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Abstract

Currently, more than 30 000 allogeneic hematopoietic stem cell (HSC) transplanta-

tions have been performed for the treatment of hematological and nonhematological

diseases using HSC from umbilical cord blood (CB). However, the wide utilization of

CB as a source of HSC is limited by the low number of cells recovered. One strategy

to expand ex vivo CB-HSC is represented by the use of bone marrow mesenchymal

stromal cells (BM-MSCs) as a feeder to enhance HSC proliferation while maintaining

HSC stemness. Indeed, BM-MSCs have been recognized as one of the most relevant

players in the HSC niche. Thus, it has been hypothesized that they can support the

ex vivo expansion of HSC by mimicking the physiological microenvironment present in

the hematopoietic niche. Due to the role of placenta in supporting fetal hematopoiesis,

MSC derived from the amniotic membrane (hAMSC) of human term placenta could

represent an interesting alternative to BM-MSC as a feeder layer to enhance the prolif-

eration and maintain HSC stemness. Therefore, in this study we investigated if hAMSC

could support the ex vivo expansion of HSC and progenitor cells. The capacity of

hAMSCs to support the ex vivo expansion of CB-HSC was evaluated in comparison to

the control condition represented by the CB-CD34+ cells without a feeder layer. The

coculture was performed at two different CD34+:MSC ratios (1:2 and 1:8) in both cell-

to-cell contact and transwell setting. After 7 days, the cells were collected and analyzed

for phenotype and functionality. Our results suggest that hAMSCs represent a valuable

alternative to BM-MSC to support: (a) the ex vivo expansion of CB-HSC in both con-

tact and transwell systems, (b) the colony forming unit ability, and (c) long-term culture

initiating cells ability. Overall, these findings may contribute to address the unmet need

of high HSC content in CB units available for transplantation.
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Significance statement

To date, more than 30 000 allogeneic hematopoietic stem cell (HSC) transplantations for the

treatment of hematological and nonhematological diseases have been performed using HSC

from umbilical cord blood (CB). However, the wide utilization of CB as a source of HSC is limited

by the low number of cells recovered and thus they need to be expanded. This article shows

that placenta-derived cells represent a valuable option and can support the ex vivo expansion of

HSC and hematopoietic progenitor cells. Placenta-derived cells could contribute to address the

unmet need of high HSC content in CB units available for transplantation.

1 | INTRODUCTION

During the last 20 years, umbilical cord blood (CB) has become an

attractive source for allogeneic hematopoietic stem cell (HSC) trans-

plantation in addition to other sources such as bone marrow

(BM) aspirates.1-4 Indeed, CB is easily available with a low risk of graft

vs host disease and a high presence of HSCs and hematopoietic pro-

genitor cells (HPCs). However, the limited number of HSC and HPC

obtained from a single CB unit remains insufficient for the complete

reconstitution of BM hematopoiesis in an adult patient.1,5 Many

efforts have been made to circumvent this limitation by a double cord

transplant,6 or by the ex vivo expansion of the HSC and HPC.7,8 As a

matter of fact, a cocktail of selected cytokines relevant for their role

on hematopoiesis and engraftment is nowadays used for the ex vivo

expansion. Three of these, stem cell factor (SCF), thrombopoietin

(TPO), and the Feline McDonough sarcoma (FMS)-like tyrosine kinase

3 ligand (Flt3-L), have been reported as important for triggering the

proliferation, stemness maintenance, and improved engraftment of

the ex vivo-expanded CB-HSC.9,10 In addition, copper chelating

agents11,12 or transcriptional activators and inhibitors13-15 have also

been used to increase HSC and HPC numbers for transplantation.

Currently, the use of feeder cells in combination with various

cytokine cocktails to mimic the niche microenvironment is being

investigated.1,7,8,16 Importantly, in the HSC niche, mesenchymal stro-

mal cells (MSCs) play a pivotal role by regulating the complex molecu-

lar signaling involved in HSC homeostasis.17-20 Nowadays, BM-

derived MSC (BM-MSC) represent the elective source of MSC consid-

ering their function in the HSC niche. However, over the years, sev-

eral groups reported that MSC derived from perinatal tissues, such as

amniotic membrane,21 chorionic villi,22-24 maternal decidua

basalis,25,26 and from the umbilical cord (including Wharton's

jelly),27,28 can constitute an alternative feeder to BM-MSC.

During fetal development, the placenta partly supports hemato-

poiesis, and thus it is conceivable that it is endowed with characteris-

tics common to the hematopoietic niche.29-31 Moreover, perinatal

tissues are considered biological waste after term delivery and are

therefore widely available.

Of particular interest are MSC derived from the amniotic mem-

brane of term placenta (hAMSC). They present a phenotype consis-

tent with MSC from fetal membranes, as suggested by a consensus

paper established during the First International Workshop on

Placenta-Derived Stem Cells in 2008.21,32 In fact, these cells are

marked by the classical MSC proteins CD90, CD44, CD73, and

CD105, while they lack hematopoietic markers CD45, CD34, CD14,33

and human leukocyte antigen-antigen D-related (HLA-DR) and pre-

sent the in vitro differentiation potential toward one or more lineages

including osteogenic, adipogenic, chondrogenic, and vascular/endo-

thelial.21,34 hAMSC also have immunomodulatory activity and are pro-

posed as treatments of inflammatory-related disorders.35,36 Indeed,

several papers reported that hAMSC transplantation triggers regener-

ation in animal models of liver37 and lung fibrosis,38 collagen-induced

arthritis, inflammatory bowel disease, dextran-induced severe colitis,

experimental autoimmune encephalomyelitis (EAE, an animal model

for multiple sclerosis),39 traumatic brain injury,40 and cardiac ische-

mia.41 The therapeutic effects were observed in the absence of cell

engraftment in the injured tissue suggesting that hAMSC act in a para-

crine manner.35,36 This hypothesis was confirmed by studies using

conditioned medium (CM) derived from hAMSC that also demon-

strated beneficial effects in preclinical models of lung fibrosis,42,43 car-

diac ischemia,44 Huntington's disease,45 and skin wound in diabetic

mice.46

Herein, we investigated if hAMSC could represent a valid alterna-

tive to BM-MSC as a feeder layer to support HSC and HPC ex vivo

expansion. We assessed the expansion and maintenance of the most

primitive long-term HSC (LT-HSC), as well as the expansion of short-

term HSC (ST-HSC) that are known to rapidly reconstitute the HSC

niche. We also investigated the expression of adhesion molecules

involved in stemness maintenance and homeostasis of HSC. Our find-

ings suggest that hAMSC can be a valid alternative to BM-MSC for

the ex vivo expansion of the CB-HSC that could help meet the grow-

ing needs of HSC for transplants.

2 | MATERIALS AND METHODS

2.1 | Ethics statements

Amniotic membrane-derived MSC (hAMSC) (n = 11) isolated from

human term placenta and CB mononuclear cells (CB-MNC) (n = 12)

were obtained from healthy women after full-term vaginal delivery or

caesarean section.

BM-MSC (n = 9) were obtained from BM aspirates from healthy

donors.

Samples were processed after informed written consent.
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2.2 | MSC isolation from human BM

BM-MSCs were isolated by plastic adherence as previously

described.47 After isolation, MNCs were then seeded at a density of

0.5 � 106 cells/cm2 in low glucose Dulbecco's modified Eagle's

medium (DMEM), supplemented with 10% fetal bovine serum (FBS),

1% L-glutamine (200 mM L-Glu), and 1% penicillin and streptomycin

(P/S, 10.000 U P and 10 mg/ml; all from Merck, St. Louis, Missouri).

Every 3 days, nonadherent cells were removed, and fresh

complete medium was added. Cells were expanded until 80% con-

fluency and then detached with Trypsin/EDTA solution (0.25%,

Merck) and expanded until passage 2 (p2) by plating at a density of

1 � 104 cells/cm2 in DMEM complete medium at 37�C in 5% CO2.

The cells were cryopreserved in liquid nitrogen at the final con-

centration of 1 � 106 cells/mL in FBS supplemented with 10%

dimethyl sulfoxide (DMSO) (Merck) until use.

2.3 | MSC isolation from human amniotic
membrane

MSCs derived from the human amniotic membrane (hAMSC) were

isolated from human term placentas of healthy women. Isolation, phe-

notype characterization, and cryopreservation were carried out as

previously described.48

Amnion fragments were digested at 37�C for 9 minutes with 2.5

U/mL dispase (VWR, Radnor, Pennsylvania); samples were then trans-

ferred to RPMI complete medium composed of RPMI 1640 medium

supplemented with 10% heat-inactivated FBS, 1% P/S, and 1% L-glu-

tamine. Enzymatic digestion continued with the treatment of the

amnion fragments with 0.94 mg/mL collagenase and DNase I (both

from Roche, Basel, Switzerland) for approximately 2.5 to 3 hours at

37�C. The resulting cell suspensions were centrifuged at 150g. The

supernatant was filtered through a 100-μm cell strainer (from BD Fal-

con, Bedford, Massachusetts) and the cells were collected by centrifu-

gation. Freshly isolated (p0) cells were then cryopreserved in liquid

nitrogen at the final concentration of 1 � 106 cells/mL in FBS sup-

plemented with 10% DMSO until their use.

2.4 | Analysis of BM-MSC and hAMSC phenotype

Both BM-MSC and hAMSC cell populations were analyzed by flow

cytometry for the expression of canonical MSC markers21,33,49: CD90

(clone 5E10), CD105 (clone 266), CD73 (clone AD2), the absence of

hematopoietic markers such as CD45 (clone HI30) and CD34 (clone

581/CD34), and of epithelial markers as CD324 (clone 67A4), the

expression of histocompatibility markers as HLA-ABC (clone

G46-2.6), HLA-DR (clone TU36), and the expression of markers

involved in the maintenance of HSC stemness: nestin (clone

25/NESTIN), ICAM-1/CD54 (clone HA58), and PDGFR-β/CD140b

(clone 28D4).18,50 All antibodies were purchased from BD Biosciences

(BD Biosciences, Franklin Lakes, New Jersey). Cells were kept in

culture for 24 hours in StemSpan™ SFEM (Stemcell Technologies,

Vancouver, Canada) medium in order to mimic the experimental

coculture condition. Then, cells were harvested, counted, and trans-

ferred in micronic tubes (Micronic B.V., the Netherlands). Cells were

washed with PBS and centrifuged at 450g for 5 minutes at 4�C. The

supernatants were discarded, and cells were stained with 40 μL of

eBioscienceTM Fixable Viability Dye eFluorTM 780 (Thermo Fisher Sci-

entific, Massachusetts) (diluted 1:1600 in PBS) for the exclusion of

dead cells according to the manufacturer instructions. Blocking was

performed with immunoglobulin solution (30 μL/sample).

Cells were then stained for all the aforementioned markers at 4�C

for 30 minutes. Intracellular staining for nestin was performed at

4�C for 30 minutes upon fixation and permeabilization was performed

with BD Cytofix/Cytoperm buffer (BD Biosciences). Antigen expres-

sion was detected using FACSAria III (BD Biosciences) and data were

analyzed with FCS express v5 software (De Novo Software, Los

Angeles, California).

2.5 | Mononuclear and CD34+ cell isolation from
human umbilical CB

Samples were collected by umbilical CB aspiration using CB collection

set (JMS Singapore Pte Ltd) and processed immediately. CB-MNCs

were isolated over a Ficoll-paque density gradient medium (1.077

g/mL) (Merck) and centrifuged at 800g for 30 minutes. CB-MNC were

then cryopreserved in liquid nitrogen at the final concentration of

20 � 106 cells/mL in FBS supplemented with 10% DMSO until

their use.

CD34+ HSCs were purified from total CB-MNC by positive selec-

tion using anti-CD34-coated microbeads and MACS® separation col-

umns following manufacturer instructions (Miltenyi Biotec, Bergisch

Gladbach, Germany).

To increase the purity of CD34+ cells, the eluted positive frac-

tions were enriched by a second magnetic separation in Medium Size

column (MS, Miltenyi Biotec). Finally, the CD34+ cell number and via-

bility were determined by Trypan blue exclusion assay. The obtained

samples of CD34+ cells showed a purity > 95% evaluated by flow

cytometry using FACSAria III. Data were analyzed with FCS express

v5 software (De Novo Software).

2.6 | CB-CD34+ cells and MSC cocultures

To analyze the effect of the two different MSC feeders on CD34-HSC

ex vivo expansion, BM-MSC and hAMSC were seeded in 24 well

plates (Corning, New York, USA) in StemSpan™SFEM (Stemcell Tech-

nologies, Vancouver, Canada) medium at two different concentra-

tions, 40,000 and 160,000 cells in 0.5 ml per well, and allowed to

adhere overnight. The day after, MSC were gamma-irradiated at 30Gy

to block cell proliferation and CD34+ isolated HSC (20,000 cells/ in

0.5 ml) were added. The coculture was thus performed with two dif-

ferent CD34+-MSC ratios (1:2 and 1:8). Stem Span SFEM culture
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medium was supplemented with three cytokines necessary for the

expansion and overall survival of CD34+ cells51,52: SCF, Flt-3L and

TPO at the concentration of 30 ng/ml each (all from Miltenyi Biotec).

Cocultures were established either in cell-to-cell contact or using

transwell chambers (0.4 μm pore, polycarbonate membrane; Corning).

To detect the basal effect of the cytokine cocktail on the ex vivo

expansion of CD34+ cells, the control condition represented by the

ex vivo expansion in absence of a feeder layer was included.

Cocultures and CD34+ cells cultured alone were incubated for

7 days at 37�C in humidified atmosphere and 5% CO2. After 7 days,

the mixed population composed of CD34+ HSC and MSC, as well as

the CD34+ HSC cultured alone representative of the basal condition,

was collected and cell proliferation and viability were determined by

Trypan blue exclusion assay. Cells were then analyzed for their

phenotype.

2.7 | Flow cytometry analysis of ex vivo-expanded
CB-CD34+ cells

The ex vivo-expanded CD34+ cells as well as time zero (T0) freshly

isolated CD34+ cells seeded to perform the coculture were phenotyp-

ically analyzed for a panel of antibodies to identify and discriminate

primitive CD34+ cells from the most advanced progenitor.

Cells were harvested as described in paragraph 2.4 and stained with

anti-CD45 (clone HI30), anti-CD45RA (clone REA562), anti-CD34

(clone581) and anti-CD38 (clone LS198-4-3), anti-CD133 (clone AC133),

and anti-CD7 (clone M-T701) for lymphoid progenitors, anti-CD33 (clone

P67.6) for myeloid progenitors, and CD71 (M-A712) for megakaryocyte-

erythrocyte progenitors. In detail, LT-HSCs were identified as CD45RA-

CD34+CD38�CD133+, ST-HSCs as CD45RA�CD34+CD38+CD133�.

For analysis of HPC and most committed progenitors, the gating strategy

was the following: HSC/multipotent progenitors (MPPs) were identified

as CD34+CD38�CD45RA�CD133+CD7�; lymphoid-primed multipotent

progenitors (LMPP) as CD34+CD38�CD45RA+CD133�CD7�, multi lym-

phoid progenitors (MLP) as CD34+CD38�CD45RA+CD133�CD7+; com-

mon myeloid progenitors (CMP) as CD34+CD38+CD45RA�C

D7�CD71�; the granulocyte-monocyte progenitors (GMP) as

CD34+CD38+CD45RA+CD7�CD33+ and, finally, megakaryocyte-eryth-

rocyte progenitors (MEP) as CD34+CD38+CD45R�CD7�CD71+.53,54 All

antibodies were purchased from BD Biosciences except for CD34 that

was purchased from Becton Dickinson. Cells were acquired using

FACSAria III and the analyzed with FCS express v5 software (De Novo

Software).

2.8 | Colony forming unit (CFU) assay

The clonogenic capacity of CD34+ cells expanded after 7 days of

coculture with BM-MSC, hAMSC, or in the control condition was

evaluated by short-term CFU assay. Cells for burst-forming units ery-

throid (BFU-E), colony-forming unite granulocyte-macrophage (CFU-

GM), and CFU-granulocyte/macrophage/erythroid/megakariocyte

(CFU-GEMM) were seeded in duplicate in methylcellulose MethoCult

H4434 classic medium (Stemcell Technologies) in 35 mm petri dishes

(Corning). Cells were incubated for fourteen days at 37�C in a humidi-

fied atmosphere at 5% CO2 according to the manufacturer's instruc-

tions. After 14 days, BFU-E, CFU-GM, and multilineage colonies

(GEMM) were scored in situ.

2.9 | Long-term culture-initiating cell (LTC-IC): bulk
culture assay

To evaluate the capacity of ex vivo CD34+ cells expanded in the pres-

ence of the two different MSC feeders, as well as in the control condi-

tion, to support long-term hematopoietic cell niche reconstitution,

CD34+ cells harvested from primary cocultures with BM-MSC or

hAMSC were tested for LTC-IC assay. M2-10B4 cells (Stemcell Tech-

nologies) were thawed, irradiated (80 Gy), and 3 � 105 cells were

seeded on collagen-coated (Merck) six-well plates (Corning) in Myelo-

Cult H5100 medium (Stemcell Technologies) supplemented with 10�6

M hydrocortisone (Stemcell Technologies) and allowed to adhere

overnight. The day after, 30 000 CD34+ expanded cells were added

to each well. Cultures were maintained for 6 weeks at 37�C in 5%

CO2,
55-57 with half-medium changes once per week. After 6 weeks,

the total cell fraction composed by a mix of nonadherent and

trypsinized adherent cells of each culture was harvested, counted with

Trypan blue exclusion dye, and 50 000 cells were seeded in Met-

hoCult H4435 Enriched medium (Stemcell Technologies) 35 mm dis-

hes for the CFU assay and the total number of colonies obtained were

counted after 14 days.

The frequency of LTC-IC in the starting cell population and the

average number of CFU derived from each LTC-IC were calculated as

previously reported.58-60

2.10 | Statistical analysis

The data are displayed as truncated violin plots histograms with

median and quartile. The parameters were compared using one- or

two-way analysis of variance. Data are representative of at least four

independent experiments. Statistical analysis was performed using

Prism 8 (GraphPad Software, La Jolla, California). A P-value lower

than .05 was considered statistically significant.

3 | RESULTS

3.1 | hAMSCs and BM-MSCs present similar
immunophenotype

BM-MSCs and hAMSCs were confirmed to be morphologically similar

(Figure 1A). Both MSC cell populations expressed the canonical MSC
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F IGURE 1 A, Bright-field microscopy was used to analyze mesenchymal stromal cell (MSC) morphology; scale bar = 500 μm. B,

Immunophenotype of human bone marrow MSCs (BM-MSCs) and amniotic mesenchymal stromal cells (hAMSCs). Phenotype was analyzed by
flow cytometry and in (C) the percentage of positive BM-MSCs (triangle) or hAMSCs (circle) for each marker was represented. Data are presented
as mean ± SD (**P ≤ .01, ****P ≤ .0001) and they are representative of ≥5 different MSC donors. APC, allophycocyanin; BV-421, brilliant violet
421; FITC, fluorescein isothiocyanate; PE, phycoerythrin
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markers CD90, CD105, and CD7321,33 and had a low/absent expres-

sion of hematopoietic markers (CD45 and CD34) and of the epithelial

marker CD324 (Figure 1B,C). Moreover, both BM-MSCs and hAMSCs

expressed HLA-ABC, and were negative for HLA-DR. In addition, both

BM-MSC and hAMSC also expressed markers essential for HSC

stemness: CD54/ICAM-1 (62.61% ± 16.83 SD vs 63.4% ± 0.3 SD);

nestin (83.15 ± 22.84 SD vs 63.01% ± 12.76 SD); and CD140b

(96.89% ± 3.65 SD vs 48.48% ± 8.04 SD), with a significant difference

observed for the expression of CD140b.

3.2 | hAMSCs support the ex vivo expansion of
CB-HSC not only in contact-dependent culture but
also in transwell system

The capacity of hAMSCs to support the ex vivo expansion of CB-HSC

cells was evaluated in comparison to the control condition represen-

ted by the CB-CD34+ cells without feeder layer. The coculture was

performed at two different CD34+:MSC ratios (1:2 and 1:8) in both

cell-to-cell contact and transwell conditions. Data were analyzed as

total number of cells counted (Figure 2A) and as fold increase

(Figure 2B) obtained by the ratio between the total number of cells

collected after 7 days of coculture with MSCs vs the basal control

condition (CTR) (first lane Figure 2A).

In cell-to-cell contact, both concentrations of BM-MSCs induced

a significant increase of the ex vivo-expanded HSCs with a fold

change of 2.39 ± 0.73 SD and 2.41 ± 1.01 SD, respectively, in com-

parison to the CTR (Figure 2B). Similar results were obtained for the

transwell setting where there was a 2.55 ± 1.26 SD and 3.09 ± 1.31

SD fold increase compared with the CTR (Figure 2B). Notably, in cell-

to-cell contact, hAMSCs were able to induce a stronger proliferation

reaching a fold increase of 3.27 ± 0.99 SD and 4.23 ± 1.53 SD (1:2

and 1:8, respectively). Both ratios of hAMSCs in the transwell setting

supported ex vivo expansion of CD34+ cells with a fold increase of

2.98 ± 1.39 SD and 5.63 ± 2.09 SD (1:2 and 1:8, respectively)

(Figure 2B).

3.3 | hAMSCs expand both short-term and long-
term HSC

Different studies have correlated the proliferation rate with the differen-

tiation state of CD34+ cells.61-63 In order to evaluate the ability of the

two MSC feeders not only to favor CD34+ ex vivo expansion, but also

to preserve their stemness, the expansion of the primitive progenitor

subpopulations, named LT-HSC (identified as CD34+CD38�CD133+)

and ST-HSC (identified as CD34+CD38+CD133�), was evaluated by

immunophenotype analysis (Figure 3).

At both CD34+:MSC ratios analyzed, BM-MSCs induce a modest

expansion of LT-HSC in the contact setting (2.63 ± 0.71 SD and 2.46

± 1.03 SD for 1:2 and 1:8, respectively) compared with the CTR con-

dition represented by CD34+HSC cultured alone. Comparable results

were obtained for BM-MSCs in the transwell setting (2.76 ± 1.88 SD

and 2.55 ± 2.15 SD for 1:2 and 1:8 ratios, respectively). Similar find-

ings were observed with hAMSCs that were able, in cell-to-cell con-

tact, to stimulate the ex vivo expansion of LT-HSC (1:2 CD34+:MSC

ratio 3.19 ± 3.22 SD vs the CTR condition).

On the other hand, the 1:8 CD34+:MSC ratio determined only a

slight increase (0.75 ± 0.38 SD vs the CTR condition). At both ratios in

the transwell setting, only a slight increase in the total amount of LT-

HSC was observed in comparison to the CTR (2.73 ± 2.24 SD and

2.84 ± 3.29 SD fold change vs CTR for CD34+:hAMSC 1:2 and 1:8,

respectively) and comparable to what previously observed for the

BM-MSCs at the same culture condition.

Furthermore, a higher increase of ST-HSC in the presence of

BM-MSCs was observed in the contact setting (4.22 ± 1.60 SD and

7.17 ± 2.81 SD for 1:2 and 1:8, respectively), while in the transwell

setting a significant increase was observed with the highest BM-

MSC concentration (5.69 ± 2.64 SD and 12.79 ± 6.57 SD for 1:2 and

1:8, respectively). In addition, at the highest hAMSC concentration,

there was an increase of ST-HSC, stronger than that observed when

BM-MSCs were used at the same CD34+:MSC ratio (33.70 ± 10.94

for the hAMSCs vs 7.17 ± 2.81 SD for BM-MSCs). These findings

were confirmed also for the transwell setting (8.61 ± 5.91 SD and

43.40 ± 15.65 fold increase hAMSCs vs CTR for the 1:2 and 1:8

ratios).

F IGURE 2 Effects of human amniotic mesenchymal stromal cells
(hAMSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)
on cord blood hematopoietic stem cells (CB-HSC) ex vivo expansion.
The cocultures were performed with HSCs and BM-MSCs or hAMSCs
at two different CD34+:MSC ratios (1:2 and 1:8), either in cell-to-cell
contact (full) or transwell (oblique lines) setting for 7 days in serum-
free medium supplemented with a cytokine cocktail composed by
stem cell factor (SCF), FMS-like tyrosine kinase 3 ligand (Flt3-L), and
thrombopoietin (TPO). The control condition, indicated as CTR, is
representative of the ex vivo expansion in the absence of a feeder
layer. Results are expressed as total number of cells collected after
7 days of ex vivo expansion. Data are represented as mean ± SD
(*P ≤ .05, **P ≤ .01) from ≥4 independent experiments
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3.4 | hAMSCs support the expansion of both
primitive and committed HPC subsets

The ability of the different feeder layers to foster the expansion of

primitive HSC and the different HPC subpopulations was analyzed.

Herein, the effect of BM-MSCs and hAMSCs on the commitment

toward different primitive HPC lineages (HSC/MPP, LMPP, MLP), as

well as on the most committed lineages (CMP, MEP and GMP), was

analyzed (Figure 4).

No significant differences were observed among the different cul-

ture conditions in the most primitive population represented by

HSC/MPP (Figure 4A). Indeed, in contact and transwell, both ratios of

BM-MSCs were able to trigger an increase in the amount

of HSC/MPP cells (for contact: fold increase of 3.4 ± 2.4 SD and 7.42

± 6.19 SD 1:2 and 1:8 ratios, respectively; for transwell: 3.91 ± 2.43

SD and 5.39 ± 3.70 SD 1:2 and 1:8 ratios, respectively).

Interestingly, hAMSCs in the contact setting and at a 1:2 ratio

with CD34+ led to a strong increase in the number of HSC/MPP cells

(11.68 ± 12.16 SD fold change vs CTR). The other three hAMSCs cul-

ture conditions: the 1:8 ratio in contact and both the transwell set-

tings (1:2 and 1:8 ratios) lead to an increase in the primitive

subpopulations with findings comparable to what observed for the

BM-MSC feeder layers, at the same ratio and culture conditions (2.48

± 1.29 SD, 4.30 ± 2.92 SD, and 6.67 ± 5.63 SD, respectively).

On the other hand, a significant increase in the LMPP subpopula-

tion was observed in the presence of both BM-MSCs and hAMSCs, in

either contact or transwell setting and at both ratios (1:2 and 1:8),

compared with the CTR. At the 1:2 ratio, the effects of hAMSCs and

BM-MSC were comparable (2.55 ± 0.52 SD for BM-MSCs vs 2.45

± 0.34 SD for hAMSCs). At the 1:8 ratio, hAMSCs resulted in a

reduced capability to trigger the expansion of LMPP in comparison to

what observed for the BM-MSCs (2.02 ± 0.43 SD for BM-MSCs

vs0.71 ± 0.29 SD for hAMSCs), while for the transwell setting the

amount of ex vivo-expanded LMPP was comparable to what was pre-

viously observed for BM-MSCs (2.66 ± 1.75 SD and 2.33 ± 2.12 SD

for 1:2 and 1:8 ratios, respectively for BM-MSCs vs 2.92 ± 2.25

SD and 2.8 ± 3.22 SD for the 1:2 and 1:8 ratios, respectively for

hAMSCs).

No significant differences were observed in MLP compartment

among the different conditions.

Importantly, concerning the effects of MSCs on the less primitive

compartments (Figure 4B), hAMSCs were able to significantly induce

the ex vivo expansion of committed HPC toward the CMP or GMP

compartments and, to a lesser extent, the MEP compartment. In partic-

ular, a fold increase of 4.53 ± 1.55 SD and 7.54 ± 2.15 SD for both

CD34+:MSC ratios in the contact setting was observed in the CMP

compartment, and similar findings were observed in the transwell set-

ting (5.77 ± 2.76 SD and 13.11 ± 8.54 SD for 1:2 and 1:8 BM-MSCs

ratios, respectively, in comparison to the CTR). hAMSCs at both ratios

were able to lead to a strong increase of 12.01 ± 5.63 SD and 22.03

± 12.50 SD for 1.2 and 1:8 ratios, respectively, vs the CTR for the con-

tact setting. This was also confirmed for the transwell setting where a

stronger increase was observed for the higher CD34+: MSC ratio

(11.30 ± 7.22 and 34.25 ± 17.92, respectively, for 1:2 and 1:8 ratios).

Moreover, BM-MSCs and most of all hAMSCs were able to

increase the MEP compartment, at both ratios and in both contact

and transwell settings (6.05 ± 1.41 SD and 11.83 ± 3.31 SD for BM-

MSCs vs 16.09 ± 6.24 and 21.90 ± 6.72 SD for hAMSC in contact set-

ting). The transwell setting triggered a stronger increase for both

feeder layers and once again the highest increase was obtained when

F IGURE 3 Effects of human amniotic mesenchymal stromal cells (hAMSCs) and bone marrow mesenchymal stromal cells (BM-MSCs) on
hematopoietic stem cell (HSC) subpopulations: long-term (LT-HSC) and short-term (ST-HSC). The cocultures were performed with CD34+ cells
and BM-MSCs or hAMSCs at two different CD34+:MSC ratios (1:2 and 1:8), either in cell-to-cell contact (full) or transwell (oblique lines) settings,
for 7 days in serum-free medium supplemented with a cytokine cocktail (stem cell factor [SCF], FMS-like tyrosine kinase 3 ligand [Flt3-L], and
thrombopoietin [TPO]). The control condition, indicated as CTR, represents the ex vivo expansion in the absence of a feeder layer. Results are
expressed as total number of LT-HSC (CD34+CD38�CD133+) and ST-HSC (CD34+CD38+CD133�) normalized to the total amount of CD34+

cells after 7 days coculture. Data are represented as mean ± SD (*P ≤ .05, **P ≤ .01, ***P ≤ .001, and ****P ≤ .0001) from ≥4 independent
experiments
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the coculture was performed with hAMSCs (12.53 ± 13.58 SD and

17.90 ± 19.67 SD for BM-MSCs vs7.69 ± 2.54 SD and 32.94 ± 21.53

SD for hAMSCs).

Finally, in the GMP compartment, both MSC, but once again most

of all hAMSCs, were able to strongly induce the expansion and polari-

zation toward this progenitor subset. Indeed, for both settings and

especially at the highest CD34+:MSC ratio, hAMSCs significantly

induced the ex vivo expansion of GMP cells in comparison to the

CD34+ cells expanded using the BM-MSCs feeder layer (13.05 ± 1.4

SD and 13.97 ± 9.47 SD for 1:2 ratio with hAMSCs in contact and

transwell settings, respectively, vs 5.14 ± 1.39 SD and 5.96 ± 4.01 SD

for BM-MSC in contact and transwell settings, respectively). These

differences were significant at the 1:8 ratio and for both settings

(12.17 ± 9.86 SD and 13.70 ± 9.45 SD for BM-MSCS vs 47.84

± 23.69 SD and 57.61 ± 19.25 for hAMSCs).

These findings confirm those in Figure 3, where hAMSCs induced

a stronger increase in the ST-HSC subset in comparison to the most

primitive LT-HSC.

3.5 | hAMSCs support the clonogenic ability of CB
progenitor cells

A CFU assay was performed in order to evaluate the hematopoietic

clonogenic ability of the ex vivo-expanded CB-HPC in different cul-

ture conditions.

F IGURE 4 Effects of human amniotic mesenchymal stromal cells (hAMSCs) and bone marrow mesenchymal stromal cells (BM-MSCs) on HSC
and hematopoietic progenitor cell (HPC) subpopulations. The cocultures were performed with CD34+ cells and BM-MSCs or hAMSCs at two
different CD34+:MSC ratios (1:2 and 1:8, either in cell-to-cell contact (full) or in transwell (oblique lines) setting for 7 days in serum-free medium
supplemented with a cytokine cocktail (stem cell factor [SCF], FMS-like tyrosine kinase 3 ligand [Flt3-L], and thrombopoietin [TPO]). The control
condition, indicated as CTR, is representative of the ex vivo expansion in the absence of a feeder layer. MSC were analyzed for their effects on
the commitment toward (A) different primitive HPC lineages (HSC/MPP, LMPP, MLP) and (B) on committed lineages (CMP, MEP, and GMP). The
results are described as fold increase obtained by the ratio between the total number of cells collected after 7 days of coculture with MSCs vs the
control condition (CTR). Data are represented as mean ± SD (*P ≤ .05, **P ≤ .01, ***P ≤ .001, and ****P ≤ .0001) from ≥4 independent
experiments. CMP, common myeloid progenitor; GMP, granulocytic monocytic progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-
primed MPP; MEP, megakaryocyte–erythrocyte progenitor; MLP, multilymphoid progenitor; MPP, multipotent progenitor
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Regardless of the feeder layer, an increase in the number of total

colonies was observed in comparison to the CTR. In particular, a fold

increase of approximately 2.22 ± 0.74 SD in the number of colonies

was observed after coculture with BM-MSCs at the 1:2 CD34+:MSC

ratio, while a slight increase was appreciated at the 1:8 ratio (2.17

± 0.96 SD). On the other hand, a significant increase was observed in

the transwell setting (fold increase 3.09 ± 4.07 SD and 3.23 ± 4.30 SD

for 1:2 and 1:8 ratios, respectively, in comparison to the CTR). More-

over, similar results were obtained with the hAMSCs feeder layer

(2.68 ± 0.55 SD and 1.8 ± 0.32 SD for the 1:2 and 1:8 CD34+:MSC

ratio in contact setting). Similar to that observed from the coculture

with the BM-MSCs feeder, hAMSCs were also able to induce a signifi-

cant increase in the transwell setting (2.81 ± 4.42 SD and 2.8 ± 4.23

SD for 1:2 and 1:8 ratios, respectively) (Figure 5B).

Importantly, both BM-MSCs and hAMSCs were able to generate

the most primitive CFUs—granulocyte, erythrocyte, macrophage, and

megakaryocyte (also named CFU-GEMM).

In particular, a stronger increase was observed when the

coculture was performed with BM-MSCs in comparison to what was

observed with hAMSCs at both ratios (1.25 ± 0.58 SD and 0.83

± 0.58 for the BM-MSCs in contact setting vs 0.83 ± 0.58 SD and

0.63 ± 0.50 for 1:2 and 1:8 ratios with hAMSCs in contact setting).

Moreover, a stronger expansion in the number of CFU-GEMM by

BM-MSCs, compared with hAMSCs, was also observed in the

transwell setting (4 ± 0.55 SD and 3.75 ± 0.84 SD times higher for 1:2

and 1:8 ratios vs 3.75 ± 1.05 and 3.75 ± 0.84 for 1:2 and 1:8 ratios,

respectively, with hAMSCs). Furthermore, similar results were

obtained also for BFU-E, with a comparable amount was obtained

regardless of the feeder layers used (Figure 5C).

Finally, previous observations obtained from the phenotype

analysis of the different progenitor subsets were confirmed. Indeed,

a specific commitment induced by the hAMSCs toward the GMP

subset was previously observed (Figure 4, lower panel). These find-

ings were also confirmed with this functional assay. Importantly,

both feeders at both ratios in the contact setting were able to

induce a significant increase in the total number of CFU-GM colo-

nies (2.56 ± 4.03, 2.60 ± 4.51 for BM-MSCs vs 3.76 ± 11.24 and

2.10 ± 7.80 for hAMSCs). Similar findings were observed for the

transwell setting, where both BM-MSCs and hAMSCs were able to

induce a significant expansion in the total amount of CFU-GM (3.67

± 9.29, 3.59 ± 21.30 for BM-MSCsvs3.42 ± 17.89 and 3.94 ± 16.54

for hAMSCs).

F IGURE 5 Effects of hAMSCs and BM-MSCs on the clonogenic capacity of cord blood CD34+ cells (CB-CD34+ cells). CD34+ cells were ex
vivo-expanded for 7 days in different culture conditions in MethoCult™ medium. The total number and different types of colonies obtained were

counted after 14 days. A, Bright-field microscopy was used to identify colony subtypes; scale bar = 500 μm. B, Graph represents the number of
colony forming unit with the different cell culture conditions. C, Graph represents the number of each colony forming units after 14 days of
culture in MethoCult™ medium. Data are represented as mean ± SD (*P ≤ .05 and ****P ≤ .0001) from ≥4 independent experiments. BFU-E, burst
forming unit – erythroid; BM-MSCS, human bone marrow mesenchymal stromal cells; CFU-GEMM, colony forming unit—granulocyte,
erythrocyte, macrophage, megakaryocyte; CFU-GM, colony forming unit—granulocytes, macrophages; CTR, control or no feeder layer; hAMSCs,
human amniotic mesenchymal stromal cells
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3.6 | hAMSCs support LTC-ICs

We analyzed the capacity of BM-MSCs and hAMSCs to support LTC-

ICs. We observed an increase of the total number of LTC-IC in the

presence of both feeder layers, in comparison to the CTR (Figure 6).

Indeed, BM-MSCs induced a significant increase in the total num-

ber of LTC-IC for the 1:2 CD34+:MSC ratio, while the increase was

weaker for the 1:8 ratio (12.84 ±16.96 SD for the 1:2 vs 10.12

±14.45 SD for the 1:8 CD34+: MSC ratio). In the transwell setting, a

stronger increase was observed for the 1:8 CD34+:MSC ratio while

no significant differences were observed for the 1:2 CD34+: MSC

ratio in comparison to the CTR (fold increase of 5.93 ± 5.07 SD and

21.79 ± 31.98 for 1:2 and 1:8 ratios, respectively).

Similarly, hAMSCs showed a trend for a higher amount of LTC-IC

than CTR, but the increase was not statistically significant. Indeed, at

the 1:2 CD34+:MSC ratio, hAMSCs cultured in contact with

CD34+cells were able to induce an increase in LTC-IC in comparison

to the CTR (fold increase 6.24 ± 4.06 SD). On the other hand, a slight

increase was appreciable in comparison to the CTR, as previously

reported for the BM-MSC, for the 1:8 CD34+:MSC ratio in contact

setting (fold increase 12.50 ± 16.68 SD time the control condition).

Importantly, for the transwell setting, hAMSC presented the capacity

to trigger the expansion of LTC-IC with results comparable to those

obtained with the hAMSC feeder in the contact setting (2.67 ± 0.62

SD and 6.51± 4.08 SD in transwell setting for 1:2 and 1:8 ratios,

respectively).

4 | DISCUSSION

The ex vivo expansion of CB-HSCs is required in order to improve the

efficacy of transplantation in adult patients.7,8 To date, CB-HSCs are

expanded either through coculture systems with supportive feeders

such as BM-MSCs, a major component of the hematopoietic niche in

BM, or through the use of growth factor cocktails.1,7,8,16 BM-MSCs

currently represent the gold standard condition for ex vivo expansion

of HSCs, but their procurement presents a number of obstacles such

as invasiveness and risks for the donor. In the last decade, several

studies have shown how MSC isolated from other sources can be a

viable alternative.64-67

Here, we demonstrate that both BM-MSC and hAMSCs can

(a) trigger the ex vivo expansion of CB-HSC in both contact as well as

in transwell system, (b) prompt the expansion of both LT-HSC as well

as ST-HSC, (c) favor the expansion of different HPC progenitor sub-

sets, while maintaining and fostering the expansion of the most primi-

tive HSC/MPP subsets, (d) maintain the capacity to form CFU

colonies and lastly, (e) possess the ability to trigger a slight increase in

the number of LTC-ICs.

We confirmed the similar immunophenotype of BM-MSCs and

hAMSCs. Concerning CD105, a typical MSC marker, we confirmed its

reduced expression by hAMSC at low cell culture passages.49

Furthermore, both BM-MSCs and hAMSCs expressed CD54

(Intercellular Adhesion Molecule 1, ICAM-1),66,68 a receptor involved

in the repopulation and homing of the transplanted HSC.18 As a mat-

ter of fact, CD54 (ICAM-1)-deficient mice (CD54�/�) have an impair-

ment of quiescence and repopulation capability of the HSC niche.69

We also confirm the variable expression of PDGFR-β, also known as

CD140b, in hAMSC, as previously reported.70,71 The expression of

CD140b has been shown to correlate with enhanced survival and

expansion after transplantation.72 Finally, we report that hAMSC

highly expressed nestin, which is associated with HSC quiescence and

maintenance in the BM niche.73-75

Interestingly, although some previous studies showed the impor-

tance of cell-to-cell contact for the maintenance of stemness,64-67 we

observed ex vivo expansion also in the transwell setting condition,

suggesting that both MSC can release bioactive molecules that can

trigger the ex vivo expansion of HSC cells and its progenitors. These

findings support the study by Fong and colleagues that reported how

CM of Wharton's jelly MSC was able to expand CB-CD34+ cells bet-

ter than the use of the cells in contact setting.76 On the other hand,

when we analyzed the expansion of the most primitive HSC subsets,

the long-term reconstituting HSC (LT-HSC) and the ST-HSC, we

observed a different capacity among the two MSC feeder layers in

favoring the expansion of one subpopulation instead of the other.

These subpopulations are representative of two different stages of

differentiation that can be distinguished both phenotypically and

functionally. The most primitive, the LT-HSC, is characterized by the

F IGURE 6 Effects of hAMSCs and BM-MSCs on long-term
cultures initiating cells (LTC-IC). CD34+ cells ex vivo expanded on
BM-MSCs or hAMSC or without feeder layer (control) at CD34+:MSC
ratios (1:2 and 1:8) were seeded on irradiated M2-10B4 cells for
6 weeks in MyeloCult H5100™ medium supplemented with 10�6 M
hydrocortisone with half-medium changes once per week. After
6 weeks, the total cell fraction of each culture was harvested and
50 000 cells were seeded in MethoCult H4435 Enriched™ medium to
perform the CFU assay. The total number of colonies obtained was
counted after 14 days. The graph represents the number of LTC-IC
with the different cell culture conditions. Data are represented as
mean ± SD (*P ≤ 0.05, **P ≤ .01) from ≥5 independent experiments.
BM-MSCs, human bone marrow mesenchymal stromal cells; CTR,
control or no feeder layer; hAMSCs, human amniotic mesenchymal
stromal cells
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greatest self-renewal capacity and gives rise to all hematopoietic line-

ages throughout life. ST-HSC presents instead a reduced self-renewal

potential generating all the hematopoietic lineages for a short

period.77,78 hAMSC were able to favor the expansion ST-HSC, and a

strong increase was observed, in particular, in the transwell system.

These findings were also confirmed by FACS analysis on different

HSC and HPC subsets, where we did not observe any significant dif-

ferences in the expansion of the most primitive HPC progenitors

(HSC/MPP, LMPP, and MLP), whereas relevant differences were

appreciable for the most committed CMP and GMP progenitors.53,54

The large variability observed in the hAMSC transwell system at the

highest ratio (CD34+-HSC:MSC, 1:8) may be related to the high num-

ber of cells used, which could ultimately impact cell viability and con-

sequently also the factors secreted in the transwell setting used.

When we evaluated the hematopoietic clonogenic ability of the ex

vivo-expanded CB HPC in the different culture conditions, we

observed that both BM-MSC and hAMSC feeders were able to gener-

ate the different subtypes of colonies. The strong increase in the

CFU-GM subset is in line with what was previously reported,57,79

although, in contrast to what has been reported by others, we did not

observe any significant differences in the amount of BFU-E.80

Lastly, we studied and compared the capacity of the two feeders

to ex vivo-expanded LTC-IC able to produce myeloid progenitors for

at least 5 weeks.58,60 This long-lasting population is relevant because

it repopulates the HSC niche upon transplantation.58,60 Here, we

report that both BM-MSC and hAMSC were able to support the main-

tenance and expansion of primitive LTC-IC. We observed a strong

proliferative burst of CD34+HSC obtained in the presence of hAMSC,

while stemness properties were maintained, as confirmed by both the

immune phenotype and the clonogenic ability. Some of the differ-

ences observed in the phenotype and in the capability of hAMSC and

BM-MSC to support the ex vivo expansion of CD34+ can be partly

explained by the difference in the cell passage. Indeed, while hAMSCs

were used at passage zero, this was not possible for BM-MSCs since

the isolation process for these cells requires selection by plastic

adherence.33 Furthermore, although for hAMSC it is possible to

obtain a high amount of cells directly from the isolation process, this

is not possible for the BM-MSCs that require subsequent steps of

in vitro expansion.

5 | CONCLUSION

The present study provides a detailed comparison of hAMSCs with

the gold standard feeder represented by BM-MSCs and reports the

capacity of hAMSCs to trigger the ex vivo expansion of CB-HSC,

while maintaining their stemness properties as well as the capacity

to differentiate, originating the different HPC progenitors. Taken

together, the results suggest that the hAMSC feeder could puta-

tively be able to reconstitute the HSC repertoire and highlight the

potential application of the hAMSCs as a new alternative feeder to

BM-MSCs.
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