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Objective: Despite being a powerful tool to identify novel variants, genome-

wide association studies (GWAS) are not sufficient to explain the biological

function of variants. In this study, we aimed to elucidate at the gene level the

biological mechanisms involved in gastric cancer (GC) development and to

identify candidate drug target genes.

Materials and methods: We conducted a systematic review for GWAS on GC

following the PRISMA guidelines. Single nucleotide polymorphism (SNP)-level

meta-analysis and gene-based analysis (GBA) were performed to identify SNPs

and genes significantly associated with GC. Expression quantitative trait loci

(eQTL), disease network, pathway enrichment, gene ontology, gene-drug, and

chemical interaction analyses were conducted to elucidate the function of the

genes identified by GBA.

Results: A review of GWAS onGC identified 226 SNPs located in 91 genes. In the

comprehensive GBA, 44 genes associated with GC were identified, among

which 12 genes (THBS3, GBAP1, KRTCAP2, TRIM46, HCN3,MUC1, DAP3, EFNA1,

MTX1, PRKAA1, PSCA, and ABO) were eQTL. Using disease network and pathway

analyses, we identified that PRKAA, THBS3, and EFNA1 were significantly

associated with the PI3K-Alt-mTOR-signaling pathway, which is involved in

various oncogenic processes, and that MUC1 acts as a regulator in both the

PI3K-Alt-mTOR and P53 signaling pathways. Furthermore, RPKAA1 had the

highest number of interactions with drugs and chemicals.
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Conclusion: Our study suggests that PRKAA1, a gene in the PI3K-Alt-mTOR-

signaling pathway, could be a potential target gene for drug development

associated with GC in the future.

Systematic Review Registration: website, identifier registration number.
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1 Introduction

Gastric cancer (GC) was the cancer with the fifth-highest

worldwide incidence in 2020, with 1,089,103 new cases (Sung

et al., 2021). The incidence of GC is highly variable depending on

the region and culture, with the highest incidence rates in Eastern

Asia, Europe, and South America (Sung et al., 2021). In Eastern

Asia, the average incidence of GC is 32.5 per 100,000 among

males and 13.2 among females. On the contrary, in North

America, the overall incidence among males and females is

5.4 and 3.1 per 100,000, respectively. The lowest incidence is

in regions ofMiddle Africa, where only 4.6 per 100,000males and

3.8 per 100,000 females are diagnosed annually. (Sung et al.,

2021).

The sequencing and bioinformatic advances in the past

decade have permitted genome-wide association studies

(GWAS) to become an innovative tool for identifying new

single nucleotide polymorphisms (SNPs) or genes for cancer

susceptibility (Wang et al., 2005). GWAS explore the associations

between a large number of SNPs and traits such as major

diseases, thereby investigating the entire genome with an

unbiased approach (Manolio, 2010). Previous GWAS and

meta-analyses have identified several genetic variants that are

associated with GC susceptibility (Mocellin et al., 2015; Jin et al.,

2020; Yan et al., 2020). However, no systematic reviews have

evaluated the genetic factors associated with GC using gene-

based meta-analyses or gene-network analyses.

Despite GWAS being powerful tools for the identification of

novel variants associated with a certain trait, they may not

capture the entire signal due to a lack of power, and their

results may be biased due to population stratification or locus

heterogeneity (Luo et al., 2010). In addition, as the identified

variants may be non-pathogenic variants in linkage

disequilibrium (LD) with the actual causal variants, follow-up

studies are necessary to confirm the functional effects of the

identified signal (Stadler et al., 2010).

Gene-based analysis (GBA) has recently been suggested as an

approach to overcome the limitations of GWAS. GBA can detect

regions that display allelic heterogeneity and identify modest

genetic effects by improving statistical power by combining

single variants obtained from individual GWAS (Liu et al.,

2010; Huang et al., 2011). Another approach to overcome the

limitations of GWAS is expression quantitative trait loci (eQTL)

analysis. This method permits the functional interpretation of

GWAS markers by linking them to changes in gene expression

(Nica and Dermitzakis, 2013). Furthermore, pathway and Gene

Ontology (GO) enrichment analyses of the identified variants can

inform about the biological function of the identified variants at

the gene level (Gene Ontology Consortium, 2015; Slenter et al.,

2018). Finally, as genes associated with a specific disease can be

pleiotropic, meaning that they can be associated with other

diseases or phenotypes (Solovieff et al., 2013). Disease

interaction analysis has also been conducted to identify shared

pathological pathways (Piñero et al., 2020). Using a combination

of these approaches, studying genetic variants and their functions

in disease can ultimately be used to identify novel drug targets or

biomarkers (Wheeler et al., 2013).

The purpose of this study was to identify potential genes for

drug development associated with GC based on a comprehensive

understanding of the biological mechanisms of GC-associated

genes by systematically reviewing published GWAS for GC and

performing gene-level functional analyses, including drug/

chemical interactions, through GBA.

2 Materials and methods

2.1 Literature search and selection criteria

Our study conducted a systematic review according to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guidelines (Supplementary Table S1). (Page

et al., 2021) The inclusion criteria based on the Population,

Intervention, Comparison, Outcome, Study design (PICOS)

model were as follows (Richardson et al., 1995): 1)

Population: Human patients with gastric cancer; 2)

Intervention (Exposure): Genetic variants (SNPs); 3)

Comparison: Control group with unaffected risk alleles; 4)

Outcome: Genotyping profiles of patients with gastric cancer;

5) Study design: case-control, GWAS. We excluded all studies

that were not published in English and did not perform the

GWAS analysis. In addition, studies in which the GWAS analysis

was repeated with the same population were also excluded. An

overall identification of eligible studies on the literature search

was presented in the PRISMA2020 flow diagram (Supplementary

Figure S1) (Haddaway et al., 2022).
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To retrieve potentially eligible studies from PubMed and

Embase, combinations of search queries were used

(Supplementary Table S2). A PubMed search was conducted

using “RISmed” R package, whereas Embase search was

conducted in online search (https://www.embase.com/search/

quick, assessed on 20 March 2021) (Kovalchik, 2014). In

addition, a detailed search of several publicly available GWAS

databases (registers) was conducted: the Human Genome

Epidemiology (HuGE) Navigator (https://phgkb.cdc.gov/PHGKB/

hNHome.action), the Genome-Wide Repository of Associations

between SNPs and Phenotypes (GRASP) (https://grasp.nhlbi.nih.

gov/Search.aspx), the National Human Genome Research Institute

(NHGRI GWAS Catalog) (https://www.ebi.ac.uk/gwas/), and the

GWAS Central (https://www.gwascentral.org/). All GWAS

databases (registers) were assessed on 20 March 2021. We only

included articles for which the full text was published on or before

31 December 2020. The identification of all studies was performed

by two independent researchers. The two independent researchers

independently extracted data on the first author’s name, publication

year, study design, location of the study, ethnicity of the participants,

number of cases/controls, SNPs investigated, chromosome,

candidate genes, genotyping platform used, cancer type/location,

measure of association with corresponding to 95% confidence

interval (CI), and p-value obtained from the combined sample sets.

Non-Randomised Studies of Interventions (ROBINS-I) tool

was used to assess the risk of bias (RoB) in non-randomized studies

(Sterne et al., 2016). The instrument was developed to assess the

internal validity of non-randomized trials by assessing the RoB

within the seven domains: 1) Confounding bias, 2) Bias in the

selection of study participants, 3) Bias in classification of

intervention, 4) Bias due deviation from intended intervention,

5) Bias due to missing data, 6) Bias in measurement of outcome,

and 7) Bias in the selection of reported results. The domain

conclusion classified the overall body of evidence into “low”,

“moderate”, “serious”, and “critical” categories. The results were

also visualized by “robvis” Shiny (McGuinness andHiggins, 2021).

When the opinions of the two independent researchers

differed, the four co-authors who are gastrointestinal surgery

clinicians were consulted to resolve the dispute. We followed the

principles proposed by the Human Genome Epidemiology

Network (HuGeNet) for a systematic review of molecular

association studies (Little et al., 2006).

2.2 Meta-analysis

A meta-analysis was performed to synthesize a total of

522 SNPs associated with GC that were included in 12 eligible

studies as follows (Gurevitch et al., 2018):

1) The original values of the fixed-effect model were obtained

when the reported SNPs in the individual study were

validated several times.

2) The values of the fixed-effect model were estimated when

external replication was possible because each SNP was

reported only once in each different study.

3) The original odds ratios (ORs) (95% CI) or P-values for the

single SNPs reported in the eligible studies were also obtained

even though those of SNPs were excluded from the gene-

based analysis.

4) When the same SNPs were reported from GC and its sub-

types, the ORs (95% CI) or P-values reported for GC

were used.

5) When the OR (95% CI) or P-value for the same SNP was

estimated from multiple subtypes, the one with a lower

P-value was used for the meta-analysis.

6) The OR (95% CI) and P-value were calculated based on the

random-effect model. However, the values of the random-

effect model could not be estimated when the OR was

reported only once or when only the OR p-value was

presented for each SNP.

ORs were calculated for each study and polymorphism

assuming an additive genetic model. Heterogeneity in the

meta-analysis was evaluated using I2 statistics (Higgins and

Thompson, 2002). All statistical analyses were performed

using the R software (version 4.1.0).

2.3 Gene-based analysis: Burden test

Gene-level association tests in the random-effects model

were performed after weighting by minor-allele frequencies

(MAFs) (Morgenthaler and Thilly, 2007). We combined

information across several variants in a target region and then

performed a burden test based on a single/meta-analysis for each

SNP with LD structure based on the 1,000 Genome reference

panel (Phase 3, East Asian). The burden test results were

converted to gene-level estimates of effect sizes (betas) and

their standard errors (Svishcheva et al., 2015). When multiple

SNPs were in high LD (R2 > 0.9) in the same gene region, a

burden test was performed with SNPs remaining after LD

clumping. A Bonferroni correction for multiple testing was

applied to account for the total number of genes tested

(approximately 20,000 genes). Significant gene-level

associations in the burden test were those with a p-value <
2.5 × 10–6 after correcting for multiple testing.

2.4 Functional annotation analysis

2.4.1 eQTL analysis
Overlapping eQTL analysis was performed to identify SNPs

affecting a regulatory element controlling gene expression (Nica

and Dermitzakis, 2013). The eQTL were identified based on the

eQTLGen consortium, which is a large-scale multi-study effort to
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identify the downstream effects of trait-related variants via their

effects on gene expression in whole blood (Võsa et al., 2018).

eQTL analysis was also conducted based on the Genotype-Tissue

Expression (GTEx) project, which aims to study tissue-specific

gene expression and regulation (Carithers and Moore, 2015). We

used individual-level data in stomach tissue from GTEx (v8) to

construct the co-expression matrix and further validate the gene

sets reported by eQTLGen.

We performed eQTL analysis based on SNP statistics

(p-value) from the meta-analysis and burden test using

Functional Mapping and Annotation of Genome-Wide

Association Studies (FUMA) online software (https://fuma.

ctglab.nl/) (Watanabe et al., 2017). Significant eQTL with a

False Discovery Rate (FDR) ≤ 0.05 were selected for further

analysis. Gene annotation was performed based on the Genome

Reference Consortium Human Genome Build 37 or

hg19 reference assembly.

2.4.2 Disease network analysis
The disease network analysis was used to identify candidate

genes for GC from a burden test using DisGeNET (Piñero et al.,

2020). DisGeNET is a discovery platform that contains one of the

largest publicly available collections of genes and variants

associated with humans. An FDR-corrected p-value

of <0.05 was used to identify significant disease networks.

2.4.3 Pathway analysis
To identify pathways associated with GC, we used statistical

results from the WikiPathway Human Collection (http://

wikipathways.org) (Slenter et al., 2018) and the Network Data

Exchange (NDEx) (https://www.ndexbio.org/) (Pratt et al.,

2015). The WikiPathway is a collaborative open database that

includes knowledge of curated biological pathways. In addition,

the NDEx database provides access to not only pathways but also

diverse types of network models, offering digital object identifier

(DOI) minting for citation. Pathways with an FDR <0.05,
including at least one altered gene, were considered significant.

2.4.4 GO analysis
We performed GO analysis to annotate genes to known

functional information sources (Gene Ontology Consortium,

2015), including biological process (BP), cellular component

(CC), and molecular function (MF) using the “clusterProfilter”

R package (Yu et al., 2012). We submitted genes significantly

estimated from the burden test and were considered significant

for GO results with an FDR <0.05.

2.4.5 Gene-drug interaction analysis
We studied gene-drug interactions using the DrugBank

database (https://go.drugbank.com/) and the DGIdb database

(http://www.dgidb.org/) (Wishart et al., 2018; Freshour et al.,

2021). DrugBank is a drug-centric online database that provides

detailed information about over 500,000 drugs and their target

genes. DGIdb comprises drug-gene interaction information of

more than 40,000 genes and 10,000 drugs from 15 different

resources and allows filtering at different levels. Only gene-drug

interactions in which the drug was found in two or more

references or databases were selected.

2.4.6 Gene-chemical interaction analysis
The Comparative Toxicogenomics Database (CTD) (http://

ctdbase.org/) was employed to construct a gene-chemical

interaction network (Davis et al., 2021). The CTD includes

toxicological information for over 16,000 chemicals and

50,000 genes. Only gene-chemical interactions with two or

more references were selected.

2.4.7 Protein-protein interaction analysis
The Search Tool for the Retrieval of Interacting Genes

(STRING; http://string.embl.de/) is a biological database

designed to construct a PPI network by analyzing the

functional interactions between proteins (Szklarczyk et al.,

2021). Using STRING, PPIs were constructed with a

confidence score ≥0.99 (Asadzadeh-Aghdaee et al., 2016).

Subsequently, the PPI network was visualized using the

Cytoscape software (version 3.8.2) (Shannon et al., 2003) via

Rcy3 (Gustavsen et al., 2019).

3 Results

3.1 Flow of study selection

We identified 3,251 and 90 eligible studies through PubMed

and Embase, respectively (Supplementary Figure S1). In addition,

906, 123, 46, and 14 eligible studies were also identified through

the HUGE Navigator, GRASP, GWAS Catalog, and GWAS

Central, respectively (Supplementary Figure S1). Subsequently,

230 duplicated studies and two studies that were written in other

languages were removed. After title and abstract screening,

348 full text articles were assessed for further eligibility. A

total of 333 studies were excluded for not conducting GWAS,

and three full text articles were excluded for repeating the

analyses in the same population. The remaining 12 GWAS for

GC, including duplicated 522 SNPs, were included in the meta-

analysis (Supplementary Figures S1, S2) (Sakamoto et al., 2008;

Abnet et al., 2010; Shi et al., 2011; Jin et al., 2012; Tanikawa et al.,

2012; Helgason et al., 2015; Hu et al., 2016; Wang et al., 2017;

Tanikawa et al., 2018; Park et al., 2019; Du et al., 2020; Rashkin

et al., 2020). Among the selected studies, ten were conducted in

Asia (China, Japan, Korea, and Singapore), and two were

performed in Europe and North America. The studies were

published between 2008 and 2020. The present study was

approved by the respective institutional ethics review

committee, and informed consent was obtained from all

participants.
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3.2 Study characteristics and risk of bias
within the studies

Of the total of 12 studies, ten of which focused on Asians

(Korea, China, Japan, Singapore) (Sakamoto et al., 2008; Abnet

et al., 2010; Shi et al., 2011; Jin et al., 2012; Tanikawa et al., 2012;

Hu et al., 2016; Wang et al., 2017; Tanikawa et al., 2018; Park

et al., 2019; Du et al., 2020), one in Europe (Helgason et al., 2015),

and the other in the United States/United Kingdom (Rashkin

et al., 2020). 12 studies in all were adjusted for age and sex or

additional covariates such as principal components. Three

studies presented the results of the diffuse and intestinal

subtypes (Sakamoto et al., 2008; Tanikawa et al., 2012;

Tanikawa et al., 2018), while five studies revealed the results

of cardia or non-cardia subtypes (Abnet et al., 2010; Shi et al.,

2011; Jin et al., 2012; Hu et al., 2016; Wang et al., 2017).

Furthermore, two studies presented findings associated with

adenocarcinoma (Abnet et al., 2010; Helgason et al., 2015).

Other studies without subtype analysis have reported GC results.

The assessment of RoB for observational studies was shown

in Supplementary Table S3 and Supplementary Figure S3. Based

on the ROBINS-I tool, 4 studies were identified as “low risk”,

6 studies were assessed as “moderate risk” studies, while 2 studies

were considered as “Serious risk”. The p-value of each SNP

reported prior to data synthesis in one of the two severe risk

studies was not genome-wide significant (5 × 10–8) (Sakamoto

et al., 2008), and some of the SNP annotations and effect sizes

were not presented in another study (Jin et al., 2012). It is

believed that there may be limitations because this GWAS

study is in its early days. GWAS generally adjusts for age and

sex, but if there is heterogeneity in the population, the principal

component is additionally adjusted (McCaw et al., 2022).

However, in our eligible studies, validation analysis was also

performed with the same ethnicity, so there seems to be little bias

due to the confounder. According to our assessment of the

certainty of the evidence, the body of evidence supporting an

association between SNPs and elevated risk of GC had “moderate

degree of evidence”.

3.3Major genes associatedwith GC:Meta-
and gene-based analyses

A total of 552 SNPs were identified from the eligible studies

based on literature search (Supplementary Table S4). 522 SNPs

were located in upstream (n = 5), downstream (n = 9), intronic

(n = 207), exonic (n = 28), noncoding RNA (ncRNA) intronic

(n = 10), ncRNA exonic (n = 8), 5′-UTR (n = 15), 3′-UTR (n =

38), and intergenic (n = 202) regions (Figure 1; Supplementary

Table S4). Some of the SNPs were associated specifically with

histological subtypes (intestinal; n = 12, diffuse; n = 24), site

(cardia; n = 36, non-cardia; n = 98), onset age (early; n = 6, late;

n = 6), and pathological subtype (adenocarcinoma; n = 17)

(Figure 1; Supplementary Table S4). Out of 522 SNPs,

296 SNPs were reported in the multiple studies or overlapped

results from subtypes were excluded (Supplementary Table S5).

Therefore, a total of 226 SNPs remained in the meta-analysis

based on both the fixed- and random-effect models

(Supplementary Table S6). In many cases, 25%–49%, 50%–

74%, and over 75% of I2 suggest low, intermediate, and high

heterogeneity, respectively (Higgins et al., 2003). Among

226 SNPs, 41 SNPs had no heterogeneity. On the other hand,

24, 71, and 53 SNPs had low, intermediate, and high

heterogeneity, respectively. The heterogeneity of 37 SNPs was

not evaluated due to without validation (Supplementary

Table S6).

Since a gene’s effect size is estimated based on the effect size

of several SNPs located in the gene, 59 SNPs located in the

intergenic position were excluded from the remaining 226 SNPs

to perform the gene-based analysis. Therefore, 167 SNPs located

in 91 genes were retained as candidates for gene-based analysis

(Supplementary Figure S2). Among the 91 genes, 44 genes were

included in the burden test after excluding genes that were

specifically associated with a subgroup of GC or in a non-

Asian population, genes whose effect size was estimated from

a single distinct SNP, and genes not identified as entrez id

(Supplementary Figure S2). Of the 44 genes, effect sizes for

six genes and 38 genes were estimated by the burden test and

the meta-analysis, respectively (Table 1). After correcting for

multiple testing, 25 genes had significant gene-level associations

with GC (p-value < 2.5 × 10–6).

3.4 Functional annotation analysis

eQTL analysis was performed based on 226 SNPs with

statistics (p-value) after the meta-analysis. The eQTL analysis

results were represented in SNP-gene pairs since the SNPs have a

role in gene expression regulation. Furthermore, since one SNP

can affect the expression level of multiple genes, the results of

eQTL analysis were calculated in pairs.

Forty-seven SNPs out of the 226 SNPs in the meta-analysis

were identified to regulate the expression of 12 genes (THBS3,

GBAP1, KRTCAP2, TRIM46, HCN3, MUC1, DAP3, EFNA1,

MTX1, PRKAA1, PSCA, and ABO) out of the 25 genes

significantly estimated from the burden tests, resulting in a

total of 175 SNP-gene pairs (Supplementary Table S7). In

PRKAA1, PSCA, and ABO, the SNPs located in the

corresponding gene regulated the expression of their

respective (Supplementary Figure S4). Three pairs (three

SNPs-one gene) for PRKAA1, 26 pairs (26 SNPs-one gene) for

PSCA, and one pair (one SNP-one gene) for ABO were estimated

(Supplementary Figure S4). However, the expression level of nine

genes (THBS3, GBAP1, KRTCAP2, TRIM46, HCN3, MUC1,

DAP3, EFNA1, and MTX1) on chromosome 1 were regulated

by 17 SNPs located nearby (Supplementary Figure S4;
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Supplementary Table S7). Among the 17 SNPs, 13 (rs1057941,

rs12752585, rs2049805, rs28445596, rs2974929, rs2990220,

rs4276914, rs4971059, rs4971085, rs4971088, rs4971100,

rs4971101, and rs7556304) regulated the expression of

9 genes, yielding a total of 117 pairs. Three SNPs (rs2066981,

rs3814316, and rs4971093) regulated the expression of eight

genes, not including EFNA1, yielding 24 pairs. Finally,

rs4971066 regulated the expression level of only four genes

(GBAP1, THBS3, MTX1, and MUC1), establishing four pairs.

In total, eQTL analysis yielded 175 SNP-gene pairs between

47 SNPs and 12 genes.

Cis-eQTL identification based on the eQTLGen database

yielded a total of 120 significant (FDR ≤0.05) pairs between

21 SNPs and 11 genes (THBS3, GBAP1, KRTCAP2, TRIM46,

HCN3, MUC1, DAP3, EFNA1, MTX1, PRKAA1, and ABO). In

contrast, no trans-eQTL were found. eQTL refers to genetic

variants involved in regulating gene expression (Võsa et al.,

2021). eQTL is divided into cis-eQTL and trans-eQTL. SNPs

regulating gene expression located near a gene (<1 megabase;

Mb) with local effects are called cis-QTL, whereas SNPs located

distally (>5 Mb) or on a different chromosome of a gene with

remote effects are called trans-eQTLs (Westra and Franke, 2014).

Because cis-eQTLs generally have large effect sizes (Huang da

et al., 2009), even moderate sample size enables the detection of

cis-eQTLs of thousands of genes (Westra et al., 2013). In

addition, cis-eQTLs have a direct effect on gene expression

due to their proximity to the transcription start site (TSS)

(Stranger et al., 2012). On the other hand, since the effect size

of trans-eQTLs is generally small, a larger sample size is required

(Grundberg et al., 2012). Moreover, it is hard to identify validated

reports to estimate the effect size for tans-eQTLs due to

estimation difficulty (Westra et al., 2013). Nevertheless, since

a trans-eQTL can affect multiple genes with small effect size and

can have a wide range of effects in biological networks, it can be

highly associated with a cross-phenotype (Brynedal et al., 2014;

Westra and Franke, 2014).

FIGURE 1
Circos plot showing a total of 226 distinct SNPs for gastric cancer susceptibility as a result of systematic review and meta-analysis. SNPs were
shown by P-value (significant threshold: 5 × 10-8), genetic function, and subtypes. SNP, single nucleotide polymorphism; UTR, untranslated region.
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Based on the GTEx-stomach database, 55 pairs between

42 SNPs and three genes (THBS3, GBAP1, and PSCA) were

significant (FDR ≤0.05) (Supplementary Table S7). The results

for THBS3 and GBAP1 were validated on both the eQTLGen and

GTEx-stomach databases.

Of the 12 eQTL genes, 10 were associated with a total of

28 diseases according to the disease network analysis

(Figure 2; Supplementary Figure S5). Among these diseases,

11 were associated with GC (Helicobacter pylori infections,

infection caused by Helicobacter pylori, atrophic gastritis,

duodenal ulcer, preneoplastic conditions, intestinal

metaplasia, precancerous lesions, hereditary diffuse gastric

cancer, malignant neoplasm of gastrointestinal tract, gastric

adenocarcinoma, and precancerous conditions). In addition,

three biomarkers of chronic kidney disease were identified

(blood urea nitrogen, glomerular filtration rate, and uric acid).

Five diseases associated with uric acid or inflammation

(Gaucher disease, tarsal-carpal coalition syndrome,

tuberous sclerosis, psoriatic arthritis, and inflammation)

and two viral diseases were selected (Rubella and Epstein-

Barr virus infection), and hemoglobin and hematocrit were

also found in the disease network. Additionally, five other

diseases associated with eQTL genes were identified

(Supplementary Figure S5).

A total of 18 pathways were significantly associated with 12 eQTL

genes in Wikipathways (Figure 2; Supplementary Figure S5). Among

these pathways, the PI3K-Alt-mTOR-signaling pathway containing

three eQTL genes (THBS3, EFNA1, and PRKAA1) was the most

significant (FDR = 5.99 × 10–4). PRKAA1 was associated with

13 pathways and was the gene that showed the strongest

association among the 12 eQTL genes (FDR <0.05). According to

the NDEx database,MUC1 was identified as a regulator of the PI3K-

Alt-mTOR and p53 signaling pathways. Moreover, RAS drives the

PI3K-Alt-mTOR-signaling pathway via PRKAA1, the adenosine

monophosphate-activated kinase (AMPK) via the ERK pathway,

and TP53 also interacts with RPKAA1 (AMPK). In addition, PPI

network analysis showed that MUC1 interacted with EGFR (HER2-

receptor), CTNNB1 (β-catenin), Src, and ICAM-1 (intracellular

adhesion molecule)-1.

GO annotation analysis revealed the genetic signal was

enriched in 9 MF and 24 BP terms (Supplementary Figure

S5). The most significant MF and BP terms were

glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyl-

transferase activity and positive regulation of peptidyl-lysine

acetylation, respectively. In addition, glycosylation and

AMPK-associated functions or processes were identified. Of

the 12 eQTL genes, MUC1 and PRKAA1 were the ones that

were most annotated to the enriched GO terms.

Gene-drug interactions were identified only for MUC1 and

PRKAA1. PRKAA1 interacts with phenformin, metformin,

hesperadin, sirolimus, streptozocin, thyroxine, pentostatin,

saponarin, fluorinated N,N′-diarylureas, acetylsalicylic acid,

and adenosine monophosphate. MUC1 interacted with

Huhmfg1 and GO-203-2C (Figure 2).

Based on the CTD database, 66 gene-chemical

interactions with 44 chemicals and ten genes were

TABLE 1 The results of gene-based analysis for gastric cancer.

Gene Chr OR (95% CI) p-value Method

KRTCAP2 1q22 0.65 (0.60–0.71) 8.44E-24 Burden Test

MUC1 1q22 0.76 (0.71–0.81) 1.99E-14 Meta

MTX1 1q22 0.71 (0.63–0.80) 1.70E-08 Burden Test

GBAP1 1q22 0.48 (0.42–0.55) 1.03E-27 Burden Test

EFNA1 1q22 0.82 (0.77–0.87) 1.46E-10 Meta

TRIM46 1q22 0.71 (0.66–0.76) 1.65E-21 Burden Test

THBS3 1q22 0.51 (0.45–0.57) 6.39E-29 Burden Test

HCN3 1q22 0.83 (0.80–0.87) 2.65E-17 Meta

DAP3P1 1q22 0.64 (0.56–0.74) 1.56E-10 Meta

MST O 1 1q22 0.67 (0.60–0.75) 1.60E-12 Meta

DAP3 1q22 0.65 (0.58–0.73) 4.23E-13 Meta

GON4L 1q22 0.63 (0.55–0.72) 4.47E-11 Meta

RPL7P10 1p31.1 1.25 (1.10–1.42) 5.76E-04 Meta

SERINC2 1p35.2 1.01 (0.96–1.06) 8.05E-01 Meta

RMDN2 2p22.2 0.67 (0.58–0.78) 3.24E-07 Meta

LYPD6 2q23.2 0.84 (0.77–0.91) 4.27E-05 Meta

BAZ2B 2q24.2 1.29 (1.14–1.45) 2.59E-05 Meta

BZW1 2q33.1 0.97 (0.93–1.01) 1.56E-01 Meta

UMPS 3q21.2 1.03 (0.99–1.08) 2.00E-01 Meta

ITGB5 3q21.2 0.95 (0.91–0.99) 2.92E-02 Meta

TRIML1 4q35.2 0.73 (0.64–0.84) 1.68E-05 Meta

RAB3C 5q11.2 1.07 (1.03–1.13) 2.46E-03 Meta

PRKAA1 5p13.1 0.80 (0.77–0.83) 4.83E-26 Meta

GPX3 5q33.1 0.92 (0.89–0.95) 1.49E-06 Meta

LINC01411 5q35.2 1.05 (1.01–1.10) 2.65E-02 Meta

UNC5CL 6p21.1 1.14 (1.09–1.20) 7.22E-08 Meta

SAMD5 6q24.3 0.81 (0.75–0.88) 5.62E-07 Meta

PSCA 8q24.3 0.75 (0.72–0.78) 8.20E-56 Meta

ABO 9q34.11 1.15 (1.11–1.19) 2.64E-13 Meta

PLCE1 10q23.33 3.60 (2.46–5.26) 3.51E-11 Burden Test

LOC101928477 11q22.2 0.95 (0.84–1.08) 4.29E-01 Meta

DYNC2H1 11q22.3 0.95 (0.91–1.00) 3.30E-02 Meta

OPCML 11q25 1.19 (1.11–1.28) 1.60E-06 Meta

CCDC63 12q24.11 0.92 (0.89–0.96) 1.80E-05 Meta

CUX2 12q24.12 0.91 (0.88–0.94) 3.20E-08 Meta

DTX1 12q24.13 1.15 (1.09–1.21) 1.20E-07 Meta

GPC5 13q31.3 1.07 (1.02–1.11) 2.31E-03 Meta

UBAC2 13q32.3 1.07 (1.03–1.11) 2.71E-04 Meta

FMN1 15q13.3 1.11 (1.05–1.17) 4.53E-04 Meta

TRPM1 15q13.3 0.61 (0.50–0.74) 5.87E-07 Meta

RORA 15q22.2 1.09 (1.04–1.14) 1.83E-04 Meta

SNX29 16p13.13 0.92 (0.88–0.96) 1.83E-04 Meta

HA O 1 20p12.3 0.92 (0.87–0.96) 7.20E-04 Meta

DEFB121 20q11.21 1.11 (1.07–1.15) 8.11E-10 Meta

OR, odds ratio; CI, confidence interval; BT, burden test.
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identified (Figure 2; Supplementary Figure S6). Of the ten

genes, PRKAA1 and EFNA1 interacted with the largest

number of chemicals (17). Oestradiol was six times

reported to decrease the expression of EFNA1. AICA

ribonucleotide and metformin were five times reported

to increase the phosphorylation of PRKAA1.

Furthermore, the expression of MUC1 was reported to

be increased by the action of aflatoxin B1, oxygen, and

valproic acid a total of four times.

4 Discussion

In this review, we described the most reported genetic loci

that are associated with the increased risk of GC from the

available GWAS and conducted meta-analyses and GBA of the

genetic variants with available genotypes. Comprehensive

meta-analysis and GBA of genetic variants identified

25 significant genes for GC susceptibility. Among the

25 genes, 12 genes (THBS3, GBAP1, KRTCAP2, TRIM46,

FIGURE 2
Functional network analysis for expression-regulated genes from eQTL identified by GBA. Blue, red, yellow, green, and purple nodes stood for
genes, chemicals, SNPs included in GBA, disease-networks, and drugs, respectively. eQTL, expression quantitative trait loci; GBA, gene-based
analysis; SNP, single nucleotide polymorphism.
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HCN3, MUC1, DAP3, EFNA1, MTX1, PRKAA1, PSCA, and

ABO) were significant at the gene expression level according

to eQTL analysis. To understand the function of these

12 genes, disease network analysis, biological pathway and

GO enrichment analysis, and gene-drug and chemical

interaction analyses were conducted.

PSCA encodes a glycosylphosphatidylinositol-anchored cell

membrane glycoprotein. In addition to being highly expressed in

the prostate, it is also expressed in the bladder, placenta, colon,

kidney, and stomach. PSCA is the genetic locus most significantly

associated with the risk of H. pylori-induced GC in the Japanese

population, which is the case with regard to the European

population as well (Rizzato et al., 2013). Moreover, in H.

pylori-infected gastric mucosal tissue, PSCA expression was

found to be remarkably suppressed compared to that in

normal, non- H. pylori infected gastric mucosal tissue

(Toyoshima et al., 2018). This can lead to a reduced risk of

GC or an increased risk of duodenal ulcers (Tanikawa et al.,

2012).

PRKAA1 belongs to the serine/threonine-protein kinase

family. It is the catalytic subunit of AMPK, a cellular energy

sensor conserved in all eukaryotic cells (Krishan et al., 2014).

PRKAA1 is mainly involved in the PI3K-Alt-mTOR-signaling

pathway via AMPK. The PI3K-Alt-mTOR-signaling pathway is a

transduction hub linked to various biological pathways and

mechanisms associated with carcinogenesis (Figure 3). AMPK

negatively modulates mTOR, which plays an important role in

regulating cellular energy homeostasis by regulating cellular

processes such as protein synthesis and autophagy. mTOR

signalling positively regulates cell proliferation and

tumorigenesis in various cancers and is often aberrantly

activated in cancer. In addition, the PI3K-Alt-mTOR-signaling

pathway can influence glycosylation through nuclear factor

kappa B (NF-κB), a protein complex that functions as a

signal-induced transcription factor regulating proliferation and

apoptosis (Magaway et al., 2019; Cho et al., 2021).

The role of PRKAA1 was also confirmed by the GO

annotation analysis results (Supplementary Figure S5).

FIGURE 3
Biological pathways of gastric cancer mechanisms. THBS3, EFNA1, and PRKAA1 are involved in PI3K-Alt-mTOR-signaling pathway which is the
key pathway associated with gastric cancer. MUC1 interacted with ICAM-1, CD11b, EGFR, Src, and CTNNB1 in PPI network is a regulator of the PI3K-
Alt-mTOR-signaling pathway. PPI, protein-protein interaction.
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PRKKA1 was shown to be associated with affecting themolecular

function of AMPK and involved in biological pathways,

including glycolysis, PI3K-Akt-mTOR signaling, autophagy,

cell cycle, and cell differentiation (Supplementary Figure S5).

This confirms that PRKAA1 directly affects the molecular

function of AMPK and has a role in its related pathways

(Figure 3). In addition, PRKAA1 is also associated with the

glucosylceramide process and mitochondrial regulation in

biological processes. MUC1, a mucin linked to AMPK’s

pathway, seems to be more involved in biological processes

through the regulation of protein acetylation, cell adhesion by

integrin, and glycosylation (Figure 3; Supplementary Figure S5).

Regarding gene-chemical interactions, 5-aminoimidazole-4-

carboxamide (AICA) ribonucleotide is one of the most reported

chemicals to phosphorylate PRKAA1 (Supplementary Figure S6)

and is widely used as a pharmacological modulator of AMPK

activity (Višnjić et al., 2021). In a previous experimental study,

AICA ribonucleotide was also shown to induce apoptosis alone

in GC cells with the aim of developing a chemotherapy sensitizer

for GC (Wu et al., 2016).

Metformin,both as a chemical and drug, had the highest

association with PRKAA1 (Figure 2; Supplementary Figure S5),

and gene-chemical interaction results revealed that metformin

phosphorylates PRKAA1. Metformin is one of the most widely

used anti-hyperglycemic drugs for the management of type

2 diabetes. Experimental studies strongly suggest that metformin

also possesses anticancer activity mediated through the modulation

of several cellular signaling pathways, including AMPK activation

and other mechanisms. In addition, metformin use has been

associated with a reduced GC risk, where an increasing

metformin dose was correlated with a lower GC risk (Kim et al.,

2014; Cheung et al., 2019). Regarding gene-drug interactions,

phenformin scored four, coming after metformin, which scored

five (the score reflects the number of reports in previous studies). It

has been reported that both phenformin and metformin can inhibit

cell growth through inhibition of cell proliferation, promotion of

apoptosis, and cell cycle disturbances (Wang et al., 2018).

EFNA1 is a growth factor that induces cell proliferation,

differentiation, and survival by binding to receptor tyrosine

kinase (RTK) in the cell membrane to generate Ras-GTP,

which activates the mitogen-activated protein kinase (MAPK)

pathway in the cytoplasm (Haglund et al., 2007). When

extracellular signal-regulated kinase (ERK), an important

factor in the MAPK pathway, is activated, the transcription of

several genes is activated, thereby resulting in cell growth. RAS

mutations lead to sustained activation of the ERK pathway,

which leads to cancer development (Mitra et al., 1993; Seger

and Krebs, 1995). In addition, ERK is linked to the PI3K-Alt-

mTOR-signaling pathway by activating AMPK (Figure 3).

Thrombospondin 3 (THBS3) is an extracellular glycoprotein

that mediates cell-to-matrix and cell-to-cell interactions (Mosher

and Adams, 2012). THBS3 activates the PI3K-Alt-mTOR-

signaling pathway via protein kinase B (PKB).

MUC1 is a single-pass type I transmembrane protein with a

heavily glycosylated extracellular domain (Hattrup and Gendler,

2008; Nath and Mukherjee, 2014). MUC1 has been reported to

act as an anti-inflammatory molecule in gastric mucosal cells.

The anti-inflammatory properties of MUC1 have also been

observed in gastric mucosal cell responses to H. pylori

infection (Guang et al., 2010). In addition, MUC1 inhibits cell

proliferation and regulates the PI3K-Alt-mTOR-signaling

pathway through a β-catenin-dependent mechanism (Lillehoj

et al., 2007).

H. pylori induces ICAM-1 and CD11b (integrin) expression,

causing degranulation and eosinophil cationic protein (ECP)

release (Chmiela et al., 2018). Activation of ICAM-1 by

CD11b results in the release of reactive oxidative species,

which stimulate NK-κB. In addition, an interaction between

the H. pylori virulence factor CagA and the receptor c-Met

has been found (Eom et al., 2016). CagA stimulates the

MAPK/ERK pathway and PI3K-Alt-mTOR-signaling pathway

by activating RAS by binding to the c-Met receptor (Churin et al.,

2003; Suzuki et al., 2009). Moreover, binding between c-Met and

hepatocyte growth factor (HUFF) also stimulates the MAPK/

ERK, PI3K-Alt-mTOR-signaling, and JAK/STAT pathways

(Jang et al., 2020). These mechanisms converge in inducing

cell proliferation, pro-inflammatory response, and cell

motility, which are involved in tumor development and

progression (Figure 3) (Churin et al., 2003; Suzuki et al., 2009;

Bradley et al., 2017).

Our study has some limitations. First, given that only the results

of GWAS that have been published were selected, we cannot avoid

the possibility of publication bias. In general, GWASwith significant

associations are more likely to be published than studies with null

associations (Stadler et al., 2010). Second, the SNPs generally

reported in GWAS are the lead SNPs with the most significant

p-value based on Bonferroni multiple tests after LD clumping.

However, since lead SNPs are not always causal SNPs, fine-

mapping analysis is necessary to investigate the region around

the lead SNP to find the presence of other potential causal SNPs

(Farh et al., 2015). The GWAS included in our study did not

perform such follow-up analyses. Third, the heterogeneity between

each GWAS, in terms of population origin, phenotype definition,

genotyping platform, and software used can lead to biased results.

Since the original data used in the individual GWAS were not

available, taking into account sources of variability in the analysis

was difficult. Furthermore, the results of GWAS for GC in

Caucasians were not included in the GBA due to an insufficient

number of SNPs or genes. In the future, the genetic burden of GC in

Caucasians and the differences among ethnicities need to be further

explored. Lastly, although the meta-analysis results based on the

fixed- and random-effect models presented similar estimates for

most SNPs, some of the SNPs that were reported only twice in

previous studies yielded different estimates. Similarly, SNPs with

different estimates between fixed- and random-effect model had

high heterogeneity. Given that the random-effect model is more
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evenly weighted compared to the fixed-effect model (Hedges and

Vevea, 1998), it is possible that the estimates of less-reported SNPs

are more unstable. In addition, the p-value threshold of GWAS is

generally 5 × 10–8 in discovery and less than 0.05 in validation (Risch

and Merikangas, 1996; Oetting et al., 2017). Even if the SNPs were

validated multiple times in a single study, the heterogeneity can be

highly evaluated because the threshold of p-value in validation

analysis is high. Thus, some SNPs still require a larger number

of external validations to estimate the stable effect size of SNPs

associated with GC.

Despite these limitations, our study had several strengths.

First, we used a comprehensive and systematic approach to

identify all possible GWAS in the literature. Second, the

statistical power of our analysis was increased due to the large

number of SNPs comprised in the meta-analysis. Moreover,

compared to SNP-based GWAS, GBA is more robust in terms

of statistical significance. By combining the SNPs of individual

GWAS into a gene-based score without increasing the sample

size or collecting new data, the statistical power is increased,

resulting in a less stringent significance threshold (Liu et al.,

2010). Therefore, our study highlights the possibilities that meta-

analysis and GBA offer by reusing published summary statistics.

Furthermore, functional annotation using disease network,

biological pathway, GO, gene-drug, and chemical interaction

analyses permitted a further understanding of the mechanisms of

GC development.

Based on the comprehensive investigation and multifaceted

functional analysis of the reported GC-associated genetic

variants, we conclude that PRKAA1 is a key gene for GC

development. Based on our results, PRKAA1, which is

involved in the PI3K-Alt-mTOR-signaling pathway, could be

a target gene for drug development associated with GC in the

future.
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