress, whereas LGG displayed 
enrichment of phosphatidylinositol metabolic progress (Figure 1C). 
Gene set enrichment analysis analysis also confirmed this finding 
(Figure 1D,E). In addition, we also analysed the CGGA cohort of 309 
glioma samples using the above methods, and the same results were 
observed between LGG and GBM (Figure S1). Heat maps showed 
the differential genes between LGG and GBM, involving in gly‐
cosphingolipid and phosphatidylinositol metabolic progress (Figure 
S2). These results indicated LGG and GBM displayed distinct lipid 
metabolic phenotypes.
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F I G U R E  1   Distinct lipid metabolism status between LGG and GBM. A, Heat map of lipid metabolism‐related genes between LGG 
and GBM of TCGA cohort. B, Principal components analysis of lipid metabolism‐related genes between LGG and GBM. C, GO analysis of 
differential genes between LGG and GBM. D and E, Gene set enrichment analysis of lipid metabolism status between LGG and GBM. NES, 
normalized enrichment score

F I G U R E  2   Identification of a prognostic signature by Cox proportional hazards model in TCGA cohort. A, Venn diagram shows prognosis‐
related lipid metabolism genes which are also differentially expressed between GBM and LGG. B, Cross‐validation for tuning parameter 
selection in the proportional hazards model. C, Heat map shows the signature genes. D, Coefficient (Coeff) values of the nine selected 
genes. E, Survival analysis of OS in high‐ and low‐risk groups of patients
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3.2 | Identification of a lipid metabolism‐related 
gene set for prognostic prediction

Considering the distinct profile of lipid metabolism between LGG 
and GBM, we proposed to build a lipid metabolism‐related gene set 
for predicting prognosis. By performing univariate Cox regression 
analysis, 297 prognosis‐related genes remained (P < .05). Thirty‐one 
out of prognosis‐related genes were involved in glycosphingolipid 
and phosphatidylinositol metabolic progress (Figure 2A). Then, we 
performed the Cox proportional hazards model with elastic net re‐
gression for gene selection (Figure 2B). Consequently, a nine‐gene 
signature was obtained as a classifier (Figure 2C,D), and risk score of 
each patient was computed with expression value and the coeffs of 
multivariable Cox regression.

Then, based on the median risk score, patients were assigned 
into high‐ or low‐risk group. Kaplan‐Meier analysis found the 
high‐risk cases had a significantly shorter OS than low‐risk ones 
(P < .001, Figure 2E). To validate this gene set, we also calculated 
patients' risk scores of CGGA cohort with same regression Coeffs. 
Heat map showed the expression of signature genes in CGGA 
cohort (Figure S3A). As expected, we acquired consensus result 
(Figure S3B).

3.3 | The nine‐gene set shows strong 
prognostic power

We next performed univariate and multivariate Cox regression anal‐
yses to determine the prognostic value of the acquired gene set. The 
results showed that the lipid metabolism‐related gene set was inde‐
pendently correlative with OS (P = .017) (Table 1). Consistently, this 
gene set could also be served as an independent prognostic factor 
in CGGA validation set (P = .003) (Table 1). By computing the AUC 
of risk score, age and grade, we next assessed the predictive accu‐
racy with ROC curve and found that AUC of risk score (0.86) was 
much higher than that of age (0.801) or grade (0.83) (Figure S4A). 
Similar results were also observed in CGGA validation set (Figure 
S4B). These results indicated that the acquired lipid metabolic gene 
set had strong power for prognosis prediction.

3.4 | The acquired nine‐gene set is correlated with 
pathologic features in diffuse gliomas

We further detected whether the gene set was associated with 
pathologic features. As shown in Figure 3, higher level of risk scores 
preferred to distribute in higher grade, classical, mesenchymal, 
IDH‐wt, MGMT promoter unmethylated or 1p/19q non‐codeleted 
patients. We also assessed the distributive differences of these 
pathologic features between high‐ and low‐risk groups by perform‐
ing chi‐square test. In both cohorts, most of pathologic features 
had significantly different distribution between risk groups except 
gender (Table S1). These results suggested a significant associa‐
tion between the lipid metabolism gene set and clinical molecular 
features. TA
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3.5 | Application of the nine‐gene panel in 
stratified patients

We further explored the prognostic significance of the gene panel in 
patients stratified by grade, IDH, MGMT promoter and 1p/19q sta‐
tus. In both cohorts, Kaplan‐Meier analysis showed that cases with 
high‐risk score had shorter overall survival than the low‐risk ones in 
most stratified patients (Figure 4, Figure S5). The similar trend oc‐
curred in GBM or 1p/19q codeleted cases despite of no statistical 
difference (Figure 4B,G). After that, patients were also stratified by 
WHO 2016 molecular subtype. Consensus results were obtained in 
cases of IDH‐mutant LGG, whereas in IDH‐wt LGG, IDH‐wt GBM and 
IDH‐mutant GBM found no significant differences (Figure S6). These 
data revealed that acquired signature could accurately predict the 
unfavourable outcome in most stratified patients.

3.6 | High‐risk cases show enhanced cell 
division and immune response phenotypes

To detect the biological function differences, we further compared 
gene expression of patients between low‐ and high‐risk groups. PCA 
found that low‐ and high‐risk cases distributed in two regions clearly 
(Figure S7). Based on the differentially expressed genes (P  <  .05) 

which were identified by SAM, GO analysis found that cell divi‐
sion and immune response were significantly enriched in high‐risk 
patients, whereas low‐risk cases showed enrichments of chemical 
synaptic transmission and neurotransmitter secretion (Figure 5A,B). 
Moreover, GSEA also confirmed these findings (Figure 5C,D).

4  | DISCUSSION

Compelling evidence has suggested that metabolism deregulation is 
one of the emerging hallmarks of cancer cells, due to its important 
role in cell growth, proliferation, angiogenesis and invasion. Warburg 
reported that cancer cells mainly obtain energy by shifting their me‐
tabolism towards glycolysis pathway rather than oxidative phospho‐
rylation.1 In addition to the abnormal glucose metabolism, lipids, 
amino acids and nucleic acids metabolism are also altered in cancer 
cells.20 Recent studies have found that lipid metabolism reprogram‐
ming plays a crucial part in membrane synthesis, energetic produc‐
tion and signal transduction in the progression of cancer cells.21

Glioma, an intractable cancer, is one of the most lethal human 
brain malignancies with frequent recurrences 6  months after sur‐
gery. Although great efforts have made on the glucose metabolism 
alterations, increasing research has indicated that lipid metabolism 

F I G U R E  3   Association between the lipid metabolism‐related gene panel and pathologic features. A‐E, Distribution of the risk score in 
stratified patients by grade, subtype, IDH, MGMT promoter and 1p/19q status in TCGA cohort. F‐J, Distribution of the risk score in stratified 
patients by grade, subtype, IDH, MGMT promoter and 1p/19q status in CGGA cohort
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is also aberrant in glioma. In addition to the increased lipid level,6,7 
the expression of enzymes involved in lipid metabolism is also al‐
tered and its inhibition could suppress the tumour growth in glioma. 
Carnitine palmitoyltransferase 1 (CPT1), a regulator of long‐chain 
fatty acid transportation and beta‐oxidation, is elevated at expres‐
sion level in high‐grade glioma. Glioma cells treated with CPT1 inhib‐
itor etomoxir exhibited inhibited growth.22,23 Acyl‐CoA synthetase 
homolog 3 (ACSVL3), which adds coenzyme A to fatty acids, was 
also over‐expressed and involved in regulation of self‐renewal main‐
tenance in glioma.24,25 Expression of fatty acid synthase (FASN) in‐
creased with tumour grade, and pharmacological inhibition of FASN 

significantly decreased the proliferation and migration of glioma 
stem cells.26,27 In this study, we profiled the lipid metabolism phe‐
notype between low‐grade glioma and GBM with gene expression 
data. The results found GBM exhibited enrichment of glycosphin‐
golipid metabolic progress, whereas LGG displayed enrichment of 
phosphatidylinositol metabolic progress, which offered new implica‐
tions regarding glioma lipid metabolism status and targeted therapy.

Risk score is a widely used approach to construct a mean‐
ingful signature.28 A lipid metabolic gene panel could serve as 
powerful prognostic biomarker and stratify patients for lipid metab‐
olism targeted therapies. In the present study, we profiled the lipid 

F I G U R E  4  Prediction of outcome of the gene signature in stratified patients. A‐H, Survival analysis of the signature in patients stratified 
by grade, IDH, MGMT promoter and 1p/19q status
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metabolism phenotype in glioma and found distinct lipid metabolism 
progresses were enriched in LGG and GBM (Figure 1). Fifty‐one dif‐
ferentially expressed genes between LGG and GBM, involved in dis‐
tinct lipid metabolism progresses (glycosphingolipid metabolic and 
phosphatidylinositol metabolic progress), were employed to develop 
a prognostic indictor. Finally, we identified a nine‐gene set that could 
stratify patients with high‐ or low‐risk of poor prognosis. Moreover, 
functional analyses revealed that the signature could reproduce the 
lipid metabolic difference among patients (glycosphingolipid meta‐
bolic progress was enriched in high‐risk patients, and low‐risk ones 
exhibited enrichment of phosphatidylinositol metabolic progress) 
(Figure 5A,B).

Due to the insufficiency of univariate Cox model for variables 
selection, we first performed univariate Cox model to acquire genes 
which were correlated with overall survival and conducted an elastic 
net regression Cox model to improve the predictive ability of the 
prognosis.14 While none of the obtained nine genes showed high 
coefficient in Cox model, multiple genes showed a cumulative pre‐
dictive performance on survival. Most of these genes, such as CDIPT, 
PIK3C2G, ARSJ, ARSE, GLA and GLB2, had not been studied in cancers. 
MTMR7 protein was down‐regulated with increasing tumour grade 
and stage in colorectal cancer,29 while PIK3CB 30 and UGCG 31,32  
preferentially up‐regulate and promote cancer progression. We fur‐
ther explored the expression and prognostic correlation of these 
nine genes in TCGA RNA sequencing data. CDIPT, MTMR7, PIK3CB 
and PIK3C2B showed decreased expression in GBM compared with 

LGG, and their high levels were associated with favourable outcome. 
In contrast, the other five genes were up‐regulated in GBM, and high 
expression indicated poor outcome (Figure S8). The biological roles 
of these nine genes in gliomagenesis need to be further explored.

Since GO and GSEA revealed that high‐risk cases showed an 
enhanced phenotype of immune response, we also performed the 
ESTIMATE algorithm to compare inflammatory microenvironment 
between high‐ and low‐risk groups. Consequently, we found a sig‐
nificant increase in ESTIMATE scores in the high‐risk group (Figure 
S9), indicating that the lipid metabolism status is associated with in‐
flammatory microenvironment in diffuse gliomas.

5  | CONCLUSION

Collectively, we profiled the lipid metabolism phenotype in diffuse 
gliomas and identified a lipid metabolic gene signature that could clas‐
sify patients with high‐ and low‐risk categories of poor outcome. Our 
workflow was summarized in Figure S10. However, prospective stud‐
ies were further needed and the predictive capacity of the gene panel 
regarding lipid metabolism should be tested for clinical application.
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