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Abstract

The brown planthopper (BPH), Nilaparvata lugens (Stål), is a destructive pest that poses a

significant threat to rice plants worldwide. To explore how BPHs adapt to the resistant rice

variety, we analyzed proteomics profiles of two virulent N. lugens populations. We focused

on Biotype Y, which can survive on the moderately resistant rice variety YHY15, and Biotype

I, which can survive on the susceptible rice variety TN1. We performed protein quantitation

using the isobaric tag for relative and absolute quantification (iTRAQ) and then compared

the expression patterns between two virulent N. lugens populations and found 258 differen-

tially expressed proteins (DEPs). We found that 151 of the DEPs were up-regulated, while

107 were down-regulated. We evaluated transcript levels of 8 expressed genes from the

iTRAQ results by qRT-PCR, which revealed transcriptional changes that were consistent

with the changes at the protein level. The determination of the protein changes in two viru-

lent N. lugens populations would help to better understanding BPH adaptation to resistant

rice varieties and facilitate the better design of new control strategies for host defense

against BPH.

Introduction

Proteomics is the study of proteins and their impact on cells, tissues and organisms. The data

obtained from proteomic analyses provide a macroscopic view of gene expression under dif-

ferent environmental conditions, thereby enabling targeted experiments. Traditionally, prote-

omic studies based on two-dimensional electrophoresis were used to identify differentially

expressed proteins (DEPs), including those related to rapid cold stress response in Lissorhop-
trus oryzophilus [1] and immune response in Triatoma dimidiate [2]. With recent technologi-

cal advances, highly sensitive proteomics techniques have emerged. These new approaches

include the isobaric tag for relative and absolute quantification (iTRAQ), which is more reli-

able than two-dimensional electrophoresis [3]. This high-throughput approach enables DEPs
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to be incorporated into pathway models [4]. Recent research has shown that iTRAQ can be

utilized in many different species, including Laodelphax striatellus [5], Autographa californica
[6] and Apis mellifera [7]. A previous study of brown planthopper (Nilaparvata lugens Stål)

used an iTRAQ protocol to identify proteins present in the ovary [8].

The brown planthopper is a destructive rice pest that causes severe damage and results in

significant yield loss through both direct grain loss as well as transmission of plant viruses [9].

Although insecticides can be used to control damage from BPH and other pests, over usage of

them has led to BPH resurgence [10] and has caused environmental problems that threaten

human health. Since the first resistant rice variety against BPH was discovered in 1969, more

than 30 BPH resistance genes have been reported from different resistance sources [11]. We

used a susceptible rice variety (TN1) as a control and a moderately resistant rice variety

(YHY15) carrying the resistance gene BPH15 [12]. It has been found that resistance genes

impair BPH feeding behavior on varieties and cause BPH physiological changes by increasing

mortality rates, extending developmental periods, and reducing reproductive output [10, 13,

14]. BPHs that are allowed to feed on resistant rice for a long time may slowly evolve into new

virulent BPH populations to overcome rice resistance [15]. Among different brown planthop-

per biotypes, the BPH biotype I is widely distributed in East and Southeast Asia and can sur-

vive on the TN1 rice variety [16]. The BPH biotype Y is a virulent biotype that has adapted to

the moderately resistant rice variety (YHY15) by compelling biotype I BPHs to feed on YHY15

for generations [17]. In both lab and field studies, brown planthopper has been able to adapt to

resistant rice rapidly.

In this study, iTRAQ was used to evaluate proteomic differences between two BPH popula-

tions, leading to the identification of DEPs, which are correlated with resistance. Among 3167

identified proteins, 258 were considered as differentially expressed in the BPH-YHY15 popula-

tion relative to the BPH-TN1 population. We then used Gene Ontology (GO) annotations and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to analyze the functions

of these DEPs. Subsequent Clusters of Orthologous Groups of proteins (COG) analysis sug-

gested that a number of those proteins were involved in the regulation of post-translational

modification, protein turnover, chaperones pathways. Additional research on these proteins

might provide valuable information regarding strategies for BPH management and control.

Materials and methods

Plants and insects

For this study, we utilized TN1 as a susceptible rice variety and YHY15 as a moderately resis-

tant rice variety. Two virulent N. lugens populations (Biotype I and Biotype Y) were main-

tained on TN1 and YHY15 plants at the Hubei Academy of Agricultural Sciences, Wuhan,

China.

Protein extraction

Three different replicates were carried out, using forty adult insects in each. The phenol/

methanolic ammonium acetate method was used for protein extraction [18]. The samples

were dissolved in extraction media and suspended for 5 s, broken by ultrasonication (2.4 s on,

3 s off) and then incubated at 22˚C for 20 min before final centrifugation at 14,000 × g for 25

min at 4˚C. The extract containing total insect protein was kept at -80˚C for further quantita-

tive proteomic analysis.
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iTRAQ labeling and fractionation

Protein digestion was conducted as described previously [18–20]. An aliquot of 200 μg of total

protein was collected from each sample and digested with 2 μg trypsin (Promega). Samples

were labeled according to the procedure outlined in the 4-plex iTRAQ reagent (Applied Bio-

systems). Protein samples were labeled as TN1-1:115; YHY15-1:117; TN1-2:115; YHY15-

2:117; TN1-3:116; YHY15-3:114, followed by multiplexing and vacuum drying. The labeled

samples were collected using a chromatography system and then separated into ten fractions

via a substantial cation exchange column.

Nano-LC-MS/MS analysis

Peptides from each fraction were dissolved in solution A (5% ACN, 0.1% FA) and then centri-

fuged. The supernatant was then fractionated using a RIGOL L-3000RP-HPLC system. Elution

was performed by transitioning from 5% solution B (95% ACN, 0.1% FA) to 35% solution B

over 40 min, followed by a 5 min linear gradient from 60% up to 80% over 2 min and then 1

min of constant running at 80%. Finally, a 5% solution was used for 1 min and the instrument

was equilibrated in solution A. Nano-LC-MS/MS analysis was carried out using a nano-LC

equipped with a Q Exactive Mass Spectrometer.

Reference proteins were obtained from the Hemiptera protein database downloaded from the

National Center for Biotechnology Information database. Proteins with fold-change values� 1.2

and p-values� 0.05 were considered to be significant DEPs between the two samples.

Bioinformatics analysis

Protein functional annotation of the identified DEPs was carried out using Uniprot. The Clus-

ters of Orthologous Groups of proteins (COG) database information was employed for the

functional annotation of DEPs. The Worfpsort and Cello software packages were used to

determine the subcellular localization of proteins of interest. Metabolic pathway analysis using

the DEPs was performed via the KEGG database [21]. Finally, GO enrichment analysis was

carried out to discover enriched pathways [22, 23].

RNA isolation and real-time PCR

Sequences of 8 DEPs identified with iTRAQ were downloaded from the National Center for Bio-

technology Information database. Total RNA was isolated from insects using TRIzol (Takara,

Japan). cDNA was synthesized using a FastQuant RT Kit (TIANGEN), followed by qRT-PCR via

the SuperReal PreMix Plus (Takara, Japan) under the following conditions: 95˚C for 2 min; followed

by 40 cycles of 95˚C for 20 s, 60˚C for 20 s, and 72˚C for 30 s. The qRT-PCR analysis of each sample

was carried out three times. Relative expression of each transcript was calculated via the 2−ΔΔCT

method [24] and normalized with ß-Actin, with BPH-TN1 samples used as a negative control.

Results

Quantitative proteomic analysis by iTRAQ labeling

Proteins that were differentially expressed between BPH-YHY15 and BPH-TN1 were evalu-

ated by iTRAQ labeling and quantified by liquid chromatography-mass spectrometry analysis

(Fig 1). According to the LC-MS/MS analysis, we identified 3167 proteins in the two popula-

tions. Based on the criteria for defining DEPs (fold change ratio� 1.2 and p� 0.05), 151 up-

regulated and 107 down-regulated proteins were discovered in the BPH-YHY15 population

relative to the BPH-TN1 population (Fig 2). Information on the DEPs and their accession

numbers are shown in the S1 Table.
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Functional annotation and classification

DEPs were queried against GO and KEGG databases. We were able to annotate the molecular

functions of 293 proteins, including binding proteins and proteins with catalytic activity,

transporter activity or structural importance (S2 Table, MF). For cellular components, we

annotated 829 proteins present in either the cytosol or organelles (S2 Table, CC). Finally, 1055

Fig 1. Overview of the experimental workflow. Differentially expressed proteins were quantified and analyzed by

iTRAQ labeling and LC-MS/MS. A bioinformatics analysis was used to explore the relationship between differentially

expressed proteins in N. lugens and BPH adaptation to rice resistance. qRT-PCR was used to demonstrate that protein

abundance changes were correlated with differential expression at the transcriptional level.

https://doi.org/10.1371/journal.pone.0238549.g001

Fig 2. Volcano plots of iTRAQ-labeled proteins. The volcano plot shows up-regulated differentially expressed

proteins (red), unchanged proteins (gray), and down-regulated differentially expressed proteins (green).

https://doi.org/10.1371/journal.pone.0238549.g002
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proteins were assigned to different biological processes, including cellular processes, single-

organism processes and metabolic processes (S2 Table, BP).

Gene Ontology (GO) enrichment analysis of DEPs

We next performed GO enrichment analysis using Fisher’s exact test to identify processes that

were enriched in the DEPs (S3 Table). Significantly enriched molecular function categories

included lipid binding (11 proteins), carbon-carbon lyase activity (4), and alcohol binding (4)

(Fig 3A). Cellular components were enriched in extracellular region (49), extracellular space

(13), lytic vacuole (9) and lysosome (9) (Fig 3B). Biological process categories included

response to chemical (38), response to oxygen-containing compound (20) and regulation of

response to stress (19) (Fig 3C). Overall this analysis revealed that the DEPs were enriched in

proteins that are responsive to chemicals.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis

In addition to GO annotation, we also examined the enrichment of DEPs in different KEGG

pathways. DEPs were found to be enriched in apoptosis (7 proteins) and lysosome metabolism

(7 proteins), suggesting these processes may play critical roles in BPH adaptation to rice resis-

tance (Fig 4, S4 Table). However, further studies of these pathways at the molecular and cellu-

lar levels should be performed to corroborate these findings.

Clusters of Orthologous Groups of proteins (COG) pathway enrichment

analysis of DEPs

We classified all DEPs with high homology into 25 COG categories (Fig 5; S5 Table). "Post-

translational modification, protein turnover, chaperones" (31 proteins) was the most abundant

functional category, followed by "general function prediction only" (22 proteins), and "energy

production and conversion" (21 proteins). Additionally, many proteins were clustered in

groups related to stress response, including "signal transduction mechanisms" (18 proteins),

"inorganic ion transport and metabolism" (7 proteins), "transcription" (5 proteins), and

"defense mechanisms" (3 proteins). Based on these clusters, we identified 20 DEPs correlated

with brown planthopper adaptation to rice resistance from the 258 DEPs, likely lipid transport

and metabolism (vitellogenin), secondary metabolites biosynthesis, transport and catabolism

(cytochrome P450), amino acid transport and metabolism (serine protease HP21), defense

mechanisms (serpin-4), and post-translational modification, protein turnover, chaperones

(heat shock protein 70) (Table 1).

Comparison of the proteomics data with transcriptional data

To investigate the relationship between the DEPs and their respective transcripts, we per-

formed qRT-PCR on 8 expressed genes from the iTRAQ results (S6 Table), including four up-

regulated (vitellogenin, proclotting enzyme-3, serpin-4 and cytochrome P450 CYP6ER1v2)

(Fig 6A) and four down-regulated proteins (trypsin-26, beta-tubulin 4, chitinase and sugar

transporter 1) (Fig 6B). They were chosen in conformity with the proportion of their up- and

downregulation from the iTRAQ results and the availability of the mRNA sequence from the

BPH transcriptome. Overall, the differential expression at the transcriptional level was well-

correlated with the trends at the protein level, indicating that iTRAQ is a reliable method for

differential protein analysis of BPH.
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Discussion

iTRAQ is a new technique that identifies and quantifies proteins by using isobaric reagents to

label the primary amines of peptides and proteins in a digestion mixture. S ions are used as the

Fig 3. Gene Ontology enrichment analysis of differentially expressed proteins identified in BPH-YHY15 and BPH-TN1.

A: Molecular Function. B: Cellular Component. C: Biological Process. The X-axis represents Fisher’s exact test p-value, while

the Y-axis represents the name of the pathway. The circle color represents enrichment fold change, and the circle size

represents the amount of differentially expressed proteins contained in each category.

https://doi.org/10.1371/journal.pone.0238549.g003
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reporter, which enables the quantification of proteins from different sources [25]. This method

makes protein assays significantly higher throughput, leading to a significant increase in larger

scale protein analyses [26, 27]. To determine the link between altered protein levels and adapt-

ability in brown planthoppers exposed to susceptible and resistant rice varieties, iTRAQ was

Fig 4. Scatter diagram of enriched Kyoto Encyclopedia of Genes and Genomes pathways. The X-axis represents Fisher’s exact test p-value, while the Y-axis

represents the name of the pathway. The circle color represents enrichment fold change, and the circle size represents the amount of differentially expressed proteins

contained in each category.

https://doi.org/10.1371/journal.pone.0238549.g004

Fig 5. Clusters of orthologous groups of proteins pathway enrichment analysis of differentially expressed proteins. The X-axis represents classification, while the Y-

axis represents the number of differentially expressed proteins.

https://doi.org/10.1371/journal.pone.0238549.g005
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performed in combination with LC-MS/MS. This led to the identification of 3167 unique pro-

teins, 258 of which were significantly differentially expressed between the two N. lugens popu-

lations. We then annotated differentially abundant proteins via GO analysis to determine their

putative functions. As expected, several GO terms—including response to a stimulus, response

to chemicals, regulation of response to stimulus, response to external stimulus, response to

organic substance, cellular response to stress and regulation of cell communication—were

found to be substantially enriched. Notably, a large number of the DEPs may be related to

response to stimulus.

GO enrichment pathway analysis indicated that response to chemical, response to oxygen-

containing compound, and regulation of response to stress related DEPs might be involved in

Table 1. DEPs associated with the adaptation of brown planthopper to resistant rice.

Accession Description Fold change P-value

BAP87098.1 vitellogenin 2.11 0.00

AGZ04899.1 odorant binding protein 8 1.77 0.01

AGK40915.1 proclotting enzyme-3 1.41 0.00

AID60312.1 serine protease HP21 1.34 0.00

AGK40928.1 serpin-4 1.33 0.01

AJO25056.1 imaginal disc growth factor 1.32 0.00

AIW79986.1 cytochrome P450 CYP6ER1v2 1.31 0.00

AFJ75808.1 glutathione s-transferase M2 1.30 0.00

CAC87119.1 trypsin-like protease 1.21 0.03

AKN21380.1 multicopper oxidase 2 1.20 0.03

AEL88646.1 phosphoacetylglucosamine mutase 0.83 0.00

AID60360.1 trypsin-26 0.82 0.01

AIW79984.1 cytochrome P450 CYP6CS1v2 0.81 0.01

AMZ00358.1 Ras superfamily small GTPase Cdc42 0.81 0.03

AIW79998.1 cytochrome P450 CYP380C10 0.80 0.04

ALP82110.1 beta-tubulin 4 0.78 0.01

AJO25042.1 chitinase, partial 0.76 0.00

CAZ65617.1 cytochrome P450 0.74 0.00

BAI83415.1 sugar transporter 1 0.60 0.00

AFJ20626.1 heat shock protein 70 0.55 0.00

https://doi.org/10.1371/journal.pone.0238549.t001

Fig 6. Correlation between iTRAQ results and qRT-PCR results. β-actin was used to normalize gene expression

changes. Error bars represent SD, and all analyses were performed in triplicate. � p< 0.05, �� p< 0.01 (Student’s t-

test). A: Four genes (Nl-Vg, Nl-proc3, Nl-ser4 and Nl-CYP) were found to be up-regulated at both the protein and

transcriptional levels. B: Four genes (Nl-try26, Nl-tub4, Nl-chi and Nl-sugt1) were found to be down-regulated at both

levels. Red and green represent the expression levels of BPH-YHY15 by qRT-qPCR and iTRAQ labeled techniques,

respectively. CK represents that of BPH-TN1 for negative control.

https://doi.org/10.1371/journal.pone.0238549.g006
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BPH adaptation to rice resistance. Furthermore, KEGG enrichment pathway analysis identi-

fied that the DEPs were involved in specific metabolic pathways, including apoptosis metabo-

lism. The result suggested that feeding on moderately resistant plants may induce cell

apoptosis in BPH. Apoptosis is an effective means by which a host controls virus infection

[28]. Rice ragged stunt virus will induce apoptosis in the salivary gland cells of its insect vector,

N. lugens [29]. The apoptosis metabolism may be associated with BPH adaptation to rice resis-

tance, and understanding the nature of these proteins can improve mechanistic understanding

of resistance adaptation.

The COG pathway enrichment analysis showed that the largest group (12% of the DEPs)

was associated with "post-translational modification, protein turnover, chaperones", such as

heat shock protein 70. And we also found several DEPs correlated with brown planthopper

adaptation to rice resistance likely lipid transport and metabolism (vitellogenin), secondary

metabolites biosynthesis, transport and catabolism (cytochrome P450), and amino acid trans-

port and metabolism (serine protease HP21).

Heat shock 70 kDa proteins (Hsp70) participate in protein folding, as well as protein trans-

location and caspase-dependent apoptosis [30]. Our results indicated that Hsp70 protein was

more abundant in the BPH-YHY15 group, which may increase this group’s survival rate at low

temperatures. Relatively high levels of hsp70 mRNA are correlated with low temperature toler-

ance in some insects, such as D. melanogaster [31] and Leptinotarsa decemlineata [32].

Vitellogenin is a precursor protein present in the egg yolk of many oviparous insects. How-

ever, insect Vgs are usually synthesized within body fat and processed with many co- and post-

translational modifications, including proteolytic cleavage of nascent proteins [33–35]. Previ-

ous studies found Vg of Apis mellifera can protect itself from oxidative stress [36]. Moreover,

the expression of Nlvg is correlated with the embryonic development stage in N. lugens [37]. In

our study, we found that Nlvg expression in BPH-YHY15 individuals was 5.84-fold higher

than that of the individuals in the BPH-TN1 population, suggesting that higher lipid deposi-

tion ability may be involved in the adaptation response of N. lugens to resistant rice.

Insect detoxification systems often evolve during insect-plant interactions via modification

of P450s and glutathione S-transferases that catabolize secondary plant compounds [38–40].

P450s play crucial roles in insect growth and development and are also involved in pesticide

metabolism [41]. Several studies have demonstrated that mRNA transcript levels of the BPH

P450 gene were induced by some resistant rice varieties [42–44]. Based on our iTRAQ results,

we infer that P450 enzymes may be involved in BPH adaptation to the rice YHY15.

Serine proteases are involved in insect digestion and play crucial roles in numerous physio-

logical processes, including larval growth and development [45]. Higher expression levels of

serine proteases in host-adapted BPHs suggest that they may offer nutrients required for BPH

survival and fecundity.

In summary, iTRAQ led to the detection of 258 DEPs between the BPH-TN1 and

BPH-YHY15 groups of BPH. In the DEPs, 151 were up-regulated and 107 were down-regu-

lated. Determining how protein contents differ between host-adapted and non-adapted BPH

populations can lead to an improved understanding of the adaptability of BPH to rice resis-

tance at the proteomic level. Moreover, this data may also help us explain other BPH traits,

including fecundity and survival. Despite these interesting findings, our study does have some

significant limitations. In particular, some DEPs could not be identified and well-quantified,

motivating future experimental work on this species. Taken together, our analysis of differ-

ences in protein abundance in the two virulent N. lugens populations represents a significant

step forward in the understanding of BPH adaptability to resistant rice.
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