
RESEARCH ARTICLE

Chicken hepatic response to chronic heat

stress using integrated transcriptome and

metabolome analysis

Sara F. Jastrebski1*, Susan J. Lamont2, Carl J. Schmidt1

1 Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States of America,

2 Department of Animal Sciences, Iowa State University, Ames, IA, United States of America

* sjas@udel.edu

Abstract

The liver plays a central role in metabolism and is important in maintaining homeostasis

throughout the body. This study integrated transcriptomic and metabolomic data to under-

stand how the liver responds under chronic heat stress. Chickens from a rapidly growing

broiler line were heat stressed for 8 hours per day for one week and liver samples were col-

lected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible

for cell cycle regulation, DNA replication, and DNA repair along with immune function. Inte-

grating the metabolome and transcriptome data highlighted multiple pathways affected by

heat stress including glucose, amino acid, and lipid metabolism along with glutathione pro-

duction and beta-oxidation.

Introduction

Heat stress can affect multiple tissues as an organism alters its physiology to remain viable in

the face of this challenge. The physiological adaptations can be manifested at many levels

including changes in behavior, and molecular changes at the genomic, transcriptomic, proteo-

mic, and metabolomic level. In response to heat stress, animals will typically seek a cooler envi-

ronment, along with increasing blood flow to the skin, sweating, panting, and other responses

that reduce their body temperature [1]. At the molecular level, a major response to acute heat

stress is increased expression of heat shock protein (HSP) genes that encode molecular chaper-

ones responsible for stabilizing protein structures at elevated temperatures [2]. Additional

responses to acute heat stress include changes in protein translation and expression of genes

affecting the cell cycle, DNA replication and DNA repair [3]. Chronic heat stress can lead to

other responses that acclimate the organism to continuous thermal challenge.

The liver is important for maintaining homeostasis of important nutrients, synthesizing

bile for solubilizing fats, and providing important circulatory proteins such as albumin and

clotting factors. It is reasonable to hypothesize that the liver will be responsive to heat stress

due to its central role in maintaining the overall metabolism of the organism. Typically, ani-

mals decrease feed consumption under heat stress [1] so a major role of the liver will be to

maintain levels of circulating nutrients such as glucose and triglycerides in the face of this
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challenge. Additionally, hyperthermia triggers oxidative stress [4] suggesting the liver may

respond by increasing production of biochemical anti-oxidants [5].

The objective of the present study was to mimic a heat wave by subjecting birds to a cyclic

heat stress at 35˚C for 8 hours per day. This temperature causes a typical heat stress response

including increased panting, wing spreading, lethargy, decreased feed consumption and

increased water consumption. This study aimed to identify hepatic transcriptomic and meta-

bolomic responses to chronic heat stress in a rapidly growing broiler chicken line. Changes in

the transcriptome indicated responses affecting the cell cycle, DNA replication, DNA repair,

and immune functions. Integrated analysis of the metabolome and transcriptome demon-

strated responses affecting glucose, lipid, glutathione, amino acid and endocannabinoid levels.

Taken together, application of these high-throughput methods provided deep insight into

hepatic response to heat stress.

Results & discussion

Transcriptome

A total of 1299 genes were identified as being significantly differentially expressed genes

(DEG) with at least one mean FPKM value being greater than one. A total of 1117 genes were

enriched in the heat stress condition and 182 enriched in the thermoneutral condition. This

suggests that after one week of cyclic heat stress, the liver is producing a robust response to

heat stress due to the difference in number of DEG in heat stress and thermoneutral condi-

tions. Hierarchical clustering was used to determine the relationship between the genes’

expression and libraries (Fig 1). Heat stress and thermoneutral libraries create two separate

clusters. The top 500 heat stress enriched genes were input into AmiGO2 and the significantly

enriched terms are displayed in S1 Table. The top 10 significantly enriched categories were

terms associated with cell cycle and DNA repair. Approximately 15% of all the significant

terms were associated with cell cycle. PathRings identified cell cycle as a significant pathway,

with 37 genes identified as being involved in cell cycle, all enriched in heat stress. PathRings

also identified 20 genes involved in metabolism, with 14 enriched in heat stress and 6 enriched

in thermoneutral (Fig 2). Fig 3 depicts the cell cycle and identifies parts of the cell cycle that

were affected. It appears the major cell checkpoints as well as the G1 and S phases were im-

pacted by heat stress. This is consistent with literature which states that the cell cycle is affected

by heat stress [6, 7]. The G1 phase is particularly important for assessing the extracellular

Fig 1. Hierarchical clustering of heat stress and thermoneutral transcriptome libraries from Ross708 liver samples 28 days post-hatch.

Under a given condition (heat stress or control) red indicates up-regulation and blue indicates down-regulation. The heat stress and thermoneutral

libraries create two separate clusters and the abundance of red in the heat stress libraries likely indicates a robust response to heat stress.

https://doi.org/10.1371/journal.pone.0181900.g001
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environment and determining whether conditions are favorable to divide, and the cell can pro-

long the G1 phase if conditions are unfavorable [8]. A reasonable hypothesis is that the liver is

arresting cell cycle at various stages to wait for favorable conditions to divide. All 182 genes

enriched in thermoneutral livers were input into AmiGO2 (S2 Table). It is important to note

that enrichment in thermoneutral indicates that the genes are actually down-regulated under

heat stress. The most common terms were associated with immune function and lipid catabo-

lism. From WebGIVI, iTerms most commonly associated with down-regulated genes include

lipid rand immune function terms (Fig 4). The lipid-associated genes appear to be involved in

lipolysis rather than lipogenesis, which is consistent with other reports [9]. Genes that are

down-regulated in heat stress affecting the cell cycle appear to be involved in regulating cell

proliferation. As a major function of the liver is to maintain homeostasis, it may be dampening

its immune function to redirect resources to metabolic functions such as glycogenolysis and

Fig 2. PathRings depiction of liver transcriptome data. Each segment of the inner ring indicates a pathway. Outer rings equate to more

specific pathways. Significance is determined by the Fisher’s Exact test and is indicated by color where blue is insignificant and yellow to maroon

is significant (0.025–0.001, respectively). Significantly affected pathways were (M) Metabolism, (CC) Cell Cycle, and (DR) DNA Repair.

https://doi.org/10.1371/journal.pone.0181900.g002
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lipogenesis. It may also be dampening inflammatory response so as not to increase body

temperature.

Seven genes associated with circadian rhythm were identified in the differential gene list in

both conditions. Neuronal PAD domain protein 2 (NPAS2) and aryl hydrocarbon receptor

nuclear translocator-like (ARNTL) were down-regulated by heat stress. Period circadian clock

2 (PER2), period circadian clock 3 (PER3), prokineticin 2 (PROK2), TEF, PAR bZIP transcrip-

tion factor (TEF), and basic helix-loop-helix family member e41 (BHLHE41) were enriched in

heat stress. ARNTL, NPAS2, PER, and CRY are involved in a complex feedback loop that likely

regulates the peripheral liver clock. It is known that acute heat stress resets the circadian clock

[10, 11]. Resetting the circadian rhythm could synchronize clock genes to the heat stress cycle,

causing the circadian rhythm response to adapt to cyclic heat stress. Clock genes function in

many different biological processes including cell cycle and metabolism. The differential ex-

pression of these genes between conditions may directly modulate the cell cycle and metabolism

Fig 3. Depiction of the cell cycle. Red arrows indicate parts of the cell cycle affected by heat stress. Red lines indicate

transitions between stages of cell cycle. Numbers indicate number of genes at that specific stage of the cell cycle enriched in heat

stress as identified by WebGIVI. The stages of cell cycle affected by heat stress include the G1 phase, G1/S phase transition, S

phase, and G2/M phase transition.

https://doi.org/10.1371/journal.pone.0181900.g003
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changes. More research is needed to determine the exact implication of the effect of heat stress

on circadian rhythm.

Deiodinase Iodothyronine Type II (DIO2) was down regulated in heat. DIO2 converts T4

to active T3, which increases the body’s basal metabolic rate and increases oxygen consump-

tion and energy breakdown. Decrease in feed consumption likely contributes to this decrease

in DIO2 expression. This is consistent with Coble et al., where they found DIO2 had a two-

fold decrease in expression in broiler livers under heat stress [12]. Deiodinase Iodothyronine

Type 1 (DIO1) was not significantly different between the two conditions, and is the deiodi-

nase type that is predominantly expressed in the liver.

Integrated transcriptome and metabolome

Glycogenolysis/Gluconeogenesis. An important function of the liver is maintaining

homeostasis in the face of stress by controlling blood levels of metabolites such as sugars, lip-

ids, and amino acids. During heat stress, chickens reduce feed intake and the liver responds by

increasing the production and release of nutrients. Glucose is one essential nutrient as it acts

as the major energy source for many tissues, most importantly the brain. The liver can provide

glucose systemically either by the breakdown of stored glycogen or through gluconeogenesis.

Under heat stress, metabolome and transcriptome data indicate that both glycogenolysis and

gluconeogenesis have been elevated in the liver. Fig 5 shows the glycogen metabolism pathway,

with integrated transcriptomic and metabolomic data. While glycogen was not detected in the

metabolic methodologies, several intermediates cleaving glucose-1-phosphate (G1P) from gly-

cogen were detected. The enzyme that performs these cleavages, phosphorylase, was also

Fig 4. WebGIVI cytoscape output results for thermoneutral transcriptome data from Ross708 liver samples 28 days post-hatch. Yellow

circles indicate Genes and red-outlined circles indicate iTerms. Most common iTerms are associated with proinflammatory response, lipid

metabolism, cell cycle and circadian rhythm.

https://doi.org/10.1371/journal.pone.0181900.g004
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elevated in the heat stress samples. Adenylyl Cyclase 9 (ADCY9) was identified from the tran-

scriptome as being enriched in heat stress. This enzyme generates cyclic AMP (cAMP), which

activates protein kinase A (PKA). Subsequent phosphorylation by PKA converts phosphory-

lase from the inactive form to the active form. Metabolites also elevated in livers from heat

stressed chickens included glucose-6-phosphate (G6P) and glucose. Phosphoglucomutase

(PGM1), which is responsible for transforming G1P to G6P, was elevated by heat stress, while

glucose-6-phosphatase (G6PC) was unchanged between conditions. Elevated PGM1 could

lead to the observed increased levels of G6P in the heat stressed livers. Increased gluconeogen-

esis was indicated by the elevated levels of fructose-6-phosphate and the enzyme that trans-

forms it to G6P, fructose-bisphosphatase 2 (FBP2). Finally, we note that transcription of the

liver facilitated glucose transporter solute carrier family 2 member 2 (SLC2A2) was elevated

during heat stress suggesting an increase in hepatic glucose export.

Fatty acid metabolism. Fatty acids serve many important metabolic functions. In the

body, they are mostly stored as triglycerides, where they can be broken down for various uses.

The heart also uses triglycerides as an energy source. Both transcriptome and metabolome

data support increased fatty acid synthesis during heat stress. Table 1 lists the long chain fatty

acids identified in the data and whether they are enriched or down-regulated during heat

stressor unchanged. Most of the fatty acid levels were either down-regulated or unchanged,

except for myristate, myristoleate, and palmitoleate, which were elevated. A number of genes

encoding for enzymes at various phases of fatty acid synthesis were also elevated in heat stress

Fig 5. Depiction of glycogenolysis and gluconeogenesis pathways with integrated metabolomic and

transcriptomic data from Ross708 liver samples 28 days post-hatch. The rectangles indicate

metabolites and the arrows indicate genes. The legend indicates whether a gene or metabolite was detected

and if it was up in heat stress or unchanged between conditions.

https://doi.org/10.1371/journal.pone.0181900.g005

Hepatic response to heat stress in chickens

PLOS ONE | https://doi.org/10.1371/journal.pone.0181900 July 31, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0181900.g005
https://doi.org/10.1371/journal.pone.0181900


(Fig 6). Acetyl-CoA carboxylase alpha (ACACA), which converts acetyl-CoA to malonyl-CoA

was elevated in heat stress. Fatty acid synthase (FASN), which converts malonyl-CoA to acyl-

ACP and then converts acyl-ACP to myristate or palmitate, was detected but unchanged

between conditions. Acyl-CoA synthetase (ACSF3), which converts myristate to myristoyl-

CoA and palmitate to palmitoyl-CoA was elevated in heat stress. Stearoyl-CoA-9-desaturase

(SCD), which converts myristoyl-CoA and palmitoyl-CoA to myristoleoyl-CoA and palmito-

leoyl-CoA respectively, was also elevated in heat stress. Palmitoyl-CoA hydrolase (ACOT11),

which converts the latter metabolites to myristoleate or palmitoleate, was detected but un-

changed. Glycerol and glycerol-3-phosphate (G3P) levels were also elevated in heat stress, the

latter making up the triacylglycerol backbone. However, glycerol kinase (GK) levels were de-

creased during heat stress. An alternative hypothesis is that G3P is being synthesized through

glyceroneogenesis. This is the conversion of precursors other than glycerol or glucose to G3P

such as pyruvate, which is enriched in the heat stress sample set. There is evidence in mammals

that glyceroneogenesis happens more often in the liver than glycerol conversion [13]. The last

step in this process involves synthesizing G3P from dihydroxyacetone phosphate (dHAP).

Although not achieving significance, dHAP is reduced under heat stress. The enzyme that per-

forms the conversion from dHAP to G3P is glycerol-3-phosphate dehydrogenase (GDP2) and

was detected but unchanged between conditions. A reasonable hypothesis is that equilibrium

levels of substrates drives the reaction towards synthesizing G3P, leading to lower levels of

available dHAP in birds. Once G3P and either myristoleate or palmitoleate undergo esterifica-

tion, they are incorporated into very low-density lipoproteins (VLDL), shunted out of the liver

for fat deposition, and transformed into low-density lipoproteins (LDL). The transcriptome

data indicates increased levels of low density lipoprotein receptor class A domain containing 3

(LDLRAD3) gene, which encodes for a LDL receptor and decreased levels of very low density

lipoprotein receptor (VLDLR), which encodes for a VLDL receptor, which is consistent with

increased VLDL production and endocytosis of exogenous LDL.

Glutathione metabolism and pentose phosphate pathway. The main source of energy

for the liver is amino acids [14]. Table 2 lists the detected free amino acids and whether they

were elevated or reduced in heat stress, or unchanged. Most were reduced under heat stress,

Table 1. Fatty acids from Ross708 liver samples 28 days post-hatch and whether they are enriched in

thermoneutral, heat stress, or unchanged between conditions.

Fatty Acid Metabolite Enriched Condition

Arachidate Thermoneutral

Erucate Thermoneutral

Margarate Thermoneutral

Nonadecanoate Thermoneutral

Pentadecanoate Thermoneutral

Myristate Heat stress

Myristoleate Heat stress

Palmitoleate Heat stress

10-hedeptadecenoate Unchanged

10-nonadecanoate Unchanged

Eicosenoate Unchanged

Palmitate Unchanged

Stearate Unchanged

The fatty acids enriched in thermoneutral are largely dietary derived fatty acids. Fatty acids enriched in heat

stress are important in the production of triacylglycerols.

https://doi.org/10.1371/journal.pone.0181900.t001
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Fig 6. Depiction of fatty acid metabolism. 6a. Integrated transcriptome and metabolome data and fatty acid

metabolism depicting acetyl-coa being transformed into either myristate or palmitate. 6b depicts the numerous ways

glycerol-3-phosphate can be synthesized as well as the final esterification step to form a complete triacylglycerol.

https://doi.org/10.1371/journal.pone.0181900.g006
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except cysteine, which was elevated in heat stress. Due to increased metabolic demands during

heat stress, the liver likely increases breakdown of amino acids for energy. Cysteine is involved

in glutathione metabolism, which is integral in preventing damage to cells caused by reactive

oxygen species, a common sequela of heat stress[4, 15]. The concentration of available cysteine

regulates the rate at which reduced glutathione is synthesized [16–18]. An increased level of

cysteine is consistent with the observed increase in reduced glutathione under heat stress. The

liver is a major source of circulating glutathione [19] and birds with elevated circulating levels

of glutathione exhibit less oxidative damage under heat stress compared to birds with normal

circulating levels [5]. The metabolome data also indicated an increased ratio of reduced gluta-

thione (GSH) to oxidized glutathione (GSSG) in heat stress (3.56) compared to thermoneutral

(1.19). This increased ratio is due to a marked increase in GSH levels, as the GSSG levels stayed

fairly constant. Studies investigating acute heat stress indicate a decrease in GSH/GSSG ratios

due to increased oxidative damage [20][21]. This study did not assess the impact of chronic

heat stress on glutathione ratios. After a week of cyclic heat exposure, perhaps the liver has

adapted to maintaining elevated levels of GSH to compensate for periodic heat stress. Fig 7

depicts glutathione metabolism as well the pentose phosphate pathway. Cysteine, and gluta-

mate, which is reduced under heat stress, are transformed to gamma-glutamylcysteine (ele-

vated in heat stress) by gamma-glutamate-cysteine ligase (unchanged). Glutathione synthase,

which transforms gamma-glutamylcysteine to GSH, remains unchanged during heat chal-

lenge. Members of the pentose phosphate pathway (PPP) are also elevated in heat stress as

well, including F6P and G6P. The PPP creates NADPH, which is used to convert the oxidized

Table 2. Free amino acids detected by Metabolon and whether they are enriched in thermoneutral,

heat stress, or unchanged between conditions from Ross708 liver samples 28 days post-hatch.

Amino Acid Enriched Condition

Alanine Thermoneutral

Arginine Thermoneutral

Aspartate Thermoneutral

Glutamate Thermoneutral

Glutamine Thermoneutral

Glycine Thermoneutral

Histidine Thermoneutral

Isoleucine Thermoneutral

Lysine Thermoneutral

Methionine Thermoneutral

Phenylalanine Thermoneutral

Proline Thermoneutral

Serine Thermoneutral

Threonine Thermoneutral

Tryptophan Thermoneutral

Valine Thermoneutral

Cysteine Heat stress

Asparagine Unchanged

Leucine Unchanged*

Tyrosine Unchanged*

All amino acids are enriched in thermoneutral or approaching significantly enriched in thermoneutral except

asparagine, which is unchanged, and cysteine, which is enriched in heat stress.

*Indicates approaching significantly enriched in thermoneutral

https://doi.org/10.1371/journal.pone.0181900.t002
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form of glutathione to the reduced form. Glucose-6-phosphate isomerase (GPI), which trans-

forms F6P to G6P in the PPP is also elevated in heat stress. The enzyme that converts G6P to

6-phosphogluconolactone, hexose-6-phosphate dehydrogenase, is detected but unchanged.

While 6-phosphogluconolactone is not detected, 6-phosphogluconate is elevated in heat stress.

6-phosphogluconolactonase has not yet been identified in the Gallus genome. Ribulose-5-

phosphate is undetected but phosphogluconate dehydrogenase is detected and unchanged

[22]. Possibly, elevated pentose phosphate pathway activity yields sufficient NADPH to con-

vert oxidized glutathione to reduced glutathione thereby meeting the need to alleviate oxida-

tive stress.

Beta-oxidation. Beta-oxidation is an energy and heat producing pathway. It breaks down

fatty acids in the mitochondria to produce acetyl-CoA for the citric acid cycle and NADH and

FADH2 for the electron transport chain. The metabolomic data indicate increased levels of

Coenzyme A under heat stress (S1 Fig), which is covalently attached to fatty acids for transport

into the mitochondria. However, there are decreased levels of the acyl carnitines involved in

Fig 7. Left side of diagram is a depiction of glutathione metabolism. The right side of the diagram is a depiction of the pentose phosphate pathway,

which generates the NADPH needed to transform oxidized glutathione back to the reduced form.

https://doi.org/10.1371/journal.pone.0181900.g007
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transport of fatty acids in the beta-oxidation pathway under heat stress. The elevated levels of

uncharged coenzyme A and reduced levels of acyl carnitines suggest that fewer substrates are

being delivered to the mitochondria for beta-oxidation. This would result in reduced body

temperature and shifting the balance between lipolysis and lipogenesis in favor of lipogenesis.

Glycosylation. One metabolite that was highly enriched in heat stress was mannose-6-phos-

phate (S2 Fig). This metabolite is involved in a number of different biological processes, including

glycosylation. The genes that catalyze conversion of mannose-6-phosphate to mannose-1-phos-

phate, phosphomannomutase 1 and phosphomannomutase 2 are both enriched in heat stress.

This process is important for the production of GDP-mannose, which is essential for N-linked

glycosylation. There is evidence for increased glycosylation under acute heat stress, likely to regu-

late heat shock proteins. One study indicated calreticulin as being one of the first major glycosyla-

tion products of heat stress [23]. It is detected in our data but unchanged between conditions. The

function of glycosylation under heat stress is still largely unknown [24].

Endocannabinoids. Endocannabinoids were reduced in heat stress samples. While not

well studied in birds, in mammals the endocannabinoids function in appetite regulation, lipogen-

esis, metabolism, and signaling. While their primary function is in the brain, they also function

in peripheral tissues [25]. There is decreased weight gain and lipogenesis when the cannabinoid

receptor is knocked out in mice livers [26] while injected cannabinoid receptor agonists, causes

weight gain and increased lipogenesis in mice [26]. Perhaps heat stress reduces endocannabi-

noids in the liver, thereby reducing the level communicated to the brain. This could be an impor-

tant cause for the reduction in feed consumption seen under heat stress. Contrary to the effects

seen in mouse mutants, the chicken liver appears to shift towards increase lipogenesis under heat

stress. Possibly, the multiple stimuli produced by heat stress overrides the tendency of reduced

endocannabinoid levels to increase decrease lipogenesis. More research is needed to identify the

impact of reduced endocannabinoids under heat stress.

Conclusions

Overall, the liver appears to produce a robust response to heat stress after one week of cyclic

heat stress, maintaining homeostasis and preventing damage due to oxidative stress. Tran-

scriptome and metabolome together provide convincing evidence for increased glycogenolysis

and gluconeogenesis as well as fat deposition, glycosylation, and glutathione production under

heat stress, (S3 Table). There also appears to be inhibition of cell cycle perhaps to allow time

for DNA damage caused by heat stress to be repaired. The inflammatory system appears to be

suppressed in heat stress along with lipolysis, beta-oxidation, and endocannabinoid synthesis.

There are seven genes involved in circadian rhythm affected by heat stress. Syncing circadian

response to heat stress could be a fundamental adaptation to a cyclic heat stress response.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of the University of Dela-

ware (Permit Number: 2703-12-10).

Bird and tissue handling

Male broiler chickens (Gallus gallus) were obtained from Mountaire hatchery (Millsboro, DE)

on day of hatch and divided into thermoneutral and experimental houses on the University of

Hepatic response to heat stress in chickens
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Delaware farm. They were raised under a light cycle of 23 hours of light and 1 hour of dark. Stan-

dard management and husbandry procedures were followed, as approved by the Animal Care

and Use Committee (AACUC #(27) 03-12-14R). Birds were given ad libitum access to water and

fed the same diet (corn-soy) which met all NRC requirements [27]. Both groups were raised at

35˚C until one-week post hatch. Temperature was decreased 5˚C each week thereafter until tem-

perature reached 25˚C at day 21 post hatch. The thermoneutral house was then maintained at

25˚C and the heat stress house was subject to 35–37˚C for 8 hours per day, to mimic an environ-

mental heat wave. Temperature in both houses was maintained by a computerized system con-

trolling heaters and ventilation fans (Chore-time Equipment, Milford, Indiana). Temperature

ranged between 35–37˚C during the eight hours of heat stress. This yields an internal body tem-

perature (cloacal) of 43.5˚C within two hours of the onset of heat stress. This body temperature

can induce a heat stress response in chicken cells [6]. In the control (thermoneutral) house the

temperature ranged between 23–25˚C during this same period. Both houses were maintained at

23–25˚C during the thermoneutral period (16 hours) of the day. Birds were euthanized via cervi-

cal dislocation and necropsied at day 28 post hatch, following one week of cyclic heat stress. Liv-

ers were flash frozen in liquid nitrogen, and stored at -80˚C for further processing.

RNA and library preparation

Forty-five mg of the left lobe of 8 thermoneutral and 8 heat stress liver samples were homoge-

nized and RNA was extracted using the mirVana miRNA Isolation Kit (Ambion, Austin,

TX) as per manufacturer instructions. They were quantified using the Qubit 2.0 Fluorometer

(Qubit, New York, NY). Samples were checked for quality using the Fragment Analyzer (Ad-

vanced Analytical, Ankeny, IA) at the Delaware Biotechnology Institute (DBI, Newark, DE).

Libraries were made using the Illumina TruSeq Stranded mRNA Sample Preparation Kit (Illu-

mina, San Diego, CA) per manufacturer instructions and sent to DBI for sequencing.

Metabolome sample preparation

Fifty mg of 12 thermoneutral and 11 heat stress liver samples were sent to Metabolon (Dur-

ham, NC), for analysis of the metabolome. All of the samples used for the transcriptome

analysis were included in the metabolomic sample set. Samples were analyzed as previously

described [28]. Samples were prepared using the MicroLab STAR system from Hamilton

Company (Reno, NV) using in house recovery standards prior to extraction for QC purposes.

Extract was divided into fractions for two reverse phase (RP)/UPLC-MS/MS methods (positive

and negative ion mode electrospray ionization), and one for HILIC/UPLC-MS/MS with

negative ion mode ESI. Several control were used, including the use of technical replicates,

extracted water samples as blanks, and in house QC samples to monitor chromatographic

alignment. All UPLC-MS/MS methods used a waters ACQUITY UPLC and Thermo Scientific

Q-Exactive high-resolution mass spectrometer. Each sample extract was dried and reconsti-

tuted with solvents compatible to each method and solvents included a series of standards at

fixed concentrations. Metabolon used hardware and software extract created by the company

to extract, peak-identify, and QC process the raw data. Compounds were identified using a

Metabolon maintained library of purified standards or recurrent unknown entries. Data is

provided as a supplementary.txt file (S1 Data). Over 3300 compounds have been identified

and registered in Metabolon’s library. The data was statistically analyzed using a Welch’s two-

sample t-test following a log transformation and imputation of missing values with the mini-

mum observed value for each compound. The company provided an analysis that included

pathway visualizations. These pathway analyses were then incorporated with the transcriptome

data to create a more complete view of changing pathways.
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Transcriptome analysis

Once libraries were sequenced, data were processed using an in-house pipeline and fragments

per kilobase per million mapped reads (FPKM) values were determined. The sequencing data

is publicly available through GEO series accession number GSE95088 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE95088).

Differentially expressed genes were determined by first taking the mean FPKM value for

each condition, then excluding any genes where both the heat stress and thermoneutral means

were less than 1. Then, the log2 ratios of the mean of heat stress divided by thermoneutral

were taken, and subjected to a t-test to determine significance. Only genes with a p<0.05 were

considered for subsequent analyses. Genes were then input to AmiGO2 [29], for gene ontology

(GO) terms. We then used Pathrings [30], for pathway analysis, and WebGIVI [31], a text-

mining tool that relates gene lists to literature through the use of iTerms.

Supporting information

S1 Table. AmiGO2 ontology results for the enriched genes from 28-day-old broiler chicken

livers after one week of cyclic heat stress sorted by p-value. This list only includes significant

ontological terms.

(XLSX)

S2 Table. AmiGO2 ontology results for enriched genes from 28-day-old broiler chicken liv-

ers in the thermoneutral condition enriched genes sorted by p-value. This list only includes

significant ontological terms.

(XLSX)

S3 Table. List of genes integrated with metabolomic data sorted by pathway. Included in

this list are the gene symbol, gene name, fold change, p-value, and pathway affected. This list

includes genes that are significantly different between heat stress and thermoneutral condi-

tions, not significantly different between conditions, and genes not detected in the genome.

(XLSX)

S1 Fig. Beta-Oxidation pathway with metabolomic data overlay from 28-day-old broiler

chicken livers after one week of cyclic heat stress, provided by Metabolon. Circles indicate

metabolites and squares indicate enzymes. Red indicates enrichment in heat stress condition

and blue indicates enrichment in the thermoneutral condition. Black indicates metabolite is

detected but unchanged between conditions and Gray indicates not detectable. Reprinted

from Metabolon under a CC BY license, with permission from Metabolon, original copyright

2015.

(TIF)

S2 Fig. Glycosylation pathway with metabolomic data overlay from 28-day-old broiler

chicken livers after one week of cyclic heat stress, provided by Metabolon. Circles indicate

metabolites and squares indicate enzymes. Red indicates enrichment in heat stress condition.

Black indicates detected but unchanged between conditions. Grey indicates not detectable.

Reprinted from Metabolon under a CC BY license, with permission from Metabolon, original

copyright 2015.

(TIF)

S1 Data. Metabolic data provided by Metabolon Inc.

(TXT)
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