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Long QT syndrome type 1 (LQT1) is a subtype of a congenital cardiac syndrome caused by mutation in the
KCNQ1 gene, which encodes the α-subunit of the slow component of delayed rectifier Kþ current (IKs)
channel. Arrhythmias in LQT1 are characterized by prolongation of the QT interval on ECG, as well as the
occurrence of life-threatening cardiac events, frequently triggered by adrenergic stimuli (e.g., physical or
emotional stress). During the past two decades, much advancement has been made in understanding the
molecular pathogenesis underlying LQT1. Uncovering the genotype-phenotype correlations in LQT1 is of
clinical importance to better understand the gene-specific differences that may influence the propensity
for developing life-threatening arrhythmias under specific conditions. Elucidation of these mechanisms
will also help to improve the diagnosis and management of this cardiac disorder based on gene-specific
considerations. This review describes the current medical consensus and recent developments regarding
the molecular pathogenesis of LQT1 and provides a novel insight into the adrenergic regulation of this
disease.
& 2016 Japanese Heart Rhythm Society. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Long QT syndrome (LQTS) is a potentially life-threatening
arrhythmia characterized by delayed myocardial repolarization
that produces QT prolongation on ECG, and an increased risk of
torsades de pointes (TdP)-triggered cardiac events, such as syn-
cope, cardiac arrest, and sudden cardiac death (SCD) [1,2]. This
blished by Elsevier B.V. This is an
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syndrome, with an estimated incidence of 1/2000 and a mortality
rate of 21% for symptomatic patients not receiving therapy within
one year from the first syncope event [1,3], includes congenital
and acquired (e.g., drug-induced) conditions.

Molecular genetic studies have revealed that congenital LQTS is
linked to mutations in genes encoding subunits of cardiac ion
channels or adapter proteins that modify the channel functions.
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There are two types of inherited syndromes: autosomal dominant
Romano-Ward syndrome [4] and autosomal recessive Jervell and
Lange-Nielsen syndrome [5,6] that is usually associated with
deafness [7]. In 1991, the Keating group reported for the first time
that a single genetic locus on chromosome 11p15.5 was associated
with LQTS within a single family [8]. Based on subsequent pio-
neering work [9–11], at least 15 types of genes have been found to
be linked to 15 different types of LQTS (LQT1-15) to date.

In 1996, Wang et al. confirmed that type 1 congenital LQTS
(LQT1) is caused by mutations in the KCNQ1 (KvLQT1) gene, which
is highly expressed in the heart and encodes a protein with
structural features of a voltage-gated potassium channel [11]. Of
the fifteen LQTS types, LQT1 is the most common and present in
approximately 40–50% of all genotyped patients [12,13]. The
KCNQ1 gene encodes the α-subunit of the slow component of
delayed rectifier Kþ current (IKs) channel (Kv7.1). This protein,
together with the β-subunit KCNE1 and an adapter protein Yotiao,
forms a macromolecular complex (i.e., the functional potassium
ion channel IKs) [14,15]. The channel carries the major outward
repolarizing Kþ current during the plateau phase of cardiac action
potentials (APs) and plays a critical role in maintaining repolar-
ization reserve in the heart [16,17]. Mutations in KCNQ1 can cause
dysfunction in the IKs channel, such as a delay in channel opening
or a reduction in the duration for which it is open [8,16,18,19]. This
results in a decrease in repolarizing Kþ current or a loss-of-
function during phase 3 of the cardiac AP, which eventually cau-
ses QT prolongation and serious arrhythmias.

LQT1 can have numerous clinical manifestations, ranging from
no symptoms to sudden cardiac death, which reflects the hetero-
geneity in channel dysfunction. Mutation type, location, and even
a patient's ethnic background, age, and gender are critical factors
that affect the pathophysiology of the disease [1]. A variety of
studies have shown that LQT1 is more frequently triggered by
adrenergic stimuli (e.g., physical exertion or emotional stress)
compared with other forms of LQTS, particularly by diving and
swimming [20–22]. Under normal physiological conditions, sym-
pathetic activation promotes IKs, which shortens ventricular
repolarization against the activation of L-type Ca2þ current and
thereby protects against Ca2þ-related arrhythmogenicity [17].
When IKs is defective because of a KCNQ1 mutation, the ventricular
Fig. 1. Predicted topology of the IKs channel, which is formed by KCNQ1 and KCNE1 subun
membrane-spanning segments (S1–S6) including a pore loop and a voltage-sensing dom
domain. The KCNE1 subunit contains a single α-helical transmembrane domain with an
repolarization or QT interval fails to shorten appropriately, thus
creating a highly arrhythmogenic condition [1].
2. Molecular basis of LQT1

The LQT1-related KCNQ1 gene is 404 kb long and located on
chromosome 11p15.5. This gene codes for a 75-kDa protein con-
taining 676 amino acids [11,23] and is mainly expressed in the
heart, kidneys, small intestine, pancreas, prostate, and other non-
excitable epithelial tissues [24]. It belongs to the Kv7 subfamily of
voltage-gated Kþ channels (Kv) and shares a tetrameric archi-
tecture with all Kv channels. Each subunit contains six membrane-
spanning segments (S1–S6 involving amino acid residues 122–
348) connected by alternating intra- and extra-cellular loops, as
well as a pore loop (amino acid residues 300–320) located
between segments S5 and S6, with a cytosolic amino terminus
(NH2 terminus, residues 1–121) and a long cytosolic carboxyl
terminus (COOH terminus, residues 349 to 676) (Fig. 1) [19,25,26].
The four subunits form a symmetrical alignment for the channel
molecule together with KCNE1 (protein containing 129 amino
acids with a single transmembrane segment) and Yotiao proteins,
and construct a specialized pathway that allows for the conduction
of potassium ions through water-filled pores located in the center
of the complex. S1-S4 segments of the potassium channel form a
voltage-sensing domain (VSD).

The S4 helix of KCNQ1 consists of a peculiar sequence of
positively charged amino acids forming a region that is involved in
sensing the membrane voltage and controlling the open prob-
ability of the channel [27]. In the resting state of the channel, these
positively charged side chains are expected to be closer to the
intracellular side of the membrane. Upon depolarization, effective
charge motion within the membrane electric field toward the
extracellular side of the membrane is accomplished through a
series of conformational changes in the VSDs that lead to opening
of the channel [28]. The pore region is composed of two trans-
membrane segments (S5 and S6) joined together by a linker
(including a pore loop) that contains the conserved amino acids of
the selectivity filter (residues 312–317) and affects the channel
current amplitude, selectivity among ions, and channel blockade
[29,30]. KCNQ1 possesses a large COOH terminus that is important
its and an adapter protein Yotiao. Each KCNQ1 subunit contains a NH2 terminus, six
ain (VSD) (S1-S4), two cytoplasmic loops (S2–S3 and S4–S5), and a COOH terminus
extracellular NH2 terminus and a cytoplasmic COOH terminus domain.
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for channel gating, assembly, and trafficking [19,31]. The COOH
terminus is comprised of four amphipathic α-helices, coiled-coils,
and clusters of basic amino acids. A and B proximal helices form
sites for calmodulin (CaM) binding, whereas the distal coiled-coil
helix C and helix D are responsible for tetramerization [19,31].
Helix C interacts with the KCNE1 distal COOH terminus and is
thought to be a crucial region for modulation by phosphatidyli-
nositol-4,5-bisphosphate (PIP2), which acts to stabilize the open
state of the channel [32]. A domain near the COOH terminus
(residues 589–620) of KCNQ1 is responsible for subunit assembly
specificity, and deletion of a part of this domain leads to impaired
assembly of the channel complexes, followed by mistrafficking
[33]. In the COOH terminus tail, a leucine zipper motif (residues
588–616) has been identified as the unique site through which A-
kinase anchoring protein 9 (AKAP9, or Yotiao) targets protein
kinase A (PKA) and protein phosphatase 1 (PP1) to the KCNQ1
complex [15]. Although the NH2 terminus is relatively short, it
contains an important residue (S27) that is critical for mediating
the phosphorylation of KCNQ1 [15].

To date, over 250 mutations in KCNQ1 have been found to be
linked to LQT1 [34] and new LQT1 causing mutations continue to
be identified. The vast majority of KCNQ1 mutations are single
nucleotide substitutions (missense) or small insertion/deletions
that localize to the S1-S6 transmembrane domains [5,18,35,36].
One study assessing 600 LQT1 patients found that approximately
66.2% of KCNQ1 mutations (75.3% of mutation carriers) were
identified in the membrane-spanning segments (approximately 1/
3 in the pore loop or adjacent transmembrane regions), 31.2%
(24.3% of mutation carriers) in the C terminus, and only 2.6% (0.4%
of mutation carriers) in the N terminus [18]. Importantly, these
data are consistent with the results from another clinical study
[25]. Mutations in the transmembrane, linker, and pore region of
KCNQ1 are usually defined as high-probability disease-causing
mutations that tend to cause severe cardiac events in patients at
younger ages compared to mutations in the COOH terminal region
[37–41].
3. Genotype-phenotype correlations

Existing evidence to date indicates that genetic background
may influence the severity of the disease. The mutation type,
specific location, and degree of dysfunction play a critical role in
the clinical course of LQT1. Moss et al. reported that LQT1 patients
with transmembrane mutations and dominant-negative ion cur-
rent effects had a longer corrected QT (QTc) interval and a higher
frequency of cardiac events than individuals with mutations in
other regions or mutations resulting in haploinsufficiency, and
these genetic risks were independent of traditional clinical risk
factors and drug therapy [18]. More recently, a retrospective study
assessing genotype-phenotype correlations in 110 infant mutation
carriers from LQT1 families also reported that carriers of the
dominant negative Y111C mutation presented with a tendency
towards more severe heart rate reduction and postnatal QTc pro-
longation than carriers of the R518X nonsense mutation [42].

Shimuzu et al. studied 95 patients carrying 27 KCNQ1 muta-
tions (19 in transmembrane regions and eight in the COOH ter-
minus) [39]. They found that patients with transmembrane
mutations had longer QTc, higher T-wave alterations, and more
frequent LQTS-related cardiac events (including syncope, cardiac
arrest, or sudden cardiac death) than those with C-terminal
mutations, though the frequency of TdP was not different
between the two study groups. In addition, most of the first car-
diac events occurred before the age of 15 years in the LQT1
patients (particularly in males) with transmembrane mutations,
whereas only half of the LQT1 patients with C-terminal mutations
suffered their first cardiac events before the age of 15.

Other retrospective data also indicate that missense
cytoplasmic-loop mutations [43], pore mutations [36], and some
specific point mutations, such as A341V, in KCNQ1 [44,45] are
associated with a longer QT interval and result in an increased risk
of cardiac events and severe clinical phenotypes. In contrast to
these studies, however, a study assessing 294 LQT1 patients with
KCNQ1 gene mutations demonstrated that there were no sig-
nificant differences in clinical presentation, ECG parameters, and
cardiac events among LQT1 patients by 40 years of age with KCNQ1
mutations in different locations [46]. One possible explanation for
this discrepancy is that the criteria for KCNQ1 mutation type and
position were different between their studies. LQT1 patients with
transmembrane mutations (including those in the C-loop) were
also found to be more sensitive to sympathetic stimulation and
achieved a pronounced benefit from treatment with β-blockers
compared to the patients with C-terminal mutations [43,47].
Therefore, the avoidance of strenuous exercise, in particular
swimming, diving, or competitive sports, is recommended for
LQT1 patients, especially younger males.

Silent mutations and compound mutations are also important
genetic factors that affect the phenotype of LQT1. Approximately
25–36% of genetically positive patients with LQT1 may have a
normal QTc range (defined aso440 ms) without any clinical
symptoms at rest [47,48]. Although these silent mutation-positive
patients have a significantly lower risk of life-threatening cardiac
events compared to those with phenotypic patterns, it should not
be assumed that such a phenotype-negative individual who has a
normal QTc is not affected by the cardiac disease. A number of risk
assessments have confirmed that lethal arrhythmias can occur in
these apparently healthy silent mutation carriers without any
premonitory sign, especially during emotional stress or physical
exertion [49–51]. There is also growing evidence that compound
mutation carriers have a more severe cardiac phenotype compared
with individuals carrying a single mutation [35,42,52–54]. Com-
pound mutations were found to be associated with longer QTc,
more frequent cardiac events, and earlier onset of cardiac events.
Therefore, the management of patients with such mutations
should be tailored to their increased risk for arrhythmias [55].
4. Genotype-IKs correlation

In 1996, Sanguinetti et al. and Barhanin et al. independently
found that, when coassembled with the accessory subunit KCNE1,
the KCNQ1 and KCNE1 complex could form a channel that very
closely exhibited conductive and kinetic properties similar to that
of cardiac IKs [14,56]. Kass and coworkers subsequently found that
the targeting protein Yotiao, as a component of the macro-
molecular complex, is required to reconstitute cAMP-dependent
regulation of IKs and provides a mechanistic link between the
sympathetic nervous system and modulation of the cardiac action
potential duration (APD) [15]. The KCNQ1 and KCNE1 subunits
coassemble with Yotiao adapter into the cardiac IKs, and mutation
in KCNQ1, KCNE1, or AKAP9 (Yotiao) can cause functional reduction
of IKs channels, leading to life-threatening cardiac arrhythmias
corresponding to LQT1, LQT5, and LQT11, respectively.

Previous studies indicate that two distinct biophysical
mechanisms mediate the reduced IKs current in patients with
KCNQ1 mutations: (1) coassembly or trafficking defects in which
mutant subunits are not transported properly to the cell mem-
brane and fail to incorporate into the tetrameric channel, with the
net effect being a less than 50% reduction in channel function
(haploinsufficiency); and (2) formation of defective channels
involving mutant subunits with the altered channel protein



Fig. 2. Twelve-lead electrocardiograms (left: resting, and right: after exercise) in a 7-year-old boy carrying a KCNQ1-G269S mutation. QTc¼corrected QT interval.
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transported to the cell membrane, resulting in a dysfunctional
channel having a greater than 50% reduction in channel current
(dominant-negative effect) [18]. Recently, Mousavi et al. evaluated
the functional properties of eight KCNQ1 mutations that were
identified in the S4 and S4-S5 linker (D242N, R243C, L250H), pore
loop (G306V, D317N), and COOH terminus (L374fsþ43X, N586D,
L619M), respectively [7]. The results showed that D317N and
L374fsþ43X mutations exhibited a strong dominant-negative
effect on KCNQ1-WT channel functions, which is consistent with
previous findings for KCNQ1 mutations located in the NH2 termi-
nus (Y111C), S2–S3 linker (R174C, A177P, Ala178fs/105, R190Q), S3-
S4 (S225L), S4 domain (R243H), S5 domain (G269D, G269S, L272F),
P-loop (Y281C, T311I, G314S, Y315S, Y315C, P320H, and P320A), S6
domain (ΔF339, L342F), and COOH terminus (R317N, R533W,
R539W, R555H, K557E) [37,42,57–63]. The other mutations ana-
lyzed in that study were haploinsufficient for KCNQ1 channel
function. Other reports have also indicated that membrane
expression of the KCNQ1 channel protein can be reduced by traf-
ficking defects in mutations located in the S2-S3 linker (A178T), S5
domain (ΔS276), pore loop (T322M), S6 domain (A336fsþ16X),
and COOH terminus (Y461X, R518X, A525T, Q530X, E543fsþ107X,
T587M, G589D, R594Q) [7,42,51,64–66].

The above data indicate that the correlation between the gen-
otype and channel function in LQT1 is complicated and diversified.
Even different mutations at the same position (e.g., KCNQ1-R243C
and KCNQ1-R243H) cause different degrees of channel dysfunc-
tion. Moreover, not only do mutations with a dominant-negative
effect occur in almost every location of the KCNQ1 gene, but those
with a trafficking defect exist in the main domains of the gene as
well. However, the number of KCNQ1 pore-loop mutations causing
a dominant-negative effect is much great than the number of
mutations causing haploinsufficiency, suggesting that the pore-
loop mutations are more commonly associated with severe elec-
trophysiological and clinical phenotypes. Interestingly, Aizawa
et al. found that the KCNQ1 mutation Ala178fs/105 not only forms
a hetero-multimer and causes a dominant-negative effect on the
IKs channel, but that it also gives rise to a trafficking defect in the
channel protein [63]. It is possible that both defective channel
trafficking and defective channel formation mechanisms exist for
some KCNQ1 mutations simultaneously. Another correlation
between genotype and channel function has been described
whereby some compound KCNQ1 mutations (e.g., T391I/Q530X,
A525T/R518X, and A178T/K422fs39X) severely disrupt channel
trafficking [67].

In addition to inducing IKs dysfunction through dominant-
negative loss-of-function effects and defective channel traffick-
ing, mutations in KCNQ1 suppress IKs channel function by reducing
the channel affinity of interacting proteins [68,69]. Phosphatidy-
linositol-4,5-bisphosphate (PIP2) is a cofactor necessary for the
activity of KCNQ1 channels [32,68,69]. It has been shown that
intracellular PIP2 regulates KCNQ1 channel activity in such a way
that PIP2 stabilizes the open state of the channels, which leads to
an increased current amplitude, slowed deactivation kinetics, and
a shift in the activation curve toward negative potentials. Park
et al. showed that mutations in the S4 domain (R243H) and COOH
terminus (R539W and R555C) increased the rate of dissociation of
PIP2 from the KCNQ1 channel, which decreased the number of
open-state channels in the membrane [68]. Coyan et al. confirmed
that R243H and R555C mutations cause an acceleration of KCNQ1
current rundown when membrane PIP2 levels are decreasing. By
observing the interaction of the KCNQ1 R539W mutant with
cholesterol, this group further suggested that the channel-
cholesterol interaction might overcome the channel-PIP2 interac-
tion and stabilize the channel open-state [69].
5. Regulation by PKA

It is well known that cardiac events in LQT1 syndrome patients
are more frequently triggered by adrenergic stimuli (e.g., physical
or emotional stress) than those in other forms of LQTS. A clinical
study of 371 LQT1 patients found that cardiac events were most
common during exercise (62%) and emotional arousal (26%), while
occasional during sleep or rest (3%) and from other triggers (9%)
[20]. Approximately 35–36% of genotype-confirmed LQT1 patients
have a normal QTc range without any clinical symptoms at rest
[47,48], but lethal arrhythmias can occur in these apparently
healthy silent mutation carriers without any premonitory sign,
especially during adrenergic stimuli [49–51]. Recently, a hetero-
zygous missense KCNQ1 mutation G269S was identified in 11



Fig. 3. IKs reconstituted with KCNQ1-G269S reduced responses to PKA stimulation. Superimposition of IKs traces recorded from human embryonic kidney 293 (HEK293) cells
expressing YotiaoþKCNE1 with KCNQ1-WT, WTþG269S, and G269S before and after bath application of 100 nmol/L isoproterenol (A) or 5 mmol/L forskolin (FK)þ15 mmol/
L 3-isobutyl-L-methyl-xanthine (IBMX) (B). (C) The percentage increase in tail IKs after bath application of 100 nmol/L isoproterenol (upper) and 5 mmol/L FKþ15 mmol/L
IBMX (lower). **po0.01 w.r.t. KCNQ1-WT. PKA¼protein kinase A.

Fig. 4. G269S prevents the increase in IKs caused by the phosphomimetic S27D mutation. Representative current traces recorded from HEK 293 cells expressing
YotiaoþKCNE1 with KCNQ1-WT (A), S27D (B), and exposure to 100 nmol/L isoproterenol (C), G269S (D), and S27D-G269S (E), respectively. (F) Bar graphs show effects of
G269S on tail IKs densities recorded on repolarization to �50 mV following a 2-s depolarization to 30 mV for the different transfection conditions.**po0.01w.r.t. KCNQ1-WT.

J. Wu et al. / Journal of Arrhythmia 32 (2016) 381–388 385
patients from four unrelated families. Most of the 11 patients had
normal to borderline QTc intervals at rest, but had a significant QTc
prolongation after exercise (Fig. 2). One family member had died
suddenly and another one experienced syncope while dancing.
Functional characterization of the IKs channel reconstituted with
G269S in mammalian cells showed that the mutation modestly
affected IKs, but severely blunted the increase in IKs after treatment
with isoproterenol, pharmacological activators of PKA (Fig. 3), or in
the PKA phosphomimetic mutation KCNQ1-S27D (Fig. 4), which
mimics PKA-mediated phosphorylation of IKs channels. These
findings provide important insight into the molecular mechanisms
underlying adrenergic-induced LQTS and may explain why
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patients with silent mutations exhibit an excessive prolongation of
QT intervals during exercise. The results also suggest that beta-
blocker therapy may have a beneficial effect in these patients.

In human ventricular myocytes, the IKs (outward current), rapid
component of delayed rectifier Kþ current IKr (outward current),
and L-type Ca2þ current ICa,L (inward current) play a dominant role
in the repolarization of APs and are the most important determi-
nants of APD. Under physiological conditions, IKr and ICa,L, but not
IKs, normally play a crucial role in controlling the ventricular AP at
rest [70]. Therefore, KCNQ1 mutations (e.g., G269S) that cause a
mild-to-moderate functional defect in IKs might ordinarily have
little effect on the ventricular AP, which may explain why some
KCNQ1 mutation carriers have normal to borderline QTc intervals
with no or mild clinical symptoms at rest. In addition, the reason
why individuals carrying a KCNQ1 mutation display a silent phe-
notype at rest may also be due to the “repolarization reserve”
mechanism [71].

On the other hand, IKs plays a major role in regulating the
ventricular AP after adrenergic stimuli (that upregulates IKs
through cAMP-dependent PKA pathway) to prevent excessive
ventricular APD or QT prolongation due to an ICa,L increase [15, 72].
It is possible that the slow deactivation kinetics of IKs also con-
tribute to the current upregulation through adrenergic stimuli.
Due to the incomplete deactivation of IKs, there is residual acti-
vation at the onset of the succeeding AP that accumulates at fast
rates, thus increasing the probability of the channel being in an
open state [73].

Any abnormality causing a loss-of-function in the IKs macro-
molecular complex may lead to adrenergic-induced imbalance in
ventricular repolarization currents and consequent QTc prolonga-
tion, which is identified based on the defective response of IKs to
PKA stimuli due to mutations in KCNQ1 (-G269S, -A341V, and
-K557E) [51,61,63], KCNE1-P127T [32], and Yotiao-S1570L [74].
Importantly, the role that IKs plays during adrenergic stimulation
may explain why 88% of the cardiac events in LQT1 patients in the
above study occurred during exercise and emotional stress [20].
6. Acquired LQT1

In addition to congenital pathology, LQTS can also be induced
by a variety of stimuli, such as QT-prolonging medications, emo-
tional stress, and strenuous exercise, especially under certain cir-
cumstances (risk factors). Of all triggers, QT-prolonging medica-
tions (e.g., antiarrhythmics, antihistamines, antibiotics, anti-
depressants, antipsychotics, and antiemetics) are the most com-
mon cause of acquired LQTS (aLQTS), which is believed to be
related to drug-induced IKr channel block [71]. Due to unique pore
structural properties (spacious inner cavity and aromatic drug-
binding sites in the S6 domain facing the inner cavity), the IKr
channel displays an unusual susceptibility to a wide range of
structurally diverse compounds that interact with the pore.

Risk factors for aLQTS include electrolyte disturbances (e.g.,
hypokalemia, hypomagnesemia), bradycardia, gender, heart dis-
ease, and liver insufficiency. Moreover, genetic mutations in major
LQTS-related genes including KCNQ1 have also been shown to be
involved in aLQTS [75–78]. Siebrands et al. reported that the
KCNQ1-A344V mutation increased the susceptibility of IKs channel
to a local anesthetic bupivacaine, while the mutation per se did not
cause a severe clinical phenotype of LQT1 [77]. Veerman et al.
reported that the KCNQ1-K422T mutation per se had a mild clinical
phenotype of LQT1, but additional fluoxetine or norfluoxetine
resulted in more prominent QTc prolongation in the mutation
carriers [78]. Electrophysiological study demonstrated that both
fluoxetine and norfluoxetine inhibited KCNQ1/KCNE1 currents in
HEK293 cells [78]. The above studies suggest that loss-of-function
in IKs caused by KCNQ1 mutation not only can predispose patients
to congenital LQT1, but can be also associated with acquired LQT1.
Normal cardiac repolarization critically depends on the interplay
of multiple ion currents, and these provide some redundancy or
“reserve”, which protects against excessive QT prolongation and
allows for an LQTS mutation to remain clinically silent or mild. The
lesions in these repolarizing mechanisms can reduce “repolariza-
tion reserve” and therefore increase the risk for aLQTS [71]. The
loss-of-function in IKs, which is a major repolarization current,
occurs due to a KCNQ1 mutation and decreases the repolarization
reserve [16,17,71,77]. However, this may be insufficient to elicit a
full-blown LQT1 phenotype, especially at rest. When a pathologic
trigger such as an IKs-blocking and/or IKr-blocking medication is
present, the superimposition of lesions will produce marked AP
prolongation and lead to acquired LQT1. In fact, the adrenergic-
induced latent LQT1 is a type of aLQTS, which is triggered by
sympathetic stimuli.
7. Conclusions

Uncovering the molecular pathogenesis of LQT1 is helpful, and
even mandatory, for precise diagnosis, risk stratification, and
management of LQT1 patients. Although some progress has been
achieved in investigating the genotype-phenotype correlation
through protracted and unremitting efforts, our current under-
standing of the molecular pathogenesis remains incomplete and
sometimes fails to allow for translating the genotype-phenotype
correlation into clinical reality. Moreover, neither the localization
of a KCNQ1 mutation nor its cellular electrophysiological effect is
sufficient to predict the impact on clinical manifestations.

The reasons why individuals (even from the same family) car-
rying the same mutation (e.g., KCNQ1-A341V and KCNQ1-R231C)
exhibit diverse cardiac phenotypes clinically remain unknown. The
findings to date indicate that mechanisms underlying LQTS are not
only multifactorial, but are also involved in pathway crosstalk.
Some recent studies show that protein kinase C and the para-
sympathetic nervous system are also involved in the control of
clinical phenotypes in LQT1 [79,80], which brings in a new view to
uncovering pathogenic mechanisms underlying the inherited
arrhythmia. In addition, the use of induced pluripotent stem cells
may better elucidate the clinical heterogeneity in LQTS, especially
in cases that have compound mutations.
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