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Abstract

Single-cell RNA sequencing (scRNA-seq) is currently transforming our understanding of biology, as it is a powerful tool to
resolve cellular heterogeneity and molecular networks. Over 50 protocols have been developed in recent years and also data
processing and analyzes tools are evolving fast. Here, we review the basic principles underlying the different experimental
protocols and how to benchmark them. We also review and compare the essential methods to process scRNA-seq data
from mapping, filtering, normalization and batch corrections to basic differential expression analysis. We hope that this
helps to choose appropriate experimental and computational methods for the research question at hand.
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Introduction

Single-cell RNA sequencing (scRNA-seq) allows to measure
gene expression levels of single cells and is a transformative
technology that is rapidly deepening our understanding of biol-
ogy [1, 2]. It has been used to estimate stochasticity of transcrip-
tion within cells [3, 4], between groups of cells [5, 6] and to
discover new types and states of cells [7] in various tissues,
such as blood [8–10], spleen [11], brain [12–17], intestine [18] or
pancreas [19, 20]. Furthermore, scRNA-seq provides a powerful
tool to analyze developmental patterns by sampling cells dur-
ing a differentiation process and reconstruct one or more
‘pseudotime’ trajectories, i.e. order expression profiles along
putative differentiation states [21–23]. It also allows to measure
covariation of gene expression within cells and hence exploits
naturally occurring variation [5] as well as engineered

perturbations [24–26] to reconstruct molecular mechanisms and
networks. Obviously, the same approaches can also be applied
to disease states, and scRNA-seq has especially been used to
analyze the evolutionary patterns and resulting heterogeneity
generated in cancer [27–30]. These exciting possibilities also led
to an international initiative, the Human Cell Atlas, that sets
out to provide a comprehensive reference framework for
human cells [31, 32] and has the potential to transform cell biol-
ogy to a similar extent, as the Human Genome Project has
transformed genetics in the past decade.

So, while scRNA-seq is becoming an important tool for biol-
ogy and medicine, it is still a rapidly evolving technology, and
many experimental and computational challenges have not
been resolved yet. In this review, we will focus on the quantifi-
cation of gene expression levels, discussing experimental issues
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of cell isolation, library generation and benchmarking of proto-
cols and computational aspects of barcode assignment, quality
control, mapping, normalization and gene level quantification.
We will not discuss issues related to allele-specific expression
[3], alternative splicing [33] and multi-omic measurements
[34, 35] nor cover aspects related to more downstream analyses
such as clustering, cell-type identification or pseudotime ana-
lyses (for detailed reviews, see [36–39]).

Generating scRNA-seq libraries
Single-cell isolation

The first step for all scRNA-seq methods is the isolation of single
cells or single nuclei from a population of cells, i.e. from a whole
organism, an organ, a tissue or a marker-defined subpopulation
(Figure 1). Often the spatial location of cells within a given tissue is
critical for understanding their function and identity. Thus, some
protocols use laser capture microdissection [40, 41], patch-clamp
pipettes [42, 43] or photoactivatable Tags [44, 45] to isolate cells.
While this allows to connect the spatial and cellular context of
cells with their transcriptomes, these more specialized methods
lack throughput or require genetic manipulation. Other spatial
approaches like single-molecule fluorescent in situ hybridization
(FISH) and in situ sequencing (see [17] for a recent review) can ana-
lyze many cells but are not yet amenable to genome-wide expres-
sion quantification. Hence, most scRNA-seq protocols currently
start with a suspension of cells. Providing such a suspension is
relatively straightforward for cell lines or blood samples but can be
the major hurdle for other samples. An idealized isolation protocol
starts with an unbiased dissociation of cells, requires few cells as
input, is compatible with fixed/frozen cells or tissue, allows imag-
ing of cells and is flexible/cost-efficient in combining different
samples. Furthermore, it should have high throughput, generate
few ‘doublets’ (units of two or more cells), efficiently lyse cells and
inhibit RNAses before reverse transcription starts. Finally, the en-
tire procedure should minimally influence the expression profile
of cells. Depending on the cells, the research question and the per-
formance of the downstream library protocol associated with a cell
isolation, the choice of a protocol will depend on different factors
of which we discuss a few in the following:

First, every isolation procedure will impact gene expression to
some extent as has been shown, e.g., for the impact of enzymatic
treatment and fluorescence-activated cell sorting (FACS) sorting
[46, 47]. While these factors need to be controlled by the experi-
mental design, they can in some cases be prohibitively large. For
example, the isolation of neurons leads to a similar expression
pattern of ‘immediate early genes’ as their neuronal activation
in vivo, making it difficult to study the expression patterns of this
process [48]. A recent study has shown that such a response
occurs in many cells and tissues and is a major issue for

interpreting cellular subpopulations [47]. Additionally, the dis-
sociation procedure can lead to substantial biases in the isolated
cell types, especially for such complex, entangled tissues as the
adult brain [12]. We are not aware that this has been used so far,
but a possibility to quantify such biases would be to generate
also an undissociated bulk RNA-seq profile and use decompos-
ition methods [49] to estimate the frequency of the contained cell
types. Another promising solution is to isolate nuclei instead of
cells and sequence their RNA content [48, 50–54]. Although such
single-nucleus RNA-seq approaches result—as expected—in less
complementary DNA (cDNA) and an enrichment of unprocessed
RNAs, they carry qualitatively similar information as scRNA-seq
data [51, 52, 54]. While more systematic comparisons are needed
to quantify the loss of information when sequencing nuclei, the
advantage of a less biased isolation that is possible also from fro-
zen or slightly fixed brain samples could be decisive. In general,
the compatibility of an isolation protocol and the following
scRNA-seq library generation with cryopreservation [55] and/or
fixation procedures [56–58] will have a large impact on the prac-
ticability and on the experimental design of studies. An exciting
new approach is to fix cells and use them as the reaction cham-
ber for in situ reverse transcription and barcoding, also because
such ‘split-pool’ protocols could scale well to large cell numbers
[59, 60].

Assaying large numbers is also the most remarkable tech-
nical scRNA-seq development in recent years (see also [61]):
While the first scRNA-seq study used manual dissection of six
cells [62], the current record is a data set of 1.3 million brain
cells using the droplet-based 10x Genomics platform. This in-
crease in throughput has been achieved by automatization,
smaller reaction volumes [63] and by early barcoding, i.e. the
labeling of cDNA by a cell-specific DNA sequence that allows
multiplexing at an early stage [64, 65]. In this context of cell iso-
lation and throughput, it can be useful to distinguish among
well-based methods and droplet-based methods (Figure 1). For
well-based methods, single cells are deposited manually, by
FACS or within microfluidic chips into single wells that contain
oligos with different barcodes. In the latter, a cell suspension is
randomly distributed across small reaction chambers such as
nanodroplets [66–68], nanowells [69, 70] or microarrays [71] that
contain oligos with different barcodes. The ratio of reaction
chambers to cells determines the average numbers of cells per
barcode and hence the expected number of chambers with two
or more cells (‘doublets’). The empirical ‘technical doublet’ rate
of a method is often determined by mixing cells of two different
species [54, 59, 60, 66–69]. While a helpful quality control, it
might not reflect ‘biological doublet’ rates of investigated cells
that are, e.g., more prone to stick together. An alternative is to
use polymorphisms within a species to distinguish cells
from different individuals to determine doublet rates and also

Figure 1. Single-cell isolation. Almost all scRNA-seq methods require to dissociate cells to make a single-cell suspension. To what extend this suspension represents

the cellular composition and the expression patterns of the original population is a major challenge for many tissues. In addition, using frozen samples as starting ma-

terial is often not possible and can be overcome by making a suspension of nuclei instead of cells (not shown). A major difference among scRNA-seq methods is

whether single wells are distributed in a controlled fashion among wells, e.g. by FACS, or randomly distributed across containers e.g using microdroplets.
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to improve the experimental design of high-throughput meth-
ods by multiplexing different samples [72].

If the starting material of cells is limited, the capture effi-
ciency and the minimal required cell number are crucial further
considerations. While Drop-seq, inDrops and 10x Genomics
capture 2–4, 75 and 50% of the input cells, respectively, they
require>200 000, 2000–10 000 and>1000 cells as input, respect-
ively [68, 73]. So while these droplet-based methods are clearly
advantageous if many cells per sample need to be analyzed,
well-based methods have advantages in other circumstances.
This includes research questions where only few cells are avail-
able [62, 74], laser-microdissected material is processed [40, 41]
or cells are patched before isolation [42, 43]. Furthermore, if cells
from many samples are required, well-based methods provide
more control and flexibility on the number of cells that end up
being sequenced. Well-based methods are also more flexible in
terms of lysis buffers, full-length cDNA sequencing, addition of
spike-ins [External RNA Controls Consortium (ERCC)] and com-
bining scRNA-seq with DNA or chromatin analyses from the
same cells [34, 35]. Finally, well-based methods are compatible
with bulk RNA-seq providing a helpful comparison with
single-cell data, as it allows, e.g., to monitor the bias of the cell
isolation procedure, as mentioned above. So more flexible,
lower-throughput, well-based methods and efficient, high-
throughput, droplet-based methods will likely coexist to accom-
modate different needs. Moreover, new methods continue to be
developed at impressive speeds (Supplementary Table S1) [75].
For example, a recent preprint describes a setup that deposits
cells or nuclei by FACS or limiting dilution in thousands of
micro-wells and also allows imaging of cells [70], representing a
good compromise of flexibility and throughput. It will also be
exciting to see how the abovementioned methods that use fixed
cells and nuclei as reaction chambers [59, 60] compare with
other scRNA-seq methods in practice.

Generating cDNA

After cell isolation and lysis, cDNA is generated by reverse tran-
scription of mRNA and subsequent second-strand synthesis.
This cDNA gets amplified by polymerase chain recation (PCR) or
in vitro transcription and is then converted into sequencing
libraries (Figure 2). So far, >50 protocols and protocol variants,
as well as 6 commercial systems have been published
(Supplementary Table S1). Many of them have special features
like imaging, keeping spatial information, investigating DNA or
chromatin in parallel or isolating nuclei instead of cells. These
features can of course be of decisive importance for some re-
search questions, but in this review, we will focus on the
scRNA-seq part only. For all protocols, the crucial step is effi-
ciently converting RNA into cDNA, which depends on a combin-
ation of enzyme properties, buffer conditions, volume and RNA
degradation rates. Systematic optimizations have improved the
sensitivity for several protocols [75–78]. The most sensitive ones
reach conversion efficiencies of almost 50% [75] and can prob-
ably still be improved given the complex interaction of many
factors [75]. Increasing effective concentrations by low reaction
volumes [77, 79, 80] with a lower limit of 1 nl [73] is generally
helpful, although efficient cDNA generation can also be
achieved in microliter volumes [76, 78, 80, 81], especially in com-
bination with macromolecular crowding that has resulted in
one of the most sensitive protocols so far [75]. Most methods
use oligo-dT priming, but random priming [82], MALBAC pri-
mers [83] and RNA ligation for small RNAs [84] have also been
described. To generate the second strand, many methods tail

the 30 end of the first-strand cDNA to anneal a primer. In the
frequently used template switching method, the tailing is per-
formed by a reverse transcriptase from the Moloney murine
leukemia virus (MMLV), as these have an intrinsic terminal
transferase activity, which causes the addition of a few nucleo-
tides, mostly cytosines, at the 30 end of cDNA [85]. Tailing with a
terminal transferase has been used for the first scRNA-seq
protocol [62] and increasing its efficiency led recently to the sen-
sitive Quartz-seq2 protocol [78] and multiple annealing and dC-
tailing based Quantitative single-cell RNA-seq (MATQ-seq)
protocol [83]. After cDNA generation, its amplification is done
by almost all protocols either by PCR or by in vitro transcription
(Figure 2) leading to substantial noise and bias in the amplified
cDNA population [81, 86]. While the linear amplification by
in vitro transcription is probably less biased, it comes at the cost
of another reverse transcription step. For PCR amplification, the
noise increases with each cycle, and hence, more sensitive
methods needing less cycles show less noise [81, 86].
Additionally, there are differences in amplification bias among
polymerase enzymes [75]. Finally, the amplified cDNA is con-
verted into a sequenceable library, in many cases using the con-
venient Nextera transposase kit to yield Illumina compatible
libraries (Figure 3). To achieve high throughput as discussed
above, it is crucial to integrate cell-specific barcodes in the pri-
mers that are used for first-strand or second-strand synthesis.
Furthermore, incorporating random nucleotides—so-called
unique molecular identifiers (UMIs) [87]—in these primers
allows to computationally identify unique molecules and
remove the bias and noise created in the amplification of cDNA.

Figure 2. Two common workflows of generating scRNA-seq libraries. Many

methods use oligo-dT priming, template switching, pre-amplification by PCR

and tagmentation to generate libraries (left). The major other amplification

method amplifies cDNA linearly using in vitro transcription (right). Early barco-

des and UMIs can be introduced into the primers used for reverse transcription

or for second-strand synthesis, allowing to pool reactions from many cells and

to identify amplified molecules, respectively.
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Obviously, this requires that the barcode and UMI have to be
read together with the cDNA. As all protocols—except MATQ-
seq [83]—integrate barcode and UMI in the 50 or the 30 primer
and hence generate 50 or 30 tag-counting scRNA-seq libraries,
this sacrifices full-length cDNA sequencing (Figure 3).

Comparing scRNA-seq protocol performance

In addition to the issues related to the isolation of single cells
discussed above and the additional features of many protocols
(Supplementary Table S1), several aspects determine the tech-
nical performance of an scRNA-seq protocol. Ideally, a protocol
should (1) be sensitive to detect mRNA transcripts, (2) cover the
transcripts full length, (3) reflect expression levels accurately,
(4) measure expression levels precisely, (5) be high-throughput
compatible, (6) flexible to accommodate balanced experimental
designs and (7) be cost-efficient (Figure 4).

As we have argued before, cost-efficiency probably matters
most, as the majority of applications compare relative gene ex-
pression levels among cells to identify cell types, and regulatory
networks and costs are limiting the number of samples and ex-
periments that can be done [81]. Cost-efficiency can be defined
as the money needed to generate and sequence scRNA-seq
libraries from enough cells to reach a given level of power to de-
tect differentially expressed genes. This power is dependent on
a combination of sensitivity and precision across all genes at a
particular sequencing depth and—as no gold standard data
across all genes is available—needs to be estimated by simula-
tions [81, 88]. In addition to the costs per cell, sequencing costs
and hence the relationship of sequencing depth and power is a

crucial component of cost-efficiency [75, 81]. Sensitivity de-
pends largely on the efficiency of the reverse transcription and
second-strand synthesis reactions. Precision depends addition-
ally on the amount of noise and bias with which this cDNA gets
amplified and improves decisively by using UMIs [81]. While the
effect of amplification on precision is eliminated by UMIs, its ef-
fect on cost-efficiency can still be substantial as more bias, and
noise requires more sequencing to obtain the same power [75,
78, 81].

To quantitatively compare cost-efficiencies across protocols,
a shared reference is needed that allows to estimate sensitivity
and precision (i.e. the mean–dispersion relationship across
genes) from the same biological sample. Ideally, this would be
standardized cells that are centrally distributed, similar to refer-
ence RNAs that have been used to benchmark bulk transcription
methods [89]. Unfortunately, such a cellular reference does not
exist, but reliable freezing and thawing protocols might make
that possible in the future [55]. New methods often compare
themselves to existing ones using the same cell lines, but it is
not clear how strongly cells differ, e.g., in their RNA-content,
across cell lines, laboratories, conditions and passage number
[75]. In a recent comparative study, we have used the same batch
of cells to compare the cost-efficiency of six prominent scRNA-
seq protocols [81]. Using realistic simulations [88], we found that
UMIs are crucial to increase the power of scRNA-seq methods,
and that droplet-based methods like Drop-seq with a low cost
per cell and a low sensitivity can be as cost-efficient as well-
based methods with a higher cost per cell and a higher sensitiv-
ity. However, given the explosion of scRNA-seq protocols
(Supplementary Table S1), this approach is difficult to scale.

An alternative is to use ERCCs as a shared reference, a set of
92 standardized mRNAs with known concentrations [90] that
have been used in many scRNA-seq experiments. While ERCCs
can be used to efficiently compare RNA-seq protocols across
many published data sets [80], they have limitations. First, it is
unclear how well ERCCs mimic nascent mRNAs, as they are
shorter, have shorter poly-A tails, do not represent the relevant
concentration range and are purified [91, 92]. Indeed, some
protocols seem more sensitive for ERCCs than for real mRNA
and vice versa [81]. In particular, spiking-in ERCCs is costly for
droplet-based methods, therefore rarely done, and ERCC-only
runs might overestimate the sensitivity of these methods [81].
Based on data from Grün et al. [80] that measured ERCCs, nas-
cent transcripts by scRNA-seq and nine nascent transcripts by
single-molecule FISH, it has been calculated that ERCCs under-
estimate sensitivity 10-fold. However, this lower sensitivity of
ERCCs seems specific to this data set and might not be a general
phenomenon [81]. Finally, the limited number of ERCCs in the
relevant concentration range prevents reliable power and hence
cost-efficiency calculations. Hence, creating a larger and more
representative set of spike-ins would be a worthwhile commu-
nity effort, as has been discussed before [93]. Ideally, spike-ins
would consist of considerably more transcripts that are less
biased toward highly abundant species (the most abundant
ERCC transcript makes up �29% of all spike-in molecules).
Furthermore, spike-in RNAs should represent endogenous
mammalian mRNAs better in terms of poly-A length, GC con-
tent and average length [93]. This would improve comparisons
across data sets, methods and laboratories and—maybe even
more important—would improve read normalization across
cells as discussed below.

That said, ERCCs are currently still the best possibility to
compare a wide range of protocols across many laboratories, as
done by Svensson et al. [80] for 19 protocols. One measure to

Figure 3. Overview of commonly used scRNA-seq libraries. Shown are the length

and position of barcodes that distinguish cells [Barcode (BC)], UMIs, sequencing

primers, Illumina indices (i5, i7) and adapter sequences needed for PCR, tagmen-

tation and sequencing. Note that except for Smart-seq1/2, all methods contain

BCs and UMIs and preserve the strand information (star). As a consequence, only

Smart-seq1/2 among the shown libraries provides full-length information.
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compare protocols is the average correlation coefficient of the
known ERCC concentrations to their measured concentration
(reads or UMIs per million reads) across cells. Generally, proto-
cols show high correlation coefficients, indicating that read
counts reflect real transcript concentrations fairly accurately at
least across the wide concentration range represented by ERCCs
[80, 81]. However, this correlation coefficient is also affected by
the sensitivity and precision of the ERCC measurements and
hence difficult to interpret when comparing protocols. A better
interpretable measure of ERCCs is the sensitivity measured as
the 50% detection probability of an ERCC [80, 81]. Protocols differ
>100-fold and the most sensitive protocols have a median of
2.2–2.7 molecules detection probability [75, 80]. However, some
protocols are expensive per cell and hence cannot compete in
terms of cost-efficiency [81]. Of relevance, molecular crowding
Single-Cell RNA-barcoding and sequencing (mcSCRB-seq), a re-
cent protocol based on molecular crowding, is up to five times
cheaper and two times more powerful compared with the
previous version of single-Cell RNA-barcoding and sequencing
[81, 94], making it one of the most cost-efficient protocols cur-
rently available [75]. Other protocols might be similarly efficient

[59, 60, 69, 70, 78], but this is currently difficult to quantify given
the lack of comparable benchmarking data. One major factor
that is not integrated in the cost-efficiency laid out above is the
cost per sample and hence the flexibility of a method to accom-
modate different experimental designs. While high-throughput
droplet-based methods are likely to beat at some point plate-
based methods in terms of cost-efficiency per cell, droplet-
based systems are likely to remain relatively expensive per
sample. Hence, droplet-based protocols are and even more so
will be the method of choice when more than hundreds of cells
per sample with relatively shallow sequencing need to be
analyzed. However, plate-based methods are and probably will
remain for some time the method of choice when one to two
plates over many samples need to be analyzed at higher sensi-
tivity. In addition, the flexibility of plate-based methods in
terms of cell isolation, combination of RNA and DNA analyses
and spike-ins are likely to lead to a long-term coexistence of
several droplet-based and plate-based methods. Benchmarking
and quality control across methods and laboratories, ideally
with better spike-ins and/or shared cellular reference samples,
will be crucial to quantitatively make informed choices and

Figure 4. Comparing scRNA-seq protocol performance. Several aspects determine the technical performance of a scRNA-seq protocol: (1) sensitivity of protocols to detect

mRNA transcripts can be defined by the number of genes/transcripts (UMIs) per cell detected above stochastic noise. (2) Coverage of transcripts: with Smart-seq1/2,

ideally the full length of the transcript is covered. Conversely, early barcoding and UMI-methods enrich for the 30 and 50 prime end of the sequences. (3) Accuracy of

estimated expression levels reflect the correlation of known transcript concentrations and measured transcript expression. Notably, this correlation also depends on the

sensitivity and precision of a method. (4) Precision of estimated expression levels reflects the measurement error of expression in single cells and depends on sensitivity

and amplification noise. The latter is essentially abolished by UMIs. (5) The throughput of a method depends on the cell isolation method and on the costs per cell, which

are strongly reduced by the depicted early barcoding (6) Batch effects of library generation can be a decisive factor for interpreting results, and methods that allow a

balanced experimental design have a decisive advantage in this respect.
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compare data from different methods and laboratories. The
Human Cell Atlas initiative [31] will be an ideal platform and
community to develop and implement such standards for the
experimental aspects discussed above and the closely con-
nected computational aspects discussed in the next section.

Processing scRNA-seq data
Mapping reads

To quantify expression levels, a basic step is to map reads to the
genome and/or transcriptome to identify the genomic fragment
from which the cDNA was derived [95–98]). As single-cell and es-
pecially single-nucleus RNA-seq data contain relatively high frac-
tions of intronic and intergenic reads [52, 54, 99], these can be
wrongly mapped if the reference is only the transcriptome
(Figure 5A). Furthermore, mapping to the transcriptome in-
creases the multimapping problem [97]. Hence, mapping scRNA-
seq reads to the genome is preferable. As 10–15% of those reads
span splice junctions, the use of splice-aware genomic mappers
is necessary. Unfortunately, the default settings of many splice-
aware mappers perform worse than when parameters such as
the number of allowed mismatches or the spacing of paired

reads are optimized [95]. However, if the parameters are tuned
correctly, no large performance differences among splice-aware
mappers exist [95]. Also other studies found that different map-
ping strategies have a relatively small impact on detecting differ-
entially expressed genes [100, 101].

Given the amount of data produced by some scRNA-seq
experiments, speed is another relevant property of mappers. If
reads are used only for quantifying expression levels, a proper
mapping but no proper base-wise alignment is required. Hence,
the faster pseudoalignment methods have become popular
[102–105].

Overall, while mapping details might influence the sensitiv-
ity for some difficult genes, it is a rather robust processing step
as long as correctly tuned splice-aware mappers are used and
appears to have only little impact on differential expression
(DE) analysis.

What to count?

After mapping, reads need to be associated with genes or tran-
scripts (Figure 5B). For model organisms such as human and
mouse, there are several comprehensive resources of gene
annotation [106–109]. However, even for well-resolved gene

Figure 5. Processing scRNA-seq data. (A) The mapping strategy is a crucial step in scRNA-seq data processing that influences the end results. Reads are mapped to

reference genome (left) or transcriptome (right). Short reads generated from introns, exons and intergenic regions are colored gray, blue and orange, respectively.

As intronic and intergenic reads can be mapped wrongly (asterisk), mapping only to the transcriptome is not recommended. (B) Correctly assigning cDNA reads (gray)

with early barcodes (blue and magenta) and UMIs (other colors) to two genes requires to control for sequencing errors in barcodes and UMIs. (C) Filtering ‘bad’ cells and

doublets based on mapping reads and counting UMIs, respectively. Bad cells, such as Cell 3 in this example, have a low percentage of exonic reads (upper panel) and

a low correlation to other cells (not shown). Doublets have on average a transcript count that is twice the population average (lower panel).
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models, reads associated with the respective genes may still fall
outside known annotations [110]. In ESAT, Derr et al. imple-
mented an algorithm to extend gene boundaries based on the
observed read mappings, thus increasing the sensitivity.
Usually, reads that show a minimal overlap with an exon are
counted as associated with the respective gene or transcript.
Two popular implementations of such alignment to annotation
associations are featureCounts [111] and HTSeq [112]. Assigning
reads to genes is fairly straightforward, as different genes only
rarely overlap. However assigning reads to transcripts is much
more difficult, as different transcript isoforms of a gene heavily
overlap. Several algorithms have been developed to quantify
transcripts [102, 105, 113], but a correct transcript-level quantifi-
cation is challenging for full-length bulk RNA-seq [95, 114]. It is
certainly much more difficult for the much sparser scRNA-seq
data that is usually not full length. Hence, quantification at the
level of genes is the current standard for scRNA-seq data, and it
needs to be seen to which extend transcript-specific quantifica-
tion is possible and worthwhile for different scRNA-seq
methods.

As mentioned above, scRNA-seq data contain a considerable
amount of intronic reads, in particular when sequencing nuclei
that presumably contain a higher fraction of unspliced RNAs
[52, 54]. To our knowledge, zUMIs [115] is the first pipeline that
allows counting of intronic reads, and it is compatible with
most of the UMI-based RNA-seq protocols. Using this informa-
tion is probably helpful to increase the sensitivity and precision
of scRNA-seq quantification as seen by an increased resolution
of clusters when introns are used in addition to exons [115].

Dealing with amplification bias

The low amounts of starting material in scRNA-seq require
more amplification, leading to more ‘duplicated’ reads, i.e. reads
derived from the same original mRNA molecule. We do not rec-
ommend to identify such duplicates based on their mapping
position because many reads from different mRNA molecules
map to the same position because of high expression of a gene
and/or fragmentation bias [86]. Furthermore, pre-amplification,
i.e. amplification steps in scRNA-seq methods before the frag-
mentation of cDNA, does not lead to the same mapping position
of reads derived from the same mRNA molecule. Thus, methods
that allow removing PCR noise using UMIs are preferable, and
while bulk RNA-seq data profit little from their use [86], they
increase precision and power considerably for scRNA-seq data
[81, 86].

UMIs are 4–10 random nucleotides that are introduced with
the primer used for cDNA generation before any amplification
occurs (Figure 3, Supplementary Table S1). Hence, if multiple
reads with the same UMI sequence map to the same gene, they
are counted as one molecule (Figure 5B). However, sequencing
errors within UMIs can lead in principle to an overestimation of
different UMIs, and hard cutoffs on the distance among UMIs
would lead to an underestimation. UMI-tools [116] implements
network-based adjacency and directional adjacency methods
considering both edit distance and the relative counts of similar
UMIs to identify PCR/sequencing errors and group them to-
gether [116]. A much simpler and hence faster approach is to
apply a sequence quality threshold, keeping only high-quality
UMI sequences [66, 115, 117]. Macosko et al. suggest to apply a
hard cutoff for filtering, where reads with the barcode contain-
ing n (default n¼ 1) low-quality bases (default< 30 phred). As
PCR errors are relatively rare, this simple sequence quality filter
should suffice [115].

It is early days for the integration of UMIs into bioinformatic
pipelines; however, they are undoubtedly useful in denoising
scRNA-seq data and easing distributional fitting [81, 88].

Identifying cells

Early barcoding, i.e. the labeling of cDNA by a cell-specific DNA
sequence that allows multiplexing at an early stage, is decisive
for increasing the throughput of scRNA-seq (see above). Hence,
many scRNA-seq data need to be demultiplexed to identify cells
in addition to the multiplexing introduced by i5 and i7 indices
(Figure 3). For well-based methods, the number and sequence of
barcodes in the library are known and usually designed with a
maximal distance to each other to minimize the impact of
sequencing errors. Such barcodes are fairly straightforward to
demultiplex, and some methods provide a probabilistic assign-
ment considering sequence quality, allowing for an unbiased
and rigorous quality assessment [118, 119].

For droplet-based methods, the number and sequence of
barcodes are usually not known, making demultiplexing more
difficult, as the identification of one cell is no longer independ-
ent from the identification of other cells in the library.
Removing barcodes with low sequencing quality will reduce
spurious associations and is thus a recommended first step
[115]. Still, dependent on the method and sample, many barco-
des are linked to ‘background’ cDNA reads derived, e.g., from
cell-free mRNA. These can often easily be identified when rank-
ing barcodes, as they have a much lower average read count
than barcodes derived from intact cells [115, 116, 120].

Filtering cells and genes

The variance in quality among cells of scRNA-seq experiments
is much larger than the variance among samples in bulk RNA-
seq experiments and downstream analyses profit from remov-
ing ‘bad’ cells before normalization [121–125]. One possibility is
to identify low-quality ‘cells’ based on mapping statistics
(Figure 5C). This includes an overrepresentation of mitochon-
drial RNAs, ribosomal RNAs (>40%) [121], spike-ins, adapters
and/or reads that map outside of exons [121, 126–128]. Apart
from these rather ad hoc indicators of cell quality, an alternative
method is to calculate the pairwise correlation coefficient
among all cells, take the highest correlation coefficient for each
cell and remove those cells that fall below a threshold in the
distribution of these maximal pairwise correlation coefficients
[74]. This will remove real cells that occur only once in the data
set and are different to all other cells, but will also remove low-
quality ‘cells’, as these are different to real cells and to other
low-quality ‘cells’. A possibility to remove doublets—at least if
the population is rather homogenous—is to identify ‘cells’ that
have two or more times the number of transcripts (UMI counts)
than the population mode (Figure 5C).

In addition to filtering cells, filtering genes can facilitate the
subsequent normalization. As genes with no or low expression
contain little information anyway, they can readily be removed.
While some authors suggest to use sensible arbitrary cutoffs
[124], criteria for more rigorous filtering are difficult to general-
ize, as sporadic expression could reflect rare cell types or other
biologically meaningful information.

Normalization

Among all data processing steps, normalization has probably
the biggest impact on the analyses and interpretations of
scRNA-seq data [93, 128, 129]. Normalization is needed to
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correct for unwanted variation among cells caused, e.g., by
technical variation such as differences in sequencing depths,
cell lysis or cDNA synthesis.

The most straightforward normalization is dividing counts
for each gene in a cell by the total counts of that cell resulting in
counts or transcripts (UMIs) per million. However, this assumes
that the total amount of mRNA is the same among the analyzed
cells, respectively, that all genes are equally affected by the un-
wanted variation [130]. These assumptions are almost always
violated in single-cell data. First, RNA amounts vary consider-
ably from cell to cell [131]. Second, technical variance in com-
bination with biological variation (e.g. transcriptional bursting)
contributes to the high frequency of zeroes and strong intercel-
lular variability in scRNA-seq data [129, 131]. Therefore,
cell-wise size factors generally used to normalize bulk RNA-seq
samples such as TMM [132] or MR [133] are biased when applied
to scRNA-seq [93].

These issues have lead to development of normalization
methods that are geared toward single cells of which we will dis-
cuss scran [129], SCNorm [134], CENSUS [135] and BASiCS [136].
Scran solves the zero inflation issue by using counts from pooled
cells for normalization and subsequent deconvolution to obtain
cell-wise size factors. SCNorm applies a quantile regression
for bins of genes with similar mean expression to estimate
gene-wise size factors. Both appear to be able to handle the zero
inflation as well as large differences in mean expression
between groups. The third method, CENSUS estimates absolute
RNA amounts from relative expression measurements
(Transcripts per Million, Fragments Per Kilobase Million). The
underlying generative model derived its assumptions from pre-
vious experiments using ERCC spike-ins (e.g. [74, 137]). It is not
clear to what extent this is generalizable, but it is certainly not
advised to use CENSUS in combination with UMI-methods [135].
Finally, BASiCS focuses on estimating the ratio of biological sig-
nal to technical noise, estimating the technical noise from spike-
ins provided with the scRNA-seq data.

Because UMI-methods remove amplification noise, it is
possible to normalize by downsampling to the same number of
molecules [11, 138], but this makes the rather strong assump-
tion that all genes are affected equally by unwanted technical
variation.

In theory, spike-ins such as the widely used ERCCs [139, 140]
allow the decomposition of observed cell-to-cell variability into
technical noise and actual biological factors [91, 136, 141–144].
Furthermore, spike-ins are the only option to estimate differ-
ences in total mRNA content among cells. However, as
discussed above, ERCCs have a number of limitations [91, 92]
that should be addressed in future generations of spike-in
mRNAs and will likely improve normalization [93, 145].

Moreover, to accommodate also heterogeneous cell popula-
tions with strong expression differences, normalization can be
applied on clusters of cells with similar expression profiles
resulting in more reliable size factor estimates [93, 129, 146].
In combination with imputation [147–149], this might help to
alleviate the problem of zero inflation and its effects on normal-
ization [146].

Batch and latent variable effects

Batch effects, i.e. unwanted variation that is added to groups of
cells, are a common source of confounding variation and can
lower the power to detect biological signals as well as result in a
loss of type I error control [150, 151]. Thorough experimental de-
sign can alleviate this effect, but restrictions, e.g. in cell sorting

procedures, can render batch effects inevitable. Furthermore,
combining data sets from multiple experiments or labs also
introduces batch effects. This is an immediate challenge for
concerted effort like the Human Cell Atlas (Rozenblatt-Rosen
et al. 2017; Regev et al. 2017) and in general for combining data
from the increasing number of single-cell gene expression pro-
files. A possible approach is canonical correlation analysis to
identify shared gene correlation structures across data sets to
align cells for integrated comparative anlaysis [152], increasing
the sample size and therefore power to detect biological signals
in the inherent noisy and sparse scRNAseq data. More crucially,
this will enable the comparison of diverging single-cell expres-
sion profiles, e.g., across species or conditions.

As already established for bulk RNA-seq, batch effects can be
removed before further analysis or explicitly incorporated in
downstream models for DE testing if batch labels are known
[91, 153]. Recently, a method based on residual neural networks
has been developed for scRNA-seq data; this method is able to
remove systematic batch effects in an unsupervised label-free
manner [154].

Some types of unwanted variation can also originate from
biological heterogeneity, e.g. cell cycle stage and apoptosis, and
can be accounted for by latent variable models [128, 155, 156].
Latent variable models are also a possible alley for signal extrac-
tion from multiple assays [157].

Analysis of cell-to-cell variation

Once the data have been normalized and batch effects are
removed, the actual biological questions can be addressed. The
most straightforward scenario is DE analysis when cell identity
is a priori known, e.g., because of surface markers. In contrast, if
the cells originate from a complex mixture or tissue without
prior knowledge of cell-type composition, a first goal is to
classify the cells into discrete types or sort them along a devel-
opmental trajectory, as reviewed elsewhere [36–38]. The pecu-
liarities of scRNA-seq data, namely, dropouts, high variability
and outliers require special attention [158]. Still, established
methods for the detection of DE in bulk have also been applied
to scRNA-seq data [5], as the negative binomial distribution has
been found to fit the observed read count distribution for the
majority of expressed genes [88, 144]. However, the analysis
might be limited by filtering to conform to the tools require-
ments (e.g. minimum mean expression cutoff) and/or by violat-
ing model assumptions with an excess of zero counts. SCDE is
one of the first methods for scRNA-seq data addressing the zero
count inflation by applying a mixture model of the negative bi-
nomial and the Poisson distribution and robust estimation in
the presence of strong overdispersion by bootstrapping [158].
beta-poisson model for single-Cell RNA-seq. and discrete distri-
butional differential expression are other examples of mixture
modeling approaches where a beta-Poisson mixture is used to
capture the bimodality of scRNA-seq expression profiles [159,
160]. Instead of mixing distributions to match the observed ex-
pression patterns as closely as possible, there are also other
possibilities to cope with the excess of zeroes. For example
MAST incorporates a two-part generalized model by applying a
hurdle model. The first step is to fit the expression rate, i.e.
zeroes versus non-zero counts, as a logistic regression and con-
ditioning on the resulting probability, as a second step the
mean expression is modeled as a Gaussian distribution [124].

As with bulk RNA-seq data, nonparametric approaches cir-
cumvent the need for distributional specifications by, e.g., boot-
strapping, but restrict the analysis to pairwise comparisons
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[161, 162]. However, more than one variable is often of interest,
and additional variables, such as batch effects, need to be taken
into account. Hence, generalized linear models have a clear
advantage over nonparametric approaches as long as distribu-
tion assumptions are reasonable. Besides these modeling
approaches focusing on mean expression levels, major effort
has been invested in characterizing differences in cell-to-cell
expression variability. One possibility is to allow multiple
modes in the expression distribution of a given gene across
conditions [163]. By that, cell state transitions and oscillatory
expression patterns in otherwise homogeneous cell populations
can be detected.

As for bulk RNA-seq, other factors such as gene length and
GC-content can contribute to differences in gene expression
across samples. Nevertheless, these are assumed to be consist-
ent and constant across conditions in the methods presented
here or could have been specifically accounted for during
normalization [124, 164].

A first thorough evaluation covering >15 DE tools showed
that if gene filtering is applied before DE testing, the methods
developed for bulk RNA-seq performed just as well as methods
specifically developed for single cells [165]. Interestingly, meth-
ods using transformed data rather than raw counts, e.g. limma
[166], showed slightly higher concordance scores across data
sets, i.e. they can handle variable signal-to-noise relations. In
summary, this study as well as two others concluded that the
performance improvement of scRNA-seq DE-tools is only minor
[162, 167]. Nevertheless, a thorough assessment of scRNA-seq
analysis workflows is still lacking, especially a dedicated ana-
lysis of all steps involved—ranging from the choice of expres-
sion quantification, prefiltering, normalization, and DE
testing—with their relative contribution to the power to detect
DE. For these benchmarking efforts gold standard data sets—as
available for bulk methods [168, 169]—would be helpful. While
FACS-sorted cell populations have been used as gold standards
[170], assumptions, e.g., about homogeneity can be problematic.
Hence, proper simulation tools that are adequate for scRNA-seq
data are currently crucial for these efforts [88, 171].

Outlook

Clearly, scRNA-seq has become an established method in recent
years and is becoming an essential tool in many biomedical
areas, further urging to merge experimental and computational
expertise in individual labs. However, experimental and compu-
tational methods are still fast evolving and better standardized
reagents, and realistic simulation frameworks will be needed to
benchmark them sufficiently well. As research questions will
differ in weighing aspects of cell isolation, library generation
and cost-efficiency, several different methods will likely coexist
also in the longer term. This is even more true, as methods that
quantify gene expression together with other -omic measure-
ments, such as DNA sequence, epigenetic profiling or proteins,
will be relevant for many research questions. As all these types
of measurements require suspensions of cells or nuclei, crucial
spatial information is lacking. Single-molecule imaging and/or
in situ sequencing will be crucial tools to complement scRNA-
seq data and might eventually even replace it.

Key Points
• Experimental and computational methods for scRNA-

seq have blossomed in recent years, making it neces-
sary and difficult to pick appropriate methods

• Experimentally, representative cell isolation from tis-
sues is often the greatest challenge

• Computationally, adequate normalizations and correc-
tion of batch and latent variables are the most crucial
data processing steps

• More representative spike-ins and standardized cells
will be helpful to benchmark experimental methods
and improve normalization across and within
experiments

• Gold standard data sets and proper simulation tools
will be helpful to benchmark and improve computa-
tional methods.
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