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Abstract

Living organisms are limited in the range of values of ecological factors they can
explore. This defines where animals exist (or could exist) and forms an ecological
fingerprint that explains species’ distribution at global scales. Species’ ecological fin-
gerprints can be represented as a n-dimensional hypervolume —known as Hutchinson’s
niche hypervolume. This concept has enabled significant progress in our understand-
ing of species’ ecological needs and distributions across environmental gradients.
Nevertheless, the properties of Hutchinson’s n-dimensional hypervolumes can be chal-
lenging to calculate and several methods have been proposed to extract meaningful
measurements of hypervolumes’ properties. One key property of hypervolumes are
holes, which provide important information about the ecological occupancy of species.
However, to date, current methods rely on volume estimates and set operations to
identify holes in hypervolumes. Yet, this approach can be problematic because in
high-dimensions, the volume of region enclosing a hole tends to zero. We propose
the use of persistence homology (PH) to identify holes in hypervolumes and in eco-
logical datasets more generally. PH allows for the estimates of topological properties
in n-dimensional niche hypervolumes independent of the volume estimates of the
hypervolume. We demonstrate the application of PH to canonical datasets and to the
identification of holes in the hypervolumes of five vertebrate species with diverse
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niches, highlighting the potential benefits of this approach to gain further insights
into animal ecology. Overall, our approach enables the study of a yet unexplored
property of Hutchinson’s hypervolumes, and thus, have important implications to our
understanding of animal ecology.

Keywords Ecological specialisation - Grinnelian niche, diet - Climate change -
Persistence homology

Mathematics Subject Classification 92D40 - 92D50 - 92-08 - 92-10 - 55N31 - 62R40
1 Introduction

Species cannot live everywhere: they are limited by a range of environmental and biotic
factors, as well as the interactions within (interspecific) and between (intraspecific)
species (Soberén 2019; Whittaker et al. 1973; Wuenscher 1969). The range and combi-
nation of factors upon which species exist can be considered the species’ niche [but see
(Whittaker et al. 1973) for an extensive discussion on terminology]. Classic literature
has provided an abstraction to the concept of niche as an n-dimension hypervolume,
whereby each dimension of the ecological space is a factor (e.g., environmental or
biotic) with limits as to the values upon which the species can (‘fundamental niche’)
or does (‘realised niche’) exist (Whittaker et al. 1975; Hutchinson 1957). The concept
of niche hypervolume has had major implications for the development of research in
animal ecology, being used to understand ecological processes such as niche expan-
sion, biological invasion, and competition (see e.g., (Pulliam 2000; Carlson et al. 2021;
Pavlek and Mammola 2021)).

Niche hypervolumes may not necessarily be a solid hypervolume, but instead may
contain holes Fig. 1 (Blonder 2016). Holes in niche hypervolumes “[...]may indicate
unconsidered ecological or evolutionary processes” (Blonder 2016) and therefore, can
provide important biological insights into the ecology and evolution of a species.
In fact, a fundamental question that affects the core of the fields of ecology and
evolution is whether or not fitness landscapes can be holey, which could indicate envi-
ronmental regions that species cannot occupy due to physiological, morphological,
and behavioural constrains or environmental regions that species could occupy but
go extinct through e.g., competitive interactions with other species (Blonder 2016).
Recent studies have shown that niche hypervolumes constructed from morphometric
information — and the holes present in them — can be a useful approach to understand
processes such as local extinctions and/or lack of niche exploitation, providing insights
into morphometric diversity (Alves and Herndndez 2019). Therefore, measuring, quan-
tifying, and characterising holes in niche hypervolumes remains significant to our
broader understanding of species interactions and evolution. However, current meth-
ods to analyse niche hypervolume either lack an explicit approach to estimate holes (Lu
et al. 2021) or identify holes based on computation of volumes (Blonder et al. 2014,
2018) which has important limitations when dealing with high-dimensional datasets.

Here, we introduce an alternative method to approach the study of niche hyper-
volumes’ topology which is ideal for detecting holes in high-dimensional datasets
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Fig. 1 Schematic representation of a (holey) niche hypervolume in three dimensions. Each axis x, y, z
represents a metric, which can for example be values of an environmental gradient (e.g., gradient of temper-
ature) but also values of traits (e.g., morphometrics). Points represent the observed data (e.g., values for the
environmental variable in which the species has been observed), from which a niche hypervolume can be
constructed. The hole (purple region) represents an internal region of the hypervolume which is unoccupied
by the species

above and beyond dimensionality constrains. This method is based on the concept of
persistence homology (PH) from the field of topology (Carlsson 2008) (Edelsbrunner
and Harer 2008). PH belongs to the broader field of Topological Data Analysis (TDA)
which lies in the intersection of algebraic topology, data science and statistics (Chazal
and Michel 2021; Wasserman 2018) and has given great insights in many different
applications, from cosmology to neuroscience (Heydenreich et al. 2021; Hess 2020).
We first review the current method to find hole in hypervolumes as in (Blonder 2016).
Next, we describe the counter-intuitive behaviour of the volume of multi-dimensional
shapes with increasing dimensions, and introduce the fundamental concept of PH.
We then illustrate the use of PH in simulated dataset of canonical shapes (sphere and
torus) as well as data from five vertebrate species from a real-world dataset from
(Soberén 2019). PH can be an important allied for obtaining biological information
from hypervolumes, enabling future insights into animal ecology.

2 Finding holes in niche hypervolumes

The aim of this paper is not to provide definitions for the term, which has been exten-
sively debated in the literature (cf. (Popielarz and Neal 2007; Whittaker et al. 1973,
1975) for detailed discussion on the concept of niche). Here we consider niche as the
range of environmental and biotic factors, as well as the interactions within (interspe-
cific) and between (intraspecific) species, that determine species’ potential or realised
occupancy in the ecological space. Niche hypervolumes can have hole, and the cur-
rent method to find holes in niche hypervolumes was described recently (see (Blonder
2016; Blonder et al. 2014, 2018)) and can be summarised into three steps. Firstly,
the estimated probabilistic distribution of the point cloud of a species is obtained
by assuming a Gaussian kernel density around the empirical data from which, for a
given threshold, allows for the boundaries of the hypervolumes to be determined by
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filling empty spaces with random points. Secondly, the volume of a minimal convex
hull enclosing the estimated hypervolume is computed via Gaussian kernel density.
Thirdly, a set difference between the estimated and the convex hull hypervolumes is
done and the detection of holes is obtained (Blonder et al. 2014, 2018).

Importantly, as discussed in (Blonder et al. 2014, 2018), the function to find holes
in a niche hypervolume rarely detects holes that do not actually exist (Error type I).
On the other hand, however, the function can fail to detect holes that do exist (Error
type II). To mitigate Error type II, one approach is to increase the number of random
points per unit volume (i.e., the density of points), with a process which relies on
ad-hoc tuning parameters. However, an important drawback of this approach is that
existing holes in the dataset may be wrongly erased due to the higher point density.
More importantly, even in cases when this approach does work in low dimensions,
the approach cannot be sufficient to estimate holes in higher-dimensional datasets.
This is because the volume of a n-dimensional hole tends to zero as the number of
dimensions increase and thus, holes can become undetectable via this approach. But
why does the volume of n-dimensional holes are harder to detect as the number of
dimensions increase?

3 The (counter) intuition of holes in high-dimensions

When analysing higher dimension data, there are phenomena that arise which are
not before present in lower dimension. This is due to the well known fact that our
intuition about spaces, often based on two and three dimensions, do not correspond to
what happens in the higher dimension realm. This is often referred to as the “curse of
dimensionality”. One of the surprises of a n-dimensional object is that the relationship
between volume and dimension is not what one could expect based on ones’ experience
with 2 and 3 dimensional objects. Even the simplest examples of spaces — balls and
spheres — are already sources of interesting behaviours. For instance, let us recall a
few definitions:

e an n-dimensional ball of radius r is given by B,(r) = {x e R" : |x| < 1};
e an n-dimensional sphere (i.e., a holey ball) of radius r by S,(r) = {x € R+
|x| = 1}. Note that the space enclosed by an n-sphere is a (n + 1)-ball.

One counter-intuitive well-known fact is the volume of a n-dimensional ball as n
increases. The volume of a n-ball of radius 7 is given by the formula

" /2 h

Vp,(r) = ———,
B,() = TS
where I'(x) = fooo e~'t*~1dt is the Gamma function. The Gamma function is a gen-
eralization of the idea of factorial: for x positive integer, I'(x + 1) = x!. For a detailed
explanation of the volume formula and its history we recommend the interesting article
Hayes (2011). Hence, for a fixed radius 7, one can show via a direct computation that
Vg, (r) — 0 when n — oo. That is, the volume of an n-dimensional ball of radius
r tends to zero as n increases. Similar results hold true for other objects, including
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niche hypervolumes. This counter-intuitive behaviour of objects in high-dimensions
demonstrates why the current method to detect holes is limited: it depends on objects’
volumes. Indeed, a hole can be interpreted as a sphere and its enclosed volume is a ball.
Therefore, its volume becomes more and more irrelevant as the dimension increases.
How, then, can holes in niche hypervolumes be detected in high-dimensional data?

4 Topological spaces, simplicial complexes and persistence
homology

Holes are one of the topological properties of a n-dimensional hypervolume. As a
result, we can use similar concepts from the field of topology to find holes in hyper-
volumes. Here, we will introduce the concept of persistence homology (PH) for this
purpose. The aim is to provide an intuitive explanation of PH required to understand
how it is an useful tool to detect holes in niche hypervolumes. Rigorous proofs and
definitions lie outside the intended scope of this article and can be found elsehwere
(e.g. (Hatcher 2000) and (Ghrist 2014) as a good introduction of concepts of algebaric
topology and (Oudot 2015; Edelsbrunner and Harer 2008; Chazal and Michel 2021;
Otter et al. 2017) for a broad overview of the theory and applications of persistence
homology).

Before we can understand PH, we need to first build the knowledge foundation
with an overview of topological spaces, simplicial complexes, and homology. Topo-
logical spaces are a generalization of geometric objects. Examples are all around:
from Euclidean spaces, balls and spheres to fractals. We are interested on topological
spaces constructed out of building blocks called simplicial complexes. The building
blocks are called simplices. The 0-simplices are points, the 1-simplices are edges, the
2-simplices are triangles, the 3-simplices are tetrahedrons and so on. More precisely,
a n-simplex represent a convex hull of n 4 1 points in the Euclidean space R" that are
affinely independent, that is, are not all on the same n — 1 dimensional hyperplane.

0-simplex 1-simplex 2-simplex 3-simplex

A standard notation of a n-simplex is ¢ = [vp, ..., v,], since a simplex is determined
by its vertex set. Each simplex has what is called boundary faces, that are simplices
of dimension one below their own. For instance, a 1-simplex has two O-simplices
as boundary faces, a 2-simplex has three 1-simplices as boundary faces and, more
generally, a n-simplex has n 4 1 simplices of dimension n — 1 as boundary faces.
More precisely, a simplicial complex is built out of simplices by gluing them together
with only one rule to be satisfied: two simplices of any dimension can be glued along
a common boundary faces of the same dimension. This surprisingly naive definition
has lead to important developments in mathematics.

Certain topological characteristics do not depend on the object per se but rather
its behaviour under a homotopy deformation (e.g., affine transformations). Algebraic
Topology is a research area of Mathematics which deals with theories and methods
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on how to extract extracting algebraic and numerical information out of a space that
do not change under “homotopy deformations”, that is, are invariant up to homotopy.
That is why algebraic topology provides a diverse range of tools for qualitative data
analysis.

Homology is one of majors algebraic tools of Algebraic Topology. It can be defined
on any topological space, however, in the particular case of simplicial complexes,
homology becomes easier to compute using linear algebraic methods making it pos-
sible to be computed via computer programme. Simplicial complexes are often good
models for real life applications, as a higher dimensional analogue of a graph, and
any smooth manifold is homotopy equivalent to a simplicial complex (e.g., (Hatcher
2000, Corollary 4G.3)).

For our purpose, it is enough to think of homology as an algebraic gadget associated
to a simplicial complex that records the number of holes on each dimension. Note that
the number of holes is a homotopy invariant of a space, that is, no hole can be created
or erased via homotopical deformations. But, what is a n-dimensional hole? A 0-
dimensional hole is the number of connected components, a 1-dimensional hole is the
number of cycles/loops, that is, 1-spheres that do not bound a 2-dimensional ball, a 2-
dimensional hole is the number of holes enclosed by a surface, that is, a 2-dimensional
sphere that do not bound a 3-dimensional ball and so on.

We can now understand the concept of PH. Its pipeline can be summarised as
follows:

1. From data point cloud to topological space. One of the most natural ways to
construct a (filtered) simplicial complex out of a point cloud data is via the Vietoris-
Rips complex or filtration. Recall that our data is embedded in the Euclidean space
and it makes sense to talk about (Euclidean) distance. Let € be greater or equal than
0. The Vietoris-Rips complex for € is the simplicial complex whose k-simplices
are the k + 1 data point that are pairwise € distant. For very small € the associated
Vietoris-Rips complex is a discrete set of point ( the data point themselves) and for
very large € a n-simplex (where n is the number of data points). A way to visualize
it is the following: at each data point we draw a ball of diameter €, as depicted in
Fig. 2. There is a k-simplex, whenever k + 1 balls intersect. More precisely, denote
VR = (VR;); a sequence of Vietoris-Rips complexes associated to data set for an
increasing sequence of scale parameter ¢;, and we have a sequence of inclusion of
topological spaces

VRy— VR, — ... — VR, (1

atel.
“oey, @i oy

Fig.2 Steps of the Vietoris-Rips filtration

-,
®
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and topological features are created and destroyed as the scale parameter ¢;
increases.

Note that there is an underlying distance function inducing the filtration of Vietoris-
Rips complex. Consider our point cloud X = {x;}, that is, a discrete set of points
in R” for a given n. Then its distance function dx : R" — R is defined as

dx(y)=;rel§(||y—XI|, (2)

where || — || is the Euclidean distance and » is the dimension of the ambient space.
Then, the lower level sets of the distance function are given by

Le:= [ Be(). 3)

xeX

where B (x) isaball of radius € centered atx € X. One can show that the homology
features associated to each lower level set L. are the same as the ones associated
to the Vietoris-Rips filtered complex (for details (Oudot 2015; Wasserman 2018),
for example).

2. From a topological space to persistence diagram. The next step is to construct

a topological summary of the data with respect to the filtration associated to the
point cloud. From the filtered simplicial complex VR = (V R;);;, the homology
is computed for each level set of the Vietoris-Rips filtration according to scale
parameter €. The name persistence homology comes from the fact that we observe
which homology classes for each dimension, that is, holes for each dimension,
persists as the scale parameter ¢; increases.
One way of visualising the homological calculation is via the so-called persistence
diagrams. It is a two dimensional plot, where the x-axis represents the birth time
of a topological feature (e.g., hole) and the y-axis represents the death time. A
point in the persistence diagram represents a hole in the point cloud data. The point
referring to connected component that persists indefinitely is not depicted in the
diagram. Since, the death of each hole happens of course after its birth, all the
points in the persistence diagram lie above the diagonal lie. See Fig. 3.

A persistence diagram gives a global analysis of the data: higher points in persis-
tence diagrams correspond to more persistent features of the data and potentially more
informative, as they take longer time in the filtration to disappear, whereas points close
to the diagonal are not so relevant and often regarded as noise, since their lifespan is

Fig.3 Circle and its persistence PR A
diagram. Red squares: s ‘v 1.5 /
dimension zero holes, i.e.,

connected components; Blue
triangles: dimension one holes . S o5

00 05 10 15
Birth
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short. There is more that one can tell. In particular, it is possible to statistically deter-
mine how close a point should be to the diagonal to be considered "topological noise"
by constructing a confidence band in the persistence diagram, where points in the
persistence diagram inside the confidence bands are regarded as noise and points out-
side the confidence bands are significant topological features. Several approaches (cf.
(Oudot 2015, Chapters 4,5), (Fasy et al. 2014; Chazal et al. 2018; Chazal and Michel
2021)) were investigated for this, including subsampling, bootstrapping together with
a more robust filtration distance function and the bottleneck distance, which measures
the distance between two persistence diagrams D1 and D. For sake of completeness,
the bottleneck distance is defined as

Woo(D1, D2) = inf sup ||z — ¥ (2)]lco; “)

YV zeD;

where ||x — y|loo = max{|xp — yp|, |Xg — yal} with x = (xp, xa), y = (yp, yq) and y
ranges over all the bijections between the diagram D and the diagram D». Intuitively,
it is like overlaying the two diagrams and computing the shift necessary of the points
on the diagrams to make them both equal. It is a current research topic to develop the
framework for a topological inference from the data via statistical methods (Oudot
2015, Chapter 9). Moreover, it is worth mentioning that points with short lifespan may
may represent interesting local topological and geometrical structure (e.g.,(Adams and
Moy 2021)).

PH can tell us even more. Suppose we are dealing with a 100 dimensional data.
Typically, the data live on submanifolds of much lower dimension. In particular, this
is a common hypothesis used in manifold learning and dimension reduction. A result
in algebraic topology says that an object with nominal dimension 100, that is, is
projected on a 100-dimensional space, but it is only really, say 4-dimensional, then
all the homologies of degree greater than 4 will be zero. In terms of the persistence
diagrams, there will be only four sets of distinct points, and the remaining will be
empty. In other words, PH tells a lot about the dimension of the object created out of
the data as well as its inner structure.

5 Application to (real-world) datasets

We have now explained the theoretical foundation underpinning the concept of PH.
One question is: how is PH useful for estimating holes in ecological datasets? To answer
this question, we provide examples of the application of PH to a simulated canonical
dataset and a real-world dataset of five species of diverse niche from (Soberén 2019).

We start with the application of PH to two canonical shapes: a sphere and a forus
(Fig 4). We used the hypervolume package (Blonder et al. 2014) throughout our
demonstrations to highlight how PH can be calculated both from raw data as well
as from hypervolumes filled with random points, as those generated by the hypervol-
ume package. We used the TDAstats package (Wadhwa et al. 2018) to perform all
the computations involving PH. For details regarding computational costs, we refer to
(Somasundaram et al. 2020). All plots were made using the ggplot2 package (Wickham
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et al. 2016). Confidence bands for each dimension of the persistence diagrams was
calculated using the id_significant function built into the TDAstats package, which
performs a bootstrap on the point of same dimension in the diagram based on the
magnitude of their persistence in relation to the others. For the purpose of our simu-
lated examples, we used hollow shapes as they allowed us to demonstrate the presence
of 0, 1 and 2 dimensional holes. For instance, a torus has two 1-dimensional holes
(a vertical and a horizontal circle around the torus) and one 2-dimensional hole (the
cavity). We can see in Fig. 4 that both sphere and torus contain significant holes in 0, 1,
and 2 dimensions, highlighting the ability of PH to detect holes. Note that PH applied
to the point cloud (i.e., original dataset) correctly identifies one hole of dimension 2
for spheres and three holes of dimension 2 for torus. On the other hand, filling the

(a) (b) Torus
1.0 x3 x3
0.54
0.5 0.5
Q Q
< 0.0 0.0 x 0.0
-0.5
-0.5 -05
_107 T T T T T
-1.0-0.50.0 0.5 1.0
x1
(c) Point cloud (d) Point cloud
1.5 15 -
ey ey
7 10 T 1.0 }
a a
0.5 05 I
0.0 I 0.0
00 02 04 0.0 05 1.0 15
Birth Birth
(e) Hypervolume (f) Hypervolume
1.00 15
< 0.75 < 1.0
3 0.50 3
[a)] [m] 0.5
0.25
0.00 0.0
00 02 04 06 0.0 05 1.0
Birth Birth

Fig. 4 Application of PH to two canonical datasets (sphere [left] and torus [right]. (a-b) Point cloud for
the sphere (a) and torus (b). We first plotted the persistence diagrams for the point cloud of the sphere (c)
and torus (d). Next, we used the hypervolume package to generate a random point cloud hypervolume and
plotted the persistence diagram for the hypervolume of the sphere (e) and torus (f). The squares represent zero
dimensional holes (connected components), the triangles one dimensional holes and the circles represent two
dimensional holes. Note that coloured points indicate persistence features that are statistically significant
(below the confidence band) and may warrant investigation. Red squares: dimension zero; Blue triangles:
dimension one; Pink circles: dimension 2
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(a) D. marsupialis (b) T. mexicana (c) B. brevicauda (d) L. canadensis (e) A. americana
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Fig.5 Application of PH to obtain topological information of the hypervolume of five species. (a-e) Hyper-
volume of Didelphis marsupialis (a), Tamandua mexicana (b), Lynx canadensis (c), Blarina brevicauda
(d) and Antilocapra americana (e). Hypervolumes were generated using the hypervolume package. (h-j)
Persistence diagram plots of the hypervolumes of the five species. The squares represent zero dimensional
holes (connected components), the triangles one dimensional holes and the circles represent two dimen-
sional holes. Note that coloured points indicate persistence features that are statistically significant (below
the confidence band) and may warrant investigation.Red squares: dimension zero; Blue triangles: dimension
one; Pink circles: dimension 2

hypervolume with random points as done with the hypervolume package (Blonder
et al. 2014) increase the number of identified holes in dimension 2, and therefore
may be introducing new topological characteristics that are not originally present in
the dataset due to its Gaussian kernel approach and dependence on the bandwidth
estimate.

We then demonstrate the application of PH in a real-world ecological dataset of
five species of vertebrates, obtained from the dataset provided in (Soberén 2019). The
five species chosen for this particular demonstration were: Didelphis marsupialis,
Tamandua mexicana, Lynx canadensis, Blarina brevicauda and Antilocapra ameri-
cana. There was no particular reason for the choice of the species other than their
diverse behaviours and ecological habitats, and the choice itself does not influence the
demonstration. Figure 5 shows the hypervolumes and the persistence diagram of the
five species followed by their PH plots. With the exception of T. mexicana all other
animals appear to have holes of dimension 2 in their hypervolumes. At this stage,
it is not clear why some species have holes whiles others do not, and more studies
are needed to uncover the evolution of holes in niche hypervolumes (Blonder 2016).
Nonetheless, this raise questions such as: why is 7. mexicana the only species that
does not possess holes of dimension 2 (i.e., does not contain enclosed 3D holes)?
What do the holes in the remaining species represent in terms of their ecological role
and the interaction between species in similar habitats? And how does climate change
influence the presence/absence of holes in hypervolumes and what are the implica-
tions of this to the distribution of species in their environmental gradient? These and
other questions will drive future (comparative) ecological research and can open up
new ways in which properties of Hutchinson’s niche hypervolume can be estimated
for insights into animal ecology.
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6 Conclusion

We introduced an alternative method — persistence homology (PH) — to study an
unexplored topological feature of hypervolumes: holes. PH is supported by a solid
theoretical and computational framework suitable for higher dimensional data, mak-
ing it a valuable tool for further investigation of properties in Hutchinsons’ niche
hypervolume. We demonstrated that PH provides a detailed summary of topological
features of niche hypervolume both in theoretical and empirical datasets (Fig. 5). With
the increasing dimensionality of ecological data, the method proposed here can pave
the way for unprecedented insights into animal ecology. Previous empirical studies
have identified holes in morphometric niche hypervolumes in species of dung beetle
communities (Alves and Herndndez 2019). These holes can be thought of as regions in
the morphometric space that remain unoccupied or that have emerged due ecological
interactions with species with overlapping niches. These holes in niche hypervolumes
can be a consequence on long evolutionary histories and thus, can be an integral part
of fitness landscapes (Blonder 2016). It is therefore likely that the holes found in our
empirical dataset exist due to similar processes occurring in the communities where
the data was collected. However, we still do not know enough about the holes in
niche hypervolumes to unravel the specific underlying ecological and evolutionary
processes that led to their appearance in the above dataset. Future comparative studies
on niche hypervolumes will enable us to gain better understanding of when and how
holes evolve, their properties, and the ecological processes that led to their emergence,
maintenance, and possibly, disappearance over evolutionary timespan.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s00285-022-01763-x.

Acknowledgements The author Pedro Conceigdo acknowledges support from EPSRC, grant EP/P025072/
- “Topological Analysis of Neural Systems”, and from Ecole Polytechnique Federale de Lausanne via a
collaboration agreement with the University of Aberdeen.

Author Contributions Both authors equally contributed to the conceptualisation of the approach. PC for-
malised the mathematical foundations of the approach and wrote and revised the manuscript and figures.
JM formalised the ecological significance of the approach, wrote and revised the manuscript and coded the
script for the analysis. Both authors approved the final version for submission to the journal.

Declarations

Competing interests The authors have no competing interests to declare.

Data and code Raw data is available in (Sober6én 2019). R code and simulated datasets will be available
upon acceptance of the manuscript.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


https://doi.org/10.1007/s00285-022-01763-x
https://doi.org/10.1007/s00285-022-01763-x
http://creativecommons.org/licenses/by/4.0/

58 Page120f13 P. Conceicao, J. Morimoto

References

Adams H, Moy M (2021) Topology Applied to Machine Learning: From Global to Local. Front Artif
Intell 4:54. ISSN: 2624-8212. https://doi.org/10.3389/frai.2021.668302. https://www.frontiersin.org/
article/10.3389/frai.2021.668302

Alves VM, Hernandez MIM (2019) Local extinctions may be evidenced by the holes of the morphometric
hypervolume in dung beetle communities. Austral Ecol 44(5):827-837

Blonder B (2016) Do Hypervolumes Have Holes? Am Nat 187(4):E93-E105. https://doi.org/10.1086/
685444 (PMID: 27028084)

Blonder B, Lamanna C et al (2014) The n-dimensional hypervolume. Glob Ecol Biogeogr 23(5):595-609.
https://doi.org/10.1111/geb.12146. https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12146
Blonder B, Morrow CB et al (2018) New approaches for delineating n-dimensional hypervolumes. Methods
Ecol Evol 9(2):305-319. https://doi.org/10.1111/2041-210X.12865. https://besjournals.onlinelibrary.

wiley.com/doi/abs/10.1111/2041-210X.12865

Carlson BS et al (2021) Individual environmental niches in mobile organisms. Nat Commun 12(1):1-10

Carlsson G (2008) Topology and Data. Tech. rep

Chazal F, Michel B (2021) An Introduction to Topological Data Analysis: Fundamental and Practical
Aspects for Data Scientists. Front Artif Intell 4:108. ISSN: 2624-8212. https://doi.org/10.3389/frai.
2021.667963. https://www.frontiersin.org/article/10.3389/frai.2021.667963

Chazal F et al (2018) Robust Topological Inference: Distance To a Measure and Kernel Distance. J Mach
Learn Res 18(159):1-40. http://jmlr.org/papers/v18/15-484.html

Edelsbrunner H, Harer J (2008) Persistent Homology — a Survey

Fasy BT et al (2014) Confidence sets for persistence diagrams. Ann Stat 42(6):2301-2339. https://doi.org/
10.1214/14-A0S 1252

Ghrist R (2014) Elementary Applied Topology. CreateSpace Independent Publishing Platform. ISBN:
9781502880857. https://books.google.de/books?id=Z5ATogEACAAJ

Hatcher A (2000) Algebraic topology. Cambridge Univ. Press, Cambridge. https://cds.cern.ch/record/
478079

Hayes B (2011) An adventure in the Nth Dimension. Am Sci 99(6):442-446. https://doi.org/10.1511/2011.
93.442. https://www.americanscientist.org/article/an-adventure- in-the-nth-dimension

Hess K (2020) Topological adventures in neuroscience. In: Topological Data Analysis. Springer, 277-305

Heydenreich S, Briick B, Harnois-Déraps J (2021) Persistent homology in cosmic shear: constraining
parameters with topological data analysis. Astron & Astrophys 648:A74

Hutchinson GE (1957) Population studies-animal ecology and demography-concluding remarks. Cold
Spring Harbor symposia on quantitative biology, vol 22. CSH Press, Bungtown Road, Cold Spring,
pp 415-427

Lu M, Winner K, Jetz W (2021) A unifying framework for quantifying and comparing n-dimensional
hypervolumes. Methods Ecol Evol 12(10):1953-1968

Otter N et al (2017) A roadmap for the computation of persistent homology. EPJ Data Sci 6:1. https://doi.
org/10.1140/epjds/s13688-017-0109-5 ISSN: 2193-1127

Oudot SY (2015) Persistence Theory: From Quiver Representations to Data Analysis. Mathematical Surveys
and Monographs 209. American Mathematical Society, p. 218. https://hal.inria.fr/hal-01247501

Pavlek M, Mammola S (2021) Niche-based processes explaining the distributions of closely related sub-
terranean spiders. J Biogeogr 48(1):118-133

Popielarz PA, Neal ZP (2007) The Niche as a Theoretical Tool. Ann Rev Sociol 33(1):65-84. https://doi.
org/10.1146/annurev.soc.32.061604.123118

Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3(4):349-361

Soberén J (2019) A Grinnellian Niche Perspective on Species-Area Relationships. Am Nat 194(6):760-775.
https://doi.org/10.1086/705898 (PMID: 31738102)

Somasundaram EV et al (2020) The R Journal: Benchmarking R packages for Calculation of Persistent
Homology. The R Journal 13(1):184—193. https://doi.org/10.32614/RJ-2021-033 (ISSN: 2073-4859)

Wadhwa RR et al (2018) TDAstats: R pipeline for computing persistent homology in topological data
analysis. J Open Source Softw 3(28):860. https://doi.org/10.21105/joss.00860

Wasserman L (2018) Topological Data Analysis. Ann Rev Stat Appl 5(1):501-532. https://doi.org/10.1146/
annurev-statistics-031017-100045

Whittaker RH, Levin SA, Root RB (1973) Niche, habitat, and ecotope. Am Nat 107(955):321-338

@ Springer


https://doi.org/10.3389/frai.2021.668302
https://www.frontiersin.org/article/10.3389/frai.2021.668302
https://www.frontiersin.org/article/10.3389/frai.2021.668302
https://doi.org/10.1086/685444
https://doi.org/10.1086/685444
https://doi.org/10.1111/geb.12146
https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12146
https://doi.org/10.1111/2041-210X.12865
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12865
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12865
https://doi.org/10.3389/frai.2021.667963
https://doi.org/10.3389/frai.2021.667963
https://www.frontiersin.org/article/10.3389/frai.2021.667963
http://jmlr.org/papers/v18/15-484.html
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1214/14-AOS1252
https://books.google.de/books?id=Z5ATogEACAAJ
https://cds.cern.ch/record/478079
https://cds.cern.ch/record/478079
https://doi.org/10.1511/2011.93.442
https://doi.org/10.1511/2011.93.442
https://www.americanscientist.org/article/an-adventure-in-the-nth-dimension
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://hal.inria.fr/hal-01247501
https://doi.org/10.1146/annurev.soc.32.061604.123118
https://doi.org/10.1146/annurev.soc.32.061604.123118
https://doi.org/10.1086/705898
https://doi.org/10.32614/RJ-2021-033
https://doi.org/10.21105/joss.00860
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1146/annurev-statistics-031017-100045

Holes in hypervolumes Page130f13 58

Whittaker RH, Levin SA, Root RB (1975) On the reasons for distinguishing “niche, habitat, and ecotope”.
Am Nat 109(968):479-482

Wickham H, Chang W, Wickham MH (2016) Package ‘gg plot2’. In: Create Elegant Data Visualisations
Using the Grammar of Graphics. Version 2.1, pp. 1-189

Wauenscher JE (1969) Niche specification and competition modeling. J Theor Biol 25(3):436-443

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	`Holey' niche! finding holes in niche hypervolumes using persistence homology
	Abstract
	1 Introduction
	2 Finding holes in niche hypervolumes
	3 The (counter) intuition of holes in high-dimensions
	4 Topological spaces, simplicial complexes and persistence homology
	5 Application to (real-world) datasets
	6 Conclusion
	Acknowledgements
	References




