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Simple Summary: Vitamin D, conventionally considered a nutrient, is a potent hormone regulating
many physiological functions. In addition, many studies point to the anticancer activities of calcitriol.
However, cancer cells use mechanisms that negate the beneficial effects of calcitriol. Many of these
mechanisms control or are controlled by the Hypoxia Inducible transcription Factors (HIFs) that
are overexpressed in human cancers due to the development of hypoxia inside the tumors. This
review discusses the crosstalk between calcitriol and HIF signaling in order to better understand their
relationship to cancer, its prevention, and treatment.

Abstract: Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological
responses ranging from classic to nonclassical actions such as bone morphogenesis and immune
function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects
of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemi-
ological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary,
tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of cal-
citriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which
in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors
(HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but
also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with
signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular
signaling to give the opportunity to better understand their relationship in cancer development and
their prospect for the treatment of cancer.
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1. Introduction

Vitamin D is a fat-soluble secosteroid prohormone produced in the skin during expo-
sure to sunlight’s ultraviolet B radiation (UVB, 290–320 nm) that is also obtainable from
the diet. Vitamin D undergoes a two-step metabolic activation in the liver and kidney
to synthesize a biologically active hormonal form named calcitriol, which binds to the
vitamin D receptor (VDR) to enable its diverse physiological functions [1,2]. The archetypi-
cal role of vitamin D is to maintain calcium and phosphate homeostasis, which are essential
for bone morphogenesis and remodeling. Calcitriol is also an important regulator of the
immune system and exhibits antiproliferative properties when applied in different cell
types [3–6]. Thus, over the past decades, extensive studies have suggested that vitamin
D deficiency is associated with low sunlight exposure and increased risk of many other
extra-skeletal diseases such as cancer [7–10]. Many epidemiological studies revealed an
inverse correlation between serum 25-hydroxyvitamin D (25(OH)D3) levels and high risk
of colon [11], breast [12], prostate [13,14], gastric, and other cancers [15]. Moreover, there is
strong evidence from cell and animal-based studies to support the antitumorigenic effects
of vitamin D [8,16,17]. As such, it is now becoming apparent that vitamin D deficiency can
contribute to the development and progression of many types of cancer. Thus, maintaining
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sufficient serum vitamin D levels could be beneficial for the prevention of cancer and
favorable patient outcome.

Because the numerous epidemiological and experimental data indicate the beneficial
role of vitamin D in preventing and treating several cancer types, clinical use of calcitriol
or its synthetic analogs (referred to as vitamin D analogs) has been investigated [17]. Hy-
percalcemia, the major side effect of vitamin D, has strongly hindered the calcitriol clinical
applications [18,19]. Moreover, accumulating data suggest that cancer cells employ sev-
eral mechanisms that either reduce cellular calcitriol levels by overexpression of calcitriol
deactivating enzyme CYP24A1, remarkably induced by hypoxia, to catalyze its inactiva-
tion [20] or diminish its function to protect themselves from the antitumorigenic effects of
vitamin D [16,17]. Such maladaptive mechanisms are often dysregulated in solid tumors
due to the development of a microenvironment characterized by reduced oxygen avail-
ability (hypoxia) caused by irregular vascularization and increased cell proliferation rates.
Hypoxia triggers an adaptive machinery that relies on stabilizing the hypoxia-inducible
factors (known as HIFs) [21]. HIFs are transcriptional activators that trigger a chain of
events that includes reprogramming of metabolism, angiogenesis, and erythropoiesis and
ultimately promote cell proliferation, survival, invasion, and metastasis [22,23]. As such,
HIFs are often correlated with resistance to conventional therapy options and negative
patient prognosis, much like vitamin D deficiency. Given the essential impact of HIFs
and hypoxia in cancer, it is no wonder that HIFs are meaningful targets for agents with
anticancer abilities, including naturally occurring compounds [24–26]. Furthermore, apart
from HIF induction, lack of oxygen contributes to dysregulated signaling cascades [27] and
compromised catalytic activity of enzymes such as the monooxygenase family members
that use the molecular oxygen as a substrate and are heavily implicated in vitamin D
converting reactions [28].

Given that calcitriol is regularly found to interfere with signaling cascades connected
with the adaptation of cancer cells to hypoxia, we discuss the crosstalk between calcitriol
and hypoxia signaling as well as possibilities and future directions to overcome the limita-
tions of and improve vitamin D-based cancer therapy.

2. Vitamin D Synthesis and Metabolism

Vitamin D exists as a prohormone that needs to be transformed into biologically active
products that bind to their cognate nuclear receptors to regulate diverse physiological
processes. In this section, we summarize the metabolic pathways and hormonal regulation
of vitamin D metabolism (Figure 1).

2.1. Canonical Vitamin D Metabolic Pathway

There are two major isoforms of vitamin D, vitamin D2 (ergocalciferol) and vitamin
D3 (cholecalciferol) [29,30]. Both vitamin D2/3 need exposure to sunlight’s UVB radiation
to be synthesized from ergosterol and 7-dehydrocholesterol, respectively. Vitamin D (both
vitamin D2 and D3, calciol) originating from diet or endogenous skin synthesis is delivered
to the liver by vitamin D-binding protein (VDBP). There, vitamin D is metabolized by
vitamin D 25-hydroxylase (CYP2R1 and CYP27A1) to 25(OH)D (calcidiol), which is the
major circulating form of vitamin D in the serum [31,32]. 25(OH)D is further metabolized
by 25(OH)D 1α-hydroxylase (CYP27B1) mainly in the proximal tubule of the kidney to
1α,25-dihydroxyvitamin D (1α,25(OH)2D, calcitriol), which is the recognized biologically
active form of vitamin D (Figure 1) [31,32]. Calcitriol then enters the circulation and, after
binding to VDBP, is delivered to target tissues such as the intestine, bone, and kidney,
where vitamin D is known to regulate absorption, mobilization, and reabsorption, respec-
tively, of calcium and phosphate [29]. After being produced, the levels of both calcidiol
and calcitriol are tightly regulated by 25(OH)D 24-hydroxylase (CYP24A1), which is the
primary vitamin D inactivating enzyme catalyzing hydroxylation at C-24 and C-23 of both
calcidiol and calcitriol [31,32]. This 24-hydroxylation pathway produces the biologically
inactive calcitroic acid excreted in the bile [33]. The importance of this inactivation step,
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mediated by CYP24A1, was highlighted in CYP24A1 knockout mice showing impaired
intramembranous bone mineralization and hypercalcemia, leading to a lethal phenotype in
50% of the mice [34,35]. However, this defect was rescued in CYP24A1 and VDR double-
knockout mice, which suggested that it is the increased calcitriol levels and not the absence
of downstream metabolites that were responsible for the flawed phenotype [35].

Figure 1. Overview of vitamin D canonical metabolism and its genomic or nongenomic effects.
Dietary or cutaneously synthesized vitamin D undergoes two subsequent hydroxylation steps in the
liver and kidney to produce active calcitriol (1,25(OH)2 vitaminD3). Calcitriol exerts its functions
either by binding to VDR to regulate gene expression or by associating with extracellular binding
sites to modulate signaling pathways that influence various cellular processes. Regulation of calcitriol
levels also requires inactivation steps mainly involving its hydroxylation by CYP24a1.

2.2. Noncanonical Vitamin D Metabolic Pathway

Alternatively, vitamin D metabolism is mediated by CYP11A1 (known as a cytochrome
P450 side-chain cleavage (P450scc) enzyme) [36]. Vitamin D serves as an alternative
substrate for CYP11A1 instead of cholesterol and is sequentially hydroxylated, predom-
inantly at C-20 or C-22, without the cleavage of the side chain producing a multitude of
metabolites [37]. Overall, it is estimated that this alternative path produces more than
21 hydroxy-metabolites of vitamin D [36]. Summarily, CYP11A1 products exhibit: (i) an-
tiproliferative, differentiating, and anti-inflammatory abilities in skin cells comparable to
that of calcitriol [38,39], (ii) are involved in defense pathways against UVB-induced damage
and oxidative stress, and (iii) elicit anticancer abilities in a cell-specific manner [40]. As a
point of interest, these alternative metabolites and normal 1,24,25-(OH)3 vitamin D3 do not
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activate VDR. Thus, the calcemic effects or expression of CYP24A1 can be seen in response
to calcitriol.

2.3. Hormonal Regulation of the Canonical Vitamin D Metabolic Pathway

As a result of its diverse function, calcitriol is tightly regulated in a negative feed-
back mechanism [33,41]. Calcitriol inactivation primarily involves modification by CYP24A1,
which is among the most prominent targets of the calcitriol–VDR–RXR complex (Figure 1) [42].
In addition, calcitriol can also induce CYP24A1 expression by recruiting histone H4 acetyl-
transferases and RNA polymerase II to a site approximately 50–70 kb downstream of the
human CYP24A1 gene [43]. So, calcitriol signaling levels are tightly kept in control by
calcitriol-driven expression of CYP24A1.

Independently, vitamin D metabolism is regulated by two hormones, parathyroid
hormone (PTH) and fibroblast growth factor-23 (FGF-23), both of which maintain the
calcium and phosphate homeostasis [44]. PTH, secreted by the parathyroid gland in
response to calcium levels, stimulates the expression of CYP27B1, leading to an increase in
calcitriol production [45]. Although calcitriol signals its degradation via CYP24A1, PTH
sustains calcitriol levels by activating the renal cAMP–PKA pathway and invoking the
CYP24A1 mRNA degradation [46]. FGF-23, secreted by osteoblasts and osteocytes in
response to both phosphate and calcitriol levels [42], reduces serum calcitriol levels by
inhibiting the expression of CYP27B1 and simultaneously enhancing the expression of
CYP24A1 in the kidney [47].

3. Transcriptional Regulation of Target Gene Expression by Vitamin D
3.1. Genomic Response to Calcitriol

In its target tissues, calcitriol induces diverse biological functions both by genomic and
nongenomic routes [1,48,49]. In order to elicit transcriptional responses, calcitriol binds to
cytosolic VDR (a ligand-activated transcription factor and member of the nuclear receptor
family), calcitriol binding promotes VDR phosphorylation, and hetero-dimerization with
the retinoid-X receptor (RXR), and, finally, the nuclear translocation of the complex [50].
The calcitriol–VDR–RXR complex associates with vitamin D response elements (VDRE) in
the promoter region of its target genes and recruits transcriptional cofactors to regulate the
expression of its target genes (Figure 1). This process is also facilitated by protein–protein
interactions (such as with the autophagy adaptor protein p62/SQSTM1) that enable the
VDR–RXR binding to VDREs by directly binding to VDR and RXR [51].

As already stated, the effect of calcitriol on gene expression is manifested via the
calcitriol–VDR–RXR complex. However, the expression of vitamin D targets also de-
pends on whether the transcription start site and the VDR-binding sites are inside acces-
sible chromatin structures [52]. It has been noted that calcitriol has the potential to elicit
changes in the accessibility of chromatin, affecting a significant number of loci in leukemia
(THP-1) cells [53,54]. Furthermore, VDR participates in large protein complexes with chro-
matin modifiers, such as KDM6B and BRD7, to provoke epigenetic alterations in cancer
cells [55,56]. Usually, primary vitamin D target genes expression is effectuated within 4 h
after stimulation with 1,25(OH)2D3 [54]. However, there are genes not directly regulated
by calcitriol, but their expression depends on regulatory molecules encoded by primary
vitamin D targets. Transcriptome-wide investigation of calcitriol response identified both
primary and secondary vitamin D target genes involved in processes such as cell cycle and
epigenetic control, proliferation, apoptosis, immune regulation, and angiogenesis [53].

3.2. Nongenomic Response to Calcitriol

Conversely, in the nongenomic pathway, calcitriol binds to membrane-bound recep-
tors identified as 1,25D-Membrane-Associated Rapid Response Steroid-binding protein
(1,25D3-MARRS). MARRS, also known as ERp57/PDIA3, is a multifunctional protein
connected with the rapid cellular response to calcitriol [57]. Interestingly enough, during
oxidation stress, MARRS/PDIA3 impedes PERK (PKR-like ER kinase) activation, which
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was found to interfere with the hypoxia signaling [58,59]. Interaction with transmembrane
receptors induces rapid responses via cell signaling pathways, including phospholipase
A2/PKC- and calcium-mediated signaling, mitogen-activated protein kinase (MAPK) cas-
cade through direct protein–protein interactions with intracellular signaling molecules
(Figure 1) [48,60,61]. As such, it was found that MARRS can mediate calcitriol signaling
independent of VDR and affect mammary gland development, osteoblast maturation, or fat
accumulation [62–64]. Moreover, sequestration of MARRS/PDIA3 or membrane-associated
VDR on caveolae invaginations of the plasma membrane significantly contributes to the
nongenomic calcitriol signaling [57]. According to recent studies, in a calcitriol-dependent
manner MARRS/PDIA3 and VDR, separately or in concert, associate with caveolins and
efficiently activate phospholipase A2, c-Src, and MAPK signaling to elicit intracellular
changes [65–67].

4. Vitamin D Crosstalk with HIF Signaling

Since most of the known consequences of hypoxia are elicited via the HIF family of
transcription factors, in this paragraph we discuss the HIF-regulation pathway and the
possible interconnection with calcitriol-elicited changes.

Hypoxia-Inducible Factors (HIFs) act as heterodimers consisting of an oxygen-labile
HIF-α subunit and a constitutively expressed HIF-β subunit (also called ARNT). The
active heterodimer binds to specific DNA sequences of their target genes, named hypoxia
response elements (HREs), recruits general co-activators such as CBP/p300, and leads to the
expression of several hundreds of genes. Three HIF-α subunits (HIF-1α, HIF-2α, HIF-3α)
have been described, of which HIF-1α and HIF-2α are the most studied and considered the
predominant activators of hypoxia-induced gene transcription [68–72].

The canonical HIF-α regulation pathway requires their oxygen-dependent hydroxyla-
tion at proline (Pro) and asparagine (Asp) residues, respectively. Under normal oxygen
conditions, HIF-α subunits are hydroxylated at two conserved proline residues located in
the ODDD domain by the proline hydroxylase enzymes (PHD, Prolyl, Hydroxylase Do-
main). This modification promotes the binding of the Von Hippel Lindau tumor suppressor
protein (pVHL), driving to HIF-α ubiquitination and its subsequent, rapid degradation
in the proteasome. An additional hydroxylation at a conserved asparagine residue in the
C-TAD domain HIF-α by an enzyme known as the HIF inhibitor (Factor Inhibiting HIF,
FIH) inhibits the recruitment of CBP/p300 to HIF-α, thereby attenuating HIFs transcrip-
tional activity. In hypoxic conditions, however, the aforementioned hydroxylation events
are inhibited due to the inactivation of PHDs and FIH, resulting in the stabilization of
the HIF-α protein and activation of HIFs [73]. Although HIF-1α and HIF-2α possess a
high amino acid homology and are able to bind to the same HRE sequences, they occupy
distinct genomic sites and activate different sets of genes, depending on the cell types [74].
Moreover, HIF-1α and HIF-2α display divergent subnuclear localization, with HIF-2α
accumulating in specific nucleus structures (speckles), close to active RNA polymerase, and
HIF-1α uniformly distributed within the nucleus [75]. Additionally, there is contradicting
evidence that a substitution mechanism exists when a single HIF-α isoform is suppressed.
Some studies demonstrate that neither HIF-1α nor HIF-2α could replace the insufficient
DNA binding due to the absence of the other HIF-α isoform. In contrast, others have shown
that the silencing of a single HIF-α variant could be replenished by the overexpression of
the other HIF-α isoform [76,77], thus promoting cancer cells’ survival.

Numerous data demonstrate that multiple regulatory mechanisms enable strict control
of HIF-α subunits to ensure fine tuning and subsequent cellular adaptation to hypoxia.
These regulatory mechanisms involve extensive post-translational modifications of the
alpha subunits [78] and their association with various proteins.

4.1. Transcriptional Regulation of HIF-α and Calcitriol

One of the pathways that result in the increased production of HIF1A mRNA involves
activation of the JAK/STAT3 pathway [79–83]. Furthermore, PI3K/AKT and ERK1/2
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signaling affect HIF-1α transcription in response to reactive oxygen species (ROS) generated
by arsenite [84]. In particular, ROS enable the recruitment of nuclear factor erythroid 2-
related factor 2 (NRF2) to an antioxidant response element (ARE) located approximately
upstream of the HIF-1α transcriptional start [84,85] (Figure 2).

Figure 2. The implication of calcitriol signaling in the transcriptional regulation of HIF1A and EPAS1
genes. Calcitriol binding to VDR results in the expression of proteins that control the activity of
STAT3-, NRF2-, NF-κB-dependent pathways, and interferes with HIF1A transcription. There are
also data suggesting that VDR directly inhibits HIF1A expression, albeit in the absence of calcitriol.
Moreover, the calcitriol-VDR complex indirectly controls EPAS1 transcription by enhancing the
expression of IGFBP3 protein.

As already mentioned, inflammatory conditions affect HIF-1α mRNA levels by the
upregulation of the NF-κB transcription factor signaling pathway [86–88]. More specifically,
phosphorylation of the IkB protein (Inhibitory kB) and subsequent activation of NF-κB
subunits (p50 and p65 subunits (RelA) affects HIF1A mRNA in response to thrombin, H2O2,
and short-term hypoxia [88,89]. Moreover, TNFα (Tumor Necrosis Factor-α) induces the
transcription of HIF1A mRNA and protein but inhibits the hypoxic stimulation of HIF-1
transcriptional activity in airway smooth muscle cells [90] (Figure 2).

Another study has demonstrated a mechanism for maintaining nitric oxide (NO)
homeostasis in macrophages in which HIF-1α and HIF-2α isoforms act competitively.
When the interferon-γ concentration is low, the transcription of EPAS1 is induced, leading
to an increase in the expression of Arginase 1 and a decrease in NO production. In
contrast, the elevation of interferon-γ concentration leads to the induction of HIF-1A and a
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subsequent increase in the expression of inducible Nitric Oxide Synthase (iNOS) and NO
production [91].

Epigenetic modifications also control HIF-2α transcription. MBD3 (Methylated CpG
binding protein 3) binds to the EPAS1 gene promoter and facilitates its transcription [92].
In addition, HIF-2α transcription has been reported to be controlled by the IGF1R signaling
(Insulin-like Growth Factor 1 Receptor) and the activity of PI3K (phosphoinositide 3-kinase)
and the mTORC2 complex (mTOR Complex 2) [93]. In summary, IGF-II drives EPAS1
mRNA expression in hypoxic neuroblastoma cells, which is executed via IGF1R/INSR–
PI3K–mTORC2 signaling, whereas HIF-1α is regulated only at the protein level via PI3K–
mTORC1. Cezanne deubiquitinase is also involved in the regulation of HIF-2α mRNA
synthesis (Figure 3). Through its deubiquitinase activity, Cezanne controls the levels of
the E2F1 transcription factor protein (E2F transcription factor 1) that directly binds to
the EPAS1 gene promoter [94]. Moreover, EPAS1 gene expression is downregulated by
the deacetylases of HDAC class I/II histones. Decreased expression of HIF-2α enhances
calcium signaling, leading to increased mTORC1 complex activity and induction of cell
proliferation in sarcoma mice [95].

Figure 3. HIF-1/2α subunits regulation by calcitriol at the level of their protein synthesis. HIF-1/2α
mRNA translation is mainly regulated by the PI3K/AKT pathway, which frequently cross-talks with
ERKs. Calcitriol in complex with VDR enhances DDIT4 expression and impairs mTORC1-mediated
translation of HIF-1/2α. Furthermore, calcitriol treatment results in decreased phosphorylation of
PI3K/AKT-pathway components and limits HIF-1/2α translation rates.



Cancers 2022, 14, 1791 8 of 25

Given the oncogenic potential of activated STAT3, the ability of calcitriol to repress
signaling mediated by this transcription factor is paramount among its antineoplastic
effects. In this regard, the constitutive activation of STAT3 has been shown to mediate
growth, survival, and invasion of breast cancer cells [96]. At the same time, vitamin
D analogs, such as Gemini, could markedly repress CD44-STAT3 signaling, suggesting
its potential to inhibit breast cancer invasion [97]. Moreover, in an in vivo and in vitro
preclinical study of gastric cancer, another noncalcemic analog of vitamin D, paricalcitol,
showed a robust capacity to disrupt inflammation-dependent tumor promotion. Indeed,
paricalcitol significantly suppressed the expression of inflammatory mediators such as
COX-2 while strongly reducing the levels of phosphorylated STAT3 by limiting the level of
NF-κB in the nucleus [98].

Supporting the opposing functions between HIF-signaling and calcitriol in cancer,
calcitriol has been shown to intrinsically block NF-κB activity and downregulate NF-κB
protein levels in a variety of cell types [99–102]. A partial mechanistic rationale for the
anti-inflammatory effects of calcitriol comprises the stimulation/stabilization of the NF-
κB inhibitory protein α (IκBα), the physical interaction of the VDR with IκB kinase β

protein (IKKβ), and the blocking of NF-κB binding to DNA, all of which result in NF-κB
inhibition [103,104]. These inhibitory effects of calcitriol upon NF-κB are highly relevant for
medical oncology, given the critical role that NF-κB plays in cancer pathogenesis and that
it is constitutively expressed in several types of malignant tumors [105]. Indeed, NF-κB
activation has been shown to regulate the expression of many genes involved in oxidative
stress, cellular transformation, proliferation, inflammation, antiapoptosis, angiogenesis,
invasion, metastasis, and numerous other potentially carcinogenic processes [105–107].

One study has demonstrated that calcitriol-mediated antiproliferative effects on tumor-
derived endothelial cells (TDEC) are VDR dependent and that loss of VDR in knockout
models can lead to an increase in HIF-1α, VEGF, Ang1, and PDGF-BB levels and subse-
quent abnormal tumor angiogenesis [108]. These results corroborate our observations that
silencing of VDR in the absence of calcitriol induces the transcriptional activity of both
HIF-1 and HIF-2. This could imply the existence of an additional regulatory mechanism
of HIF-1/2 by VDR alone that does not require calcitriol binding to VDR. One specula-
tion could be that VDR, in the absence of calcitriol, is bound either to the promoters of
HIF1A/EPAS1 genes or the promoters of HIF-1/2 target genes. Moreover, VDR leads to
the deactivation of NF-κB by creating a complex with the IKKβ protein. At the same
time, NF-κB transcriptionally activates HIF-1, as has already been discussed [87,88,103].
Thus, these mechanisms explain the amplification of HIF transcriptional activity after VDR
silencing (in the absence of calcitriol).

In other studies, calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of
Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial
cells [109]. In many malignant cells, calcitriol modulates growth-factor actions such as
upregulation of the expression of the insulin-like growth factor binding protein-3 (IGFBP-3)
gene in PCa cells, which in turn leads to an increase in the expression of p21, causing
cell cycle arrest and inhibits NF-κB activation and indirectly influencing the expression of
HIF-α mRNA [88,103].

Taken together, there are substantial data indicating that calcitriol interferes with
important signaling cascades that affect HIF-α mRNA expression.

4.2. HIF-α Translation and Calcitriol

Elevated HIF-1/2α mRNA translation levels increase protein levels and, as expected,
HIF-1/2α activity, mainly in cells exhibiting activation of PI3K-AKT-mTOR pathway, which
is a common feature of cancer cells. More specifically, growth factors activate a tyrosine ki-
nase receptor, which in turn activates PI3K and MAPK. PI3K activates the serine/threonine
kinase AKT (also known as protein kinase B, PKB) and the mTOR protein (mammalian
Target of Rapamycin). In the MARK pathway, ERK1/2, which has been activated by the
MEK, in turn, activates the MNK (MAPK interacting protein kinase). ERK and mTOR
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phosphorylate the p70 S6 kinase (S6K) protein, which then phosphorylates the S6 ribosomal
protein and binds to the eukaryotic translation initiation factor 4E (eIF-4E) protein (4E-BP).
The binding of 4E-BP1 to eIF-4E is inhibited by its phosphorylation by mTOR and ERK and
results in the translation of 5′ envelope mRNAs. MNK also phosphorylates eIF-4E and stim-
ulates its action directly. The result of this pathway is the increased translation of a specific
group of mRNAs, including HIF-1/2α [110]. The above mechanism of action of the PI3K
pathway may lead to the induction of HIF-1α by hormones such as angiotensin II, thrombin,
insulin, and endothelin in vascular smooth muscle cells and by lipopolysaccharides (LPS)
in macro (LPS). Additionally, HIF1A mRNA translation rates are also dependent on PERK
activation, which phosphorylates and inactivates eukaryotic initiation factor 2α (eIF2α),
limiting HIF-1α synthesis [59]. Interestingly, calcitriol receptor MARRS/PDIA3 has been
shown to prevent PERK kinase activation in the unfolded protein response pathway [58].
References to HIF-2α are limited, showing that IGF-1 has been described to induce HIF-2α
via the PI3K pathway, thereby inducing VEGF expression in osteoblast cells [110,111].

Studies on mTOR have shown that there are two distinct mTOR complexes called
mTORC1 and mTORC2. The mTORC1 complex is sensitive to rapamycin inhibition and
consists of mTOR and Raptor protein (regulatory-associated protein of mTOR). mTORC1 is
activated by AKT and then induces protein synthesis by phosphorylation of p70 S6 kinase
and 4E-BP1. In contrast, mTORC2 is not inhibited by rapamycin, is composed of mTOR
and Rictor protein (a rapamycin-insensitive companion of mTOR), and activates AKT
via phosphorylation [112]. Until recently, no link was found between HIF-2α and mTOR.
However, a recent study showed that HIF-2α expression depends on mTORC2, which is
regulated by cellular redox status, whereas HIF-1α expression depends on both mTOR
complexes in renal cancer cells. Additionally, the same work studied the dependence of
HIF-1/2α expression on AKT. Out of the three different AKT isoforms (AKT1, AKT2, AKT3),
it was observed that the expression of HIF-2α depends on AKT2 while the expression of
HIF-1α on AKT3 [113,114].

In this HIF-1/2α regulatory pathway, calcitriol can indirectly influence HIF-1/2α
synthesis by moderating PI3K activation by increasing the expression of PTEN in a VDR
dependent manner [63,115].

Notably, we have recently reported a VDR-independent mechanism by which calcitriol
influences both HIF-α mRNA expression levels. Treating hepatoma cells with calcitriol
resulted in HIF1A and EPAS1 mRNAs localization in ribosomal fractions that are associated
with low translation rates. Furthermore, calcitriol treatment resulted in decreased phospho-
rylation levels of AKT and downstream translation initiation factors (Figure 3) [116].

Another way that calcitriol effects AKT/mTOR pathway is by inducing the expression
of DDIT4 (DNA damage-inducible transcript 4 or REDD1), which enables the assem-
bly/activation of TSC1/2, keeping mTOR and its downstream targets inactive [117,118].
Concurrently, HIF-1 induces the expression of DDIT4/REDD1, which in a negative feedback
loop impairs mTORC1, HIF-1α accumulation and suppresses tumor growth [119].

4.3. HIF-α Post-Translational Phosphorylation and Calcitriol

Extensive investigation during the past decades has shown that HIF-1α and HIF-2α
are significantly controlled by diverse intracellular signaling pathways not directly affected
by oxygen levels. Most of these pathways culminate in HIF-1α/HIF-2α phosphorylation,
which regulates their stability, localization, protein interactions, and subsequently activity
(Figure 4) [25,78].
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Figure 4. Involvement of calcitriol in the posttranslational regulation of HIF-1/2α. Both HIF-1/2α
subunits are decorated by multiple phosphorylation events that control their stability, nucleocytoplas-
mic shuttling, and transcriptional activity. Calcitriol can indirectly interfere with these modifications
by associating with plasma membrane receptors and modulating intracellular signaling cascades.

HIF-1α can be directly phosphorylated by several kinases, including GSK3, PLK3,
ATM, PKA, CDKs, which affect its stability. GSK-3β-mediated phosphorylation targets
HIF-1α on multiple residues and decreases its protein levels in a process regulated by
USP28/SENP1 [120–122]. It has been shown that calcitriol reduces the secretion of IL-1β,
which inhibits GSK-3β [123]. Another HIF-1α destabilizing modification is mediated by
direct HIF-1α phosphorylation at two sites (S576 and S657) by Polo Like Kinase 3 (PLK3)
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that targets HIF-1α for degradation in a VHL-independent manner [124]. On the contrary
stabilizing phosphorylation is mediated by ATM, PKA, CDKs [78,125–127]. Interestingly,
calcitriol has been found to interfere with CDK-mediated signaling in cancer cells (see also
Section 5) [128,129].

A direct phosphorylation on the C-TAD domain that positively affects HIF-2α activity
is mediated by casein kinase 2 (CK2). It reduces HIF-2α affinity for Factor Inhibiting HIF
(FIH), explaining the increased transcriptional activity of HIF-2 [130,131]. In line with
this, protein kinase CK2 positively regulates the calcitriol-inactivating enzyme CYP24A1
reducing its antitumor effect [132].

Casein kinase 1δ (CK1δ) modifies HIF-2α on two amino acid residues (S383, T528),
contributes to the accumulation of HIF-2α in the nucleus, and activates HIF-2-mediated
transcription [133]. In opposition, CK1δ decreases HIF-1 transcriptional activity by phos-
phorylating the HIF-1α subunit on Ser247 inhibiting its dimerization with ARNT [134,135].
HIF-1α and HIF-2α show high amino acid homology in the PAS-B domain, where the two
HIF-1/2α subunits are modified by CK1δ. Thus, the fact that CK1δ phosphorylates the two
HIF-1/2α subunits into discrete residues and regulates their action in the opposite way is
of great interest.

Previous work from our laboratory has established that direct phosphorylation of
HIF-1α/HIF-2α by ERK1/2 has a profound effect on HIF-1/HIF-2 activity and cancer cell
adaptation to hypoxia [136–138]. More specifically, phosphorylation of HIF-1α by ERK1/2
at residues Ser641/643 that reside inside a small domain termed ETD (ERK Targeted Do-
main; amino acids 616–658) masks a nearby CRM1-dependent nuclear export signal (NES),
inhibits HIF-1α nuclear export and increases HIF-1 transcriptional activity [138,139]. More-
over, this phosphorylation mediates the association of HIF-1α with NPM1, augmenting
HIF-1 activity and cellular response to hypoxia [137]. ERK1/2 also modifies HIF-2α and
controls its nucleocytoplasmic shuttling. ERK1/2 phosphorylate HIF-2α at residue S672
and stimulates the transcriptional activity of HIF-2 by inhibiting its CRM1-dependent
nuclear export [136,140]. Furthermore, in a recent report, it was shown that ERK1/2 modify
HIF-2α inside the oxygen-dependent degradation domain and enhance its interaction with
hypoxically induced USP33, which deubiquitinates HIF-2α and leads to its stabilization
preferentially in glioma stem cells [141]. It has been shown that ERK1 and ERK2 kinases are
activated in VDR-positive and -negative breast cancer cell lines. VDR+ cells show a bipha-
sic activation, a rapid response pathway, and a VDR-dependent response. In VDR– cells,
ERK activation only occurs early on [142]. Although it seems contradictory that calcitriol
activates ERKs that stimulate HIF activity, the profound effect of calcitriol on HIF-1/2α
mRNA translation rate possibly explains calcitriol’s anticancer properties (See Section 4.2).

5. Cancer–Hypoxia–Vitamin D

Cells in solid tumors frequently encounter a drop in oxygen levels that depends on cel-
lular proliferation rates, aberrant vasculature, and distance from oxygenated perivascular
areas [143]. This developing hypoxic microenvironment is a critical factor that determines
the biological behavior of cancer cells and their fate. Under these conditions, cells overex-
press HIFs, which activate the transcription of hundreds of target genes and drive cancer
progression. Thus, HIF-1α expression in many common human cancers is associated with
increased patient mortality [144]. Apart from reduced oxygen levels, HIF expression in
tumors is a result of genetic alterations such as the loss or mutation of a tumor suppressor
(e.g., VHL in ccRCC) [145].

Activation of HIFs drives cancer progression by initiating a cascade of events that
include the metabolic reprogramming of cancer cells that, along with resistance to apop-
tosis, sustain cell survival and proliferation, angiogenesis, inflammation, and immune
evasion and epithelial to mesenchymal transition, extracellular matrix remodeling that
support invasion and metastasis [25,143]. It is very intriguing that calcitriol-mediated
signaling opposes and inhibits all these cancer-promoting functions of HIFs and supports a
proapoptotic phenotype (Figure 5 and Table 1).
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Figure 5. Calcitriol and HIF-1/2 cross-talking in hallmarks of cancer. HIF-1/2-mediated transcription
governs essential processes implicated with adaptation to the hypoxic microenvironment of solid
tumors and promotes cancer progression. There is accumulating evidence that calcitriol interferes
with these particular events and opposes the advancement of the malignant phenotype, rendering
calcitriol or its analogs promising agents for chemoprevention and treatment.

A distinguishing characteristic of cancer cells is the upregulation of glycolysis to
sustain energy and generate biomass. This switch to anaerobic metabolism is greatly
enhanced under hypoxia and mediated by HIF activation and subsequent expression
of glycolysis-supporting proteins such as GLUT1, HK2, and LDHA [146]. Interestingly,
calcitriol significantly impaired the expression of these critical glycolytic proteins in an
HT29 subcutaneous xenograft mouse model [147].

Table 1. Signaling pathways or cellular processes affected by calcitriol in various cell- or
animal-based models.

Model Pathway/Process Affected by Calcitriol References

HT29/SW480 cell lines and HT29 NOD/SCID
mouse xenografts

Suppression of glycolysis and reduced tumor
xenograft volume [147]

SW480, SW620, SKBR-3, HEK 293, NCI-H28 cell lines Inhibition of β-catenin–TCF
mediated transcription [148,149]

C57BL/6J
Apc +/+ and Apc −/+ mice

Reduced β-catenin signaling and
polyp number [150]

SW480-ADH cells and SW480-ADH xenografts in
immunodeficient mice Induction of Wnt antagonist DKK-1 [151]

SW480-ADH, HEK293Tcells Reduction Wnt-activator DKK-4 [152]

A431, NR6, HeLa, BT549, Caco-2 cells EGFR targeting to early endosomes reduction of
ERK1/2 activation [153–155]

MCF-7, Hs578T, prostate epithelial, and
immortalized prostate epithelial P153 cells

Inhibition of proliferation
due to reduced IGF signaling [156,157]
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Table 1. Cont.

Model Pathway/Process Affected by Calcitriol References

LNCaP and DU145 cells and prostate specific
PTEN-knock out mouse Inhibition of prostate cancer cell growth [63]

LNCaP-FGC cell line Cell cycle arrest and decreased cell proliferation due to
CDK-2 downregulation [158]

LNCaP and Y79 cell lines Increased apoptosis; decreased Bcl-2 and Bcl-XL and
increased Bax expression [159,160]

HL-60, LNCaP, C4-2, and RWPE-1 cell lines Decreased c-Myc expression and cell proliferation;
promoted differentiation of HL-60 cells [161,162]

LNCaP, PC-3, MRC-5 cell lines, and prostate
adenocarcinoma samples

Inhibition of prostaglandin, IL-6, IL-8 and
NF-κB signaling [163–165]

Wistar rats, C57BL/6J mice, ex vivo mouse choroidal
sprouting model, Inhibition of angiogenesis [166,167]

However, apart from hypoxia, nonhypoxic stimuli such as growth factors (e.g., PDGF,
TGF-β, IGF-1, and EGF) and cytokines activate signaling pathways (PI3K/AKT, MAPK)
that are implicated in cancer cell proliferation and growth, and also affect HIF activa-
tion [93,168–172]. Moreover, it has been observed that in endothelial and hepatocarci-
noma cells, hypoxia can activate ERK-mediated signaling and stimulate their prolifera-
tion [173,174]. On the contrary, a number of growth factor-stimulated pathways have been
shown to be inhibited by calcitriol [16,175].

Activation of Wnt-based signaling leading to the release of β-catenin from APC
(Adenomatous Polyposis Coli) complex is frequently found to be dysregulated in cancers as
it activates transcription of genes heavily involved in cellular proliferation [176]. Cell-based
studies suggested that calcitriol induces binding of VDR to β-catenin and reduction of β-
catenin-mediated gene transcription [148,149]. These observations were also supported by
findings in an APC minus animal model, in which injected calcitriol reduced polyp number
and expression of β-catenin target genes in the small intestine and colon [150]. Independent
of VDR association to β-catenin, calcitriol was reported to restrict Wnt-activator DKK4 and
increase Wnt-antagonist DKK-1 expression [151,152].

Another example of vitamin D’s antiproliferative activity is its implication with mi-
togenic signaling. EGFR signaling is hindered as the activated receptor is targeted by
calcitriol to early endosomes [153]. Furthermore, the VDR can bind on a VDRE present
in the EGFR promoter after stimulation by calcitriol [154]. Additionally, calcitriol re-
duces the expression and activity of the EGFR gene and also represses the SPRY2 gene
(Sprouty RTK signaling antagonist 2), which encodes an activator of intracellular EGF sig-
naling [155,177]. However, the duration of mitogenic signaling is found to elicit a different
cellular response to calcitriol; transient activation of MAPK signaling by EGF enhanced
calcitriol-mediated gene transcription [178] while constitutive activation of MAPK signal-
ing impairs it [179]. Additionally, vitamin D and its analogs inhibit insulin-like growth
factor 1 (IGF1)-stimulated signaling. This effect was associated with increased release
of IGF binding protein 3 (IGFBP3), which is known to limit the ability of IGF1 and IGF2
to interact with their respective receptors [156,157]. The IGFBP3 gene promoter contains
a VDRE, which after EMSA and ChIP analysis, is suggested to be directly regulated by
calcitriol [180]. At the same time, antisense oligonucleotides against IGFBP3 abolished the
calcitriol-mediated growth arrest [181]. Another critical signaling pathway involved in
cell survival and growth is based on signaling on AKT activation. Calcitriol attenuated
PI3K pathway activation by increasing the expression of PTEN, which negatively regulates
the associated kinases. Thus, calcitriol-induced blockade of cell growth is connected to
reduced AKT phosphorylation levels. It was also found that the PTEN promoter contains a
functional VDRE guided by VDR [63,115].
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Moreover, control of the cell cycle is interlaced with cellular growth. Calcitriol inhibits
the proliferation of prostate cancer cells by disrupting the cell cycle in the G1/G0 [158,175]
phase through a p53-dependent mechanism. In particular, calcitriol increases the expression
of p21Waf/Cip1 kinase inhibitors and p27Kip1 [158,182,183], leading to reduction i cyclin-
dependent kinase 2 (CDK2) activity and hyper-phosphorylation of the retinoblastoma
protein (pRb). Cdk1 phosphorylation leads to cell cycle progression. Expression of CDK1
mRNA was suppressed after calcitriol treatment while cell cycle arresting proteins such as
RBL2 (Rb-like protein p130) and RBBP6 (Rb binding protein 6) were up-regulated [128,129].
At the same time, longtime treatment of cells with calcitriol or analogous agents for more
than 24 h (indicative of indirect vitamin D effects) decreased the mRNA levels of cyclins A,
B, and F [184,185].

Evading apoptosis is another critical aspect of solid tumors. Cancer-associated hypoxia
has been involved with resistance to apoptosis by enhancing the expression of antiapoptotic
proteins such as BNIP3/3L, NDRG, MCL1, and NPM1 [73]. Apart from transcriptional
reprogramming, it has been shown that hypoxia triggers the proteolytic processing of
mitochondrial VDAC1 and a C-terminally truncated form (VDAC1-∆C) is produced and
protects from pharmacologically induced apoptosis [186,187]. There is also evidence that
a nonmodified by ERKs mitochondrial HIF-1α form protects cancer cells from apoptosis
under hypoxia [188]. Concerning calcitriol, it has been demonstrated that calcitriol induces
apoptosis in prostate and breast cancer cells by breaking down mitochondria and activating
the endogenous apoptosis pathway. In this case, apoptosis is stimulated by suppressing
the expression of antiapoptotic proteins such as Bcl-2 and Bcl-XL and by increasing the
expression of proapoptotic protein Bax at the same time [159].

In a process opposing cell proliferation, calcitriol stimulates the differentiation of
normal and cancer cells. Notably, calcitriol triggers a variety of immature hematopoietic
myeloid cells to differentiate into mature cells, including M-1 mouse myeloid leukemia cells,
human promyelocytic U9 cell cells, and human HL-60 monocyte leukemia cells. It stimulates
myeloid leukemia cell lines to eventually differentiate into monocytes/macrophages [183]. In
HL-60 cells, the calcitriol-induced commitment to differentiation appears to be induced
via the suppression of the c-Myc oncogene expression [161]. It also seems to diminish the
expression of c-myc in prostate cancer cells, including the androgen-dependent cells [162].

Additionally, there is strong evidence that inflammation contributes to the devel-
opment and progression of many cancers [189,190]. Inflammatory mediators such as
cytokines, chemokines, prostaglandins, and reactive oxygen species (ROS) increase onco-
genesis by activating multiple signaling pathways in tumor tissues. Thus, hypoxia and
HIF-1/2α stabilization are closely linked with changes in gene expression initially pro-
voked by inflammation and therefore have a profound impact on disease progression
and outcome [191]. The anti-inflammatory potential of calcitriol became evident after
studies on prostate and breast cancer cells. Calcitriol exhibits its antineoplastic effects by
regulating some of the major molecular pathways involved in inflammation. It has been
shown that calcitriol leads to inhibition of prostaglandin synthesis (PG) [163], inhibition
of stress-activated kinase signaling [164], and subsequent production of inflammatory
cytokines and inhibition of nuclear factor κB (NF-κB) signaling [102,165], which directly
affects HIF1A gene transcription [87].

Another critical step in the growth, development, and metastasis of tumors is angio-
genesis, the process of forming new blood vessels from existing vessels [192]. The most
prominent proangiogenic stimulant of angiogenesis is VEGF [193]. VEGF expression can
be stimulated due to hypoxia, oncogenic signaling and involves ERK activation and tran-
scriptional regulation by HIF-1α [194–196]. Moreover, hypoxia enhances VEGF production
by stabilizing its mRNA to sustain its protein synthesis rate [197]. Thus, neosynthesized
VEGF leads to the reorganization of endothelial cells and capillary formation. Furthermore,
over-expression of VEGF receptors (VEGFR-2, VEGFR-3) and factors such as angiopoietin-2
that are induced in hypoxic conditions and promote aberrant vessel formation and branch-
ing associated with the aggressive cancer phenotype [198–200]. Contrarily, calcitriol has
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been reported to exert antiangiogenic effects in animal models and inhibit the proliferation
of cultured endothelial cells [166,201]. Furthermore, calcitriol or its noncalcemic analog
(22-oxacalcitriol) have been shown to impair neovascularization in a mouse choroidal
sprouting ex vivo model [167]. Early studies have implied that this kind of activity is medi-
ated in a HIF-1/VEGF axis [202]. Importantly, we have recently demonstrated that calcitriol
reduces VEGF and EPO mRNA levels in liver cancer lines by suppressing both HIF-1α and
HIF-2α protein synthesis by influencing AKT pathway activation and independently of
VDR [116].

Consequently, activation of calcitriol signaling has been correlated with reduced
malignancy and cancer progression. Independent genetic studies in a variety of cancer
types have shown that two distinct VDR gene polymorphisms that either reduce VDR
potency [203] or VDR mRNA stability [204] are correlated with increased risk of cancer
in at least three (breast, prostate, and skin) cancer types (for comprehensive review and
analysis see [205]). Furthermore, epidemiological data show that high vitamin D serum
levels in colon and breast cancer patients are related to favorable outcomes [206–208].
Although these data indicate the great prospect of calcitriol as an anticancer agent, there
are mainly two limiting factors that hinder its broader use: (i) its side effects when calcitriol
is administered in high doses (oral calcitriol dose ranging from 0.5–2.5 µg/kg daily with a
maximum tolerated dose being 1.5 µg or 2.5 µg depending on the study) [208], and (ii) the
decreased availability of calcitriol due to its enzymatic deactivation by the calcitriol-induced
CYP24A1 gene [32]. Concerning the latter, hypoxia induces CYP24A1 levels [20,209] and,
at the same time, it was found that in breast cancers, CYP27B1 levels drop while CYP24A1
levels rise [210]. Moreover, tissue hypoxia (though not in cancer tissues) caused a drop
in VDR, vitamin D binding protein (VDBP), and 25-hydroxylase (CYP2R1) levels while
it increased CYP27B1 and CYP24A1 levels [211]. Thus, hypoxia seems to dysregulate
the calcitriol-driven signaling and instead promotes its deactivation, contributing to the
malignant phenotype. Hence, definitive evidence about the efficacy of calcitriol to treat
cancer has not yet been established clinically. However, few clinical trials, mainly conducted
in prostate cancer patients, have tried the efficacy of calcitriol to treat cancer [208,212]. In an
older study performed on hormone-refractory prostate cancer patients, administration of
calcitriol as monotherapy was inconclusive, as it was terminated at an early stage due to the
emergence of adverse effects [213]. On the other hand, combination treatment of prostate
cancer patients with calcitriol and established chemotherapeutic drugs returned mixed
results [212]. Administration of calcitriol with carboplatin had a negative outcome [214],
whereas the combination of calcitriol with docetaxel showed positive patient response [215].
In both cases, oral calcitriol was administered at 0.5 µg/kg the day before the intravenous
administration of each chemotherapeutic (36 mg/m2 for docetaxel) for 6 weeks on an
8-week cycle [212]. In both cases, the adverse effects of combination treatment were similar
to these of single-agent administration [214,215]. To summarize, clinical application of
calcitriol, although promising, is hindered by its low bioavailability at the cancer site
leading to administration of high calcitriol dosage and the consequent appearance of side
effects [208,216,217].

Taken together, it can be suggested that HIF- and calcitriol-mediated signaling are
interconnected, and that calcitriol can have beneficial effects in hypoxic cancers after taking
into consideration the problems raised from clinical trials with calcitriol. The development
of calcitriol analogs that show less specificity for CYP24A1 but elicit strong VDR responses
could be a solution for the low availability of calcitriol at the cancer site. Parallelly, given the
hypoxic status of many cancers, another opportunity for research arises from the developing
field of specific HIF inhibitors [25,146] that could be tried in combination with calcitriol
or its analogs in various cancer models to establish new clinical applications to treat
cancer. Under this scope, a typical example of HIF-dependent cancer is clear cell Renal Cell
Carcinoma (ccRCC), which occurs due to constitutive activation of HIF-α after pVHL loss
of function in renal cells [218]. Notably, two prototype agents (PT2399, PT2385) designed
to efficiently inhibit HIF-2 activity exhibited significant anticancer potential [219,220].
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Furthermore, initial PT2385 administration to a patient suffering metastatic renal carcinoma
(ccRCC), followed by a Phase I clinical trial in patients with advanced ccRCC, PT2385
showed promising efficacy and tolerability as monotherapy [220,221]. Consistently, a
recent meta-analysis of nine previous studies showed an inverse correlation between
circulating and dietary vitamin D levels and the occurrence of ccRCC [222], suggesting
that a combination of HIF inhibitors (including natural compounds such as flavonoids,
celastrol, and resveratrol [223–225]) and calcitriol could be a potential anticancer strategy
to treat ccRCC.

6. Conclusions

In this review, we aimed to raise the point of the possible convergence between vitamin
D impact on HIFs, their signaling, and more generally, on cancer cells adaptation, survival,
and metastasis under hypoxia. The supposed mechanisms should be further confirmed,
and one of the main points of our review was to indicate these objectives of future research
and not simply review what has been previously achieved.

There is extensive evidence from research performed in cell lines, animals, and patient
samples that signify the contribution of hypoxia and HIF activation to the development
and progression of cancer. However, it is very intriguing that calcitriol elicits the opposite
effects on the same cancer-promoting functions. Given that calcitriol can directly affect HIF-
1/2α mRNA expression, translation, and modifications, it is highly plausible that many
of its anticancer abilities are a result of calcitriol interfering with HIF-associated signaling.
As hypoxia can also directly affect calcitriol hydroxylation (due to lack of oxygen) or
increase the expression of its inactivating enzymes (CYP24A1; [20]), calcitriol or newly
developed analogs can defend against cancer development. However, finding the optimal
clinical application of the vitamin D system is a challenging and multifaceted task that
demands widespread investigation, taking into consideration the hypoxic nature of many
human cancers.
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