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The balance or dysbiosis of the microbial community is a major factor in maintaining
human health or causing disease. The unique microenvironment of the oral cavity provides
optimal conditions for colonization and proliferation of microbiota, regulated through
complex biological signaling systems and interactions with the host. Once the oral
microbiota is out of balance, microorganisms produce virulence factors and
metabolites, which will cause dental caries, periodontal disease, etc. Microbial
metabolism and host immune response change the local microenvironment in turn and
further promote the excessive proliferation of dominant microbes in dysbiosis. As the
product of interdisciplinary development of materials science, stomatology, and
biomedical engineering, oral biomaterials are playing an increasingly important role in
regulating the balance of the oral microbiome and treating oral diseases. In this
perspective, we discuss the mechanisms underlying the pathogenesis of oral
microbiota dysbiosis and introduce emerging materials focusing on oral microbiota
dysbiosis in recent years, including inorganic materials, organic materials, and some
biomolecules. In addition, the limitations of the current study and possible research trends
are also summarized. It is hoped that this review can provide reference and enlightenment
for subsequent research on effective treatment strategies for diseases related to oral
microbiota dysbiosis.

Keywords: oral microbiota, dysbiosis, oral biofilms, anti-fouling, antimicrobial biomaterials, dental applications
Abbreviations: EPS, extracellular polymeric substances; ADS, arginine deiminase system; IPS, intracellular polysaccharides;
PRRs, pattern recognition receptors; PAMP, pathogen-associated molecular patterns; IL-1, interleukin-1; IL-6, interleukin-6,
TNF, tumor necrosis factor; TLRs, toll-like receptors; IL-8, interleukin-8; Th17, T helper 17 cells; IL-17, interleukin-17; IL-23,
interleukin-23; TGF-b, transforming growth factor-b; MMP, matrix metalloproteinases; PEG, polyethylene glycol; MPC, 2-
methacryloyloxyethyl phosphorylcholine; Ti, titanium; PEG-PAsp, polyethylene glycol-poly (aspartic acid); LBL, layer by
layer; TiO2, titanium dioxide; UV, ultraviolet; ROS, reactive oxygen species; PTT, Photothermal therapy; NIR, near-infrared
light; PDA, polydopamine; GOx, glucose oxidase; MOF, metal-organic frameworks; TiO2-x, oxygen-deficient titania; GO,
graphene oxide; NO, nitric oxide; MSNs, mesoporous silica nanoparticles; QAS, quaternary ammonium salts; DMAHDM,
dimethylaminohexadecyl methacrylate; ACP, amorphous calcium phosphate; N-X, nitrogen-halogen; PAA, polyacrylic acid;
PDT, photodynamic therapy; TBO, toluidine blue O; PP, protoporphyrin IX; Ce 6, Chlorin e6; PEI, polyethyleneimine; SF, silk
fibroin; NH+

3 , positively charged ammonium groups AMPs, antimicrobial peptides; MIC, minimum inhibitory concentration;
GTR, guided tissue regeneration.
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1 INTRODUCTION

The microbiota is involved in the maintenance of host health
through multiple pathways. It promotes the maturation of
immune cells and the normal development of immune
function for immune regulation, acts as a physical barrier to
protect the body from foreign pathogens, participates in
energy extraction from food, and affects appetite (Wang
et al., 2017).

The oral microbiota is an important part of the human
microbiota, encompassing over 700 bacterial species, as well as
a variety of viruses, fungi, protozoa, and archaea (Deo and
Deshmukh, 2019). A healthy individual has 100 to 200+
species of resident bacteria colonized in the oral cavity (Rosier
et al., 2018). Fungi are also involved in constituting healthy oral
microbiota, while their loads are orders of magnitude lower than
bacteria, their size and morphology and synergy with bacteria are
crucial in the construction of dental plaque (Diaz et al., 2017).
Mark Welch et al. combined sequencing data with spectral
fluorescence imaging and revealed that 13 genera are abundant
and highly prevalent both in supragingival and subgingival
plaque: Corynebacterium, Capnocytophaga, Fusobacterium,
Lepidium, Actinomyces, Streptococcus, Neisseria, Haemophilus/
Aggregobacteria, Porphyromonas, Rothella, Lautropia, Veillonella
and Prevotella (Mark Welch et al., 2016).

One of the unique features of the oral cavity compared to the
anatomy of other parts of the human body is the presence of
teeth. Due to its unique anatomy, the oral cavity contains several
distinct ecological niches such as saliva, soft tissue surfaces of the
mucosa and hard tissue surfaces of teeth, with different microbial
communities (Schwiertz, 2016). The mucous has a constantly
renewed physiological process, and the shedding of its aging
epithelium is not conducive to the long-term colonization of
bacteria (Costalonga and Herzberg, 2014). The salivary
microbiota is mainly derived from the shedding of biofilms on
the surface of oral tissues, covering 3621 bacterial taxa, of which
Bacteroidetes (genus Prevotella) and Firmicutes (genus
Streptococcus and Veillonella) are the main phyla (Keijser et al.,
2008). The cheek and palate surfaces have only a single layer of
bacteria due to the continuous sloughing of the superficial
epithelial layers. However, the tongue surface has multiple
layers of biofilm-like bacteria, mainly including Streptococcus
salivarius (S. salivarius), Rothia mucilaginosa, and an
uncharacterized species of Eubacterium (strain FTB41) (Kazor
et al., 2003). Significantly, teeth protrude from the mucosal tissue
that covers the oral cavity, providing a stable surface for bacterial
biofilm formation (Tuominen and Rautava, 2021). According to
the location, microbiota on the teeth surface can be divided into
two parts: supragingival microbiota (above the gum) and
subgingival microbiota (below the gum), which will be
described in detail below.

As the most common form of oral microbiota, oral biofilms
constitute dynamic, interrelated metabolic networks, whose
composition and activity are mainly determined by environment
and host (Mclean, 2014). Oral Biofilms are organized communities
containing large varieties of microbes embedded in a matrix of
extracellular polymeric substances (EPS), whose scaffold is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
composed of biological macromolecules such as protein,
carbohydrate, and nucleic acid (Kuang et al., 2018). The
complex microbial network exists interspecies cross-feeding and
obtains nutrients, sugars, and amino acids frommucin-containing
saliva through the function of glycosidases (Mosaddad et al.,
2019). The oral microbiota maintains a healthy state of the
microenvironment through multiple pathways. Veillonella spp.,
as one of the main anaerobic bacteria in the oral cavity, is
considered beneficial attributes to their abilities that metabolize
lactic acid to weaker acids and transfer nitrate (NO−

3 ) to nitrite
(NO−

2 ) (Wicaksono et al., 2020). In addition, there are two main
pathways for oral microbiota to generate alkali. Some species like
S. salivarius and Actinomyces naeslundii (A. naeslundii)
metabolize urea by urease enzymes to produce alkali. The other
route is the arginine deiminase system (ADS), from which ADS-
positive bacteria like Streptococcus sanguinis (S. sanguinis)
metabolize arginine and yield ornithine, ammonia, ATP, and
CO2 (Liu et al., 2012; Huang et al., 2018). The metabolism of
urea and arginine increases local pH, prevents demineralization
and promotes remineralization, and also establishes ecological
advantages for commensal bacteria and inhibits the growth of
various pathogens, thereby maintaining a healthy oral
environment (Bowen et al., 2018).

This review addresses the mechanisms underlying the role of
the oral microbiota in health and disease states, with a focus
on oral diseases caused by microbiota disturbances, including
caries, periodontal diseases and peri-implant diseases. On this
basis, the emerging materials developed in recent years
are reviewed, which are mainly divided into two categories:
antifouling materials (covering polymeric agents, biomolecules
and metal oxides) and antibacterial materials (covering metals
and metal oxides, inorganic nonmetallic materials, organic
small molecules, polymers and antimicrobial peptides).
2 ORAL MICROBIOTA-RELATED
DISEASES

2.1 Dental Caries
Dental caries, also known as tooth decay, is one of the most
prevalent chronic diseases in the world, which can damage
both crown and root surface throughout the life cycle, whether
in primary or permanent dentition (Selwitz et al., 2007). It is
the leading cause of pain and tooth loss in the mouth. As a
biofilm-mediated, sugar-driven and multifactorial disease,
car ies brings about dynamic demineral izat ion and
remineralization of dental hard tissue (Pitts et al., 2017).
The etiology of dental caries has developed over the
centuries, and the involvement of microbes has been
acknowledged as early as the late 1800s (Russell, 2009).
What can be determined is that the dynamics of carious
lesions depend on the availability of fermentable sugars,
microbiota, host, and other environmental conditions.
However, the specific role of microorganisms in the
development and progression of dental caries remains to be
further understood.
June 2022 | Volume 12 | Article 900918
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2.1.1 Supragingival Microbiota
The anatomy of the oral cavity is exceptional compared to that of
other human body sites. A unique feature is hard tissue, i.e., teeth
that protrude through the mucosa covering a major part of the
oral cavity. Teeth provide non-shedding surfaces for distinct
bacterial biofilm formation, whereas mucosal surfaces are
continuously renewing and older epithelial layers are shedding
from the surface, presenting challenges to permanent bacterial
colonization (Sedghi et al., 2021). Peculiarly, there is an acquired
pellicle covering the teeth surface, which is composed of lipids,
proteins, glycolipids, and glycoproteins (Chawhuaveang et al.,
2021). Acquired pellicle can protect teeth enamel from acid
attack, but also regulates the further attachment of bacteria
and promotes the development of biofilm (Thomas et al., 2021).

The structured microbiota is embedded in the EPS matrix
consisting of proteins, polysaccharides, lipids, nucleic acids, and
other biomolecules and firmly attached to the substrate surface to
form biofilms. The physicochemical properties of EPS are critical
for the biochemical action of biofilms, including mechanical
stability, signal transmission, gene swapping, and antimicrobial
tolerance (Karygianni et al., 2020). The initially formed EPS
matrix promotes microbial colonization and aggregation, and as
the matrix further expands, the EPS wraps around bacterial cells,
providing a supportive framework for the development of
microscopic colonies (Flemming et al., 2016). The extracellular
matrix protects biofilms from mechanical removal and
antibacterial agent and creates localized regions of low pH by
inhibiting the buffering capacity of saliva, which can facilitate
intensive localized acidification and teeth demineralization
(Valm, 2019).

The primary initial colonizing bacteria are Streptococcus,
followed closely by gram-positive bacilli, particularly
Actinomyces spp. Subsequently, other cocci and bacilli
gradually attached to the foregoing gram-positive biofilm
(Larsen and Fiehn, 2017). Among them, Fusobacterium
nucleatum (F. nucleatum) plays an essential role in the
maturation of biofilms by co-aggregating with the initial
bacteria and succeeding gram-negative and motile bacteria,
such as Bacteroidetes and Spirochaetes (Benitez-Paez et al.,
2014). Eventually, the cariogenic microbiota is dominated by
thriving acidogenic and aciduric microorganisms, including
mutans and non-mutans Streptococcus , Actinomyces ,
Bifidobacterium, Lactobacillus, and Scardovia spp., whose
further synergistic effect will promote EPS generate and
microenvironment acidification (Lamont et al., 2018).

Recent advances based on DNA and RNA techniques have
further shed light on the microbiota associated with caries. In
carious lesions whether in enamel or dentin, the supragingival
microbiota dramatically decreased from 500-700 species to 100-
200 species-level phylotypes (Simon-Soro and Mira, 2015). The
bacteria involved in enamel caries were mainly Veillonella,
Rothia, and Leptotrichia, while the bacteria involved in dentin
caries were mainly S. sanguinis, Atopobium, Schlegelella,
Pseudoromibacter , and Lactobaci l l i (Vanaki , 2020).
Streptococcus mutans (S. mutans) and Lactobacillus are closely
related to dental caries, which can ferment sucrose to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
polysaccharides and produce lactic and ATP (Zeng and Burne,
2016; Tanner et al., 2018). Some other common cariogenic
bacteria exhibit the high potential of sugar decomposition and
acid production, including Corynebacterium, Granulicatella,
Propionibacterium, and certain strains of Leptotrichia (Lamont
et al., 2018). And the lactic can be utilized as a carbon source for
Veillonellae, one of the aciduric species (Chalmers et al., 2008).
Besides, Candida albicans (C. albicans) interact with
glucosyltransferases produced by S. mutans, enhancing the
virulence of the biofilm matrix, which plays a crucial role in
early childhood caries (Koo et al., 2018).

2.1.2 Diet and Microbiota
Frequent intake of carbohydrates plays an important role in
altering the oral microbiota. Tanner et al. suggested that caries is
the result of an imbalance between acid-producing and acid-
tolerant bacteria, which is closely related to a frequent diet
containing sugar or carbohydrates (Tanner et al., 2018). When
sugar intake is low and infrequent, the microbiota on the teeth
can remain stable and the small amount of acid production can
be easily neutralized by saliva, protecting the teeth from acid
erosion and demineralization (Takahashi and Nyvad, 2011).
Overexposure to fermentable carbohydrates facilitates the
production of EPS and acidic metabolites, as well as the
collection of acidogenic and aciduric microorganisms, thus
driving the conversion to pathogenic microbiota (Bowen et al.,
2018). Microbes will be embedded in the biofilm matrix when
carbohydrates are ingested frequently. As a result, local pH is
lowered by continuous acid production that avoids saliva buffer,
thereby inducing the mineral balance towards demineralization
(Takahashi and Nyvad, 2011).

Ecological perspectives for microbiota dysbiosis in dental caries
contain 3 reversible stages (Takahashi and Nyvad, 2011). The
healthy state’s microbiota on the enamel surface consists mainly
of non-mutans Streptococci and Actinomyces, with mild and
uncommon acid production. When demineralization/
remineralization is in equilibrium or the balance is tilted towards
mineral gain, it is in a dynamic stability stage. When frequent
carbohydrate supplies lead to a prolonged acidic environment, acid
production and acidity of non-mutans bacteria are adaptively
enhanced, and more aciduric strains selectively increase.
Therefore, the demineralization/remineralization balance is
induced to shift towards mineral loss and promotes caries
development, which is in an acidogenic stage. The prolonged
acidic condition further induces acidic selection of aciduric and
acidogenic bacteria to become dominant bacteria, includingmutans
Streptococci and Lactobacilli as well as aciduric strains of non-
mutans Streptococci, Actinomyces, Bifidobacteria, and yeasts, which
is called an aciduric stage.

Compared with glucose, fructose, and starch, sucrose has
strong cariogenic potential due to its fermentability and can be
used as a substrate for glucosyltransferase of S. mutans to
synthesize EPS and intracellular polysaccharides (IPS) (Paes
Leme et al., 2006). EPS boost bacterial adhesion on tooth
surfaces, causing structural and chemical changes of the
biofilm matrix, which makes it more difficult to remove
June 2022 | Volume 12 | Article 900918
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biofilm (Liu et al., 2018b). In addition, IPS reduces pH during
nutrient deprivation, leading to the selective proliferation of
cariogenic microbiota (Costa Oliveira et al., 2021).

Dental caries is an event of microbiota dysbiosis, and diet
plays a key role by providing a highly structured and localized
acidic microenvironment, promoting caries development
through demineralization that conversely shapes the
constitution and bioactivity of microbiota. Apparently,
challenges existing in controlling cariogenic biofilms mainly
include the following aspects. First , the cariogenic
microorganisms entangled in the EPS-rich biofilm matrix are
protected by the matrix, making it hard to combat or eliminate.
Second, EPS generate an extremely acidic microenvironment,
promoting the proliferation of cariogenic microbiota and
reducing the therapeutic efficacy of drugs. Lastly, because of
the rapid refresh effect caused by oral activity and saliva scouring,
topical medications barely sustained on biofilms.

2.2 Periodontitis
Unlike infections caused by a single microbial pathogen,
periodontitis is triggered by the synergy of multiple microbial
communities rather than by specific microorganisms. Arguably,
periodontitis is not an infectious disease, but a dysbiosis disease,
relating to changes in species abundance in the microbiota and
the impact of such changes on health (Lamont et al., 2018). In
addition, periodontal dysbiosis is in connection with the
disruption of tissue homeostasis, largely due to microbial
subversion of local immune response (Hajishengallis, 2015). As
the disease progresses, further periodontal tissue destruction will
eventually lead to loosening and even loss of teeth, directly
affecting chewing or speaking function as well as aesthetics,
reducing the patient’s quality of life (Pihlstrom et al., 2005).

2.2.1 Subgingival Microbiota
Characteristics of the local environment determine the properties of
relevant microbiota. Matching the constant renewal of gingival
epithelial cells, the corresponding microbiota develops more
rapidly and is less complex than that on the tooth surface
(Hajishengallis and Lamont, 2021). Furthermore, to cope with
loss upon host cell death, plenty of colonizing bacteria in the
junctional epithelium invade tissue and internalize within the
epithelium, where they are protected from host immune
molecules (Yilmaz et al., 2006; Lee et al., 2020). The subgingival
microbiota in health includes gram-positive bacteria and a few
numerically abundant gram-negative bacteria, spatially arranged in
organized associations and interacting in a physical and metabolic
way (Curtis et al., 2020). Among them, gram-positive cocci and rod
cells predominated in number during early colonization (Listgarten,
1976). Actinomyces spp. can co-aggregate with other bacteria such
as Streptococcus in initiate colonization stage to construct the
skeleton of dental plaque biofilms (Kolenbrander et al., 2006).
Notably, there are still health-related species in periodontitis and
vice versa, further confirming that periodontal disease is caused by a
dysbiosis rather than a single pathogen (Curtis et al., 2020).

Compared with healthy individuals, the total bacterial count
of the subgingival microbiota in periodontitis individuals was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
similar. However, the predominant bacterial species in the
subgingival microbiota of the two subjects have a significant
difference. The subgingival microbiota in health has higher
proportions of Streptococcus species, suggesting it is the main
component of the health subgingival microbial community.
Nevertheless, periodontitis had a higher proportion of obligate
anaerobic bacteria in the subgingival microbiota, especially
Porphyromonas gingivalis (P. gingivalis), Tannerella forsythia
(T. forsythia), and Eubacterium saphenum (E. saphenum) (Abiko
et al., 2010). Socransky and his team utilized whole genomic
DNA probes and checkerboard DNA-DNA hybridization to
distinguish the periodontal microbiotas and create a color-
coded system to characterize them. Among them, the “red
complex” group consisting of P. gingivalis, T. forsythia, and
Treponema denticola (T. denticola) is the most closely related
to periodontal disease, increasing in number with the depth of
periodontal pocket (Socransky et al., 1998; Mineoka et al., 2008).
The bridging orange-complex species, i.e., F. nucleatum and
Prevotella spp., and late red-complex colonizers, take longer to
mature than fast thriving yellow-complex species in the early
colonization such as Streptococcus spp. (Teles et al., 2013).

It is obvious that the dysbiosis of the microbiota causes
differences in metabolic pathways and functions. Elevated levels of
bacterial motility proteins and flagellar assembly may imply an
increased invasive capacity of pathogenic bacteria in periodontitis
(Cai et al., 2021). Studies have shown that bacterial phenolic acid
metabolites, especially phenylacetate and volatile sulfur compounds
were positively associated with periodontal exploration depth
(Liebsch et al., 2019; Abdullah et al., 2020). In addition, valine,
phenylalanine, isoleucine, tyrosine, and butyrate were significantly
upregulated in periodontitis subjects, while lactate, pyruvate, and N-
acetyl were the most strongly expressed in healthy subjects
(Romano et al., 2018).

Co-infection can enhance adhesion and invasion of the red
complex to gingival epithelial cells (Li et al., 2015). Synergistic
community interaction provides a platform for comprehensive
regulation of actions, including obtaining nutrient acquisition,
expressing genes, and swapping DNA. It is now well established
that, the pathogenicity of periodontal pathogens only becomes
meaningful under the interaction of synergistic microbial
communities, determining the nature and function of the
whole microbiota (Hajishengallis and Lamont, 2012).

2.2.2 Host Immune Defense
Although the predominant colonization of certain bacteria is
considered to be closely associated with periodontal disease,
they have also been detected in a healthy state. Therefore, it
cannot be arbitrarily assumed that these bacteria are the sole
cause of periodontal disease, as their pathogenic process
requires the evolution from a healthy, organized microbiota
to a dysbiotic microbiota, which ultimately promotes
inflammation and tissue destruction of the periodontal
tissue. It is now widely accepted that periodontitis is an
inflammatory disease destructing periodontal soft and hard
tissues. Microbiota dysbiosis is an initiating factor of local
inflammation, while hyperactivation of the host immune
June 2022 | Volume 12 | Article 900918
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system is the direct factor that stimulates osteoclast activity
and causes alveolar bone resorption (Pan et al., 2019).

Under physiological conditions, the immune system does not
mount a severe inflammatory response during immune
monitoring and tolerance of the microbiota (Graves et al., 2019).
However, the immune system will overreact in the context of
microbiota dysbiosis, contributing to localized inflammatory
infiltration. As the dysregulated microbiota continuously
stimulates and hurts periodontal tissue, immune cells such as
specific T cell subsets, antigen presenting cells, and mononuclear
phagocytes are recruited locally. During this process, the
interaction of pattern recognition receptors (PRRs) with
pathogen-associated molecular patterns (PAMP) expressed by
the pathogen microorganisms leads to the secretion of pro-
inflammatory cytokines, including interleukin-1 (IL-1),
interleukin-6 (IL-6), and tumor necrosis factor (TNF), which
has the function of activating lymphocyte and destroying tissue
(Graves, 2008; Gu and Han, 2020). Additionally, immune cells
secret a cluster of particular cytokines, activating relevant signaling
pathways and promoting the differentiation of specific lymphocyte
subsets with the participation of IL-1 and IL-6. These lymphocyte
subsets in turn secrete specific patterns of cytokines that serve as
positive-feedback factors or direct effectors to regulate the immune
response as well as osteoclast activity (Pan et al., 2019).

P. gingivalis can secret toxic factors like LPS, gingipains, and
pili to directly destroy periodontal tissues, and also activate host
immune cells to trigger local immune responses and motivate
the release of inflammatory mediators, resulting in secondary
tissue damage (Jia et al., 2019). As PAMP recognition receptors,
toll-like receptors (TLRs) can mediate the host’s innate
immune response to P. gingivalis, the foundation of acquired
immunity, playing a crucial role in the occurrence and
development of periodontitis (Nakayama and Ohara, 2017).

As an important factor in periodontal tissue destruction,
matrix metalloproteinases have the ability to decompose
the extracellular matrix and basement membrane, representing a
group of structurally related but genetically distinct enzymes. The
expression of matrix metalloproteinases is low in healthy
periodontal tissues. However, when interleukin-8 (IL-8) is
secreted in response to bacterial biofilms, neutrophils are
recruited to sites containing biofilms and secrete matrix
metalloproteinases 8, which mainly degrades interstitial collagen
(Sorsa et al., 2006). It has been found that F. nucleatum may
induce the production of matrix metalloproteinase-13, which can
degrade collagens of types I, III and IV, as well as fibronectin
(Uitto et al., 2003). The activation of matrix metalloproteinases is a
combined result of tissue, plasma and bacterial proteinases,
combined with the effects of oxidative stress (Cekici et al., 2014).

Recently, some studies have identified T helper 17 (Th17) cells
and correlative cytokines such as interleukin-17 (IL-17) have been
implicated in the pathogenesis of periodontitis because of the
ability to induce osteoclastogenesis (Cheng et al., 2014; Bunte and
Beikler, 2019). The study by Cheng et al. showed that P. gingivalis
and Actinobacillus actinomycetemcomitans enhance Th17/IL-17
responses through activating human CD14(+) monocytes (Cheng
et al., 2016).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
2.3 Peri-Implant Diseases
Over the past 50 years, the application of dental implants to
improve chewing efficiency and living quality of patients with
loss of teeth has become more and more prevalent due to its
remarkable biological advantages (Buser et al., 2017). But in the
last 30 years, peri-implant infective diseases have emerged,
including peri-implant mucositis only involving peri-implant
soft tissue and peri-implantitis that also involves peri-implant
bone loss (Zitzmann and Berglundh, 2008; Berglundh et al.,
2018). Peri-implant diseases cause implant loosening or eventual
removal in most cases, placing a huge financial burden on the
patient and severely impairing quality of life (Greenstein and
Cavallaro, 2014).

Peri-implant diseases and periodontal diseases share similar
risk factors, making their clinical outcomes similar. However,
recent proteomic and molecular studies have shown a significant
difference between peri-implant diseases and periodontal diseases.

2.3.1 Peri-Implant Microbiota
Dental implants provide a colonized surface for microbiota that
differs teeth in roughness, surface energy, morphology, and
material. In detail, dental implants are made of titanium and/
or ceramics, in the shape of a conical screw, have a higher surface
roughness and lower surface energy than teeth, so they are more
susceptible to bacterial adhesion, and have greater bacterial
abundance (Robitaille et al., 2016).

Surface irregular bacterial colonization begins about 30
minutes after the dental implant is placed in the oral tissue
(Van winkelhoff et al., 2000). Driven by van der Waals forces,
electrostatic and hydrophobic interactions, bacteria approach
and finally adhere to the acquired pellicle, thereby establishing
irreversible adhesion, followed by up-regulation of bacterial
metabolic activity and extensive bacterial colonization of the
implant surface (Wassmann et al., 2017). At the whole-
microbiome level , the peri-implant microbiota has
comparatively low diversity and less variability, which was
characterized by 71 species (Ghensi et al., 2020). The healthy
peri-implant oral microenvironment is predominantly colonized
by Streptococcus, which accounts for 45% to 86% of supragingival
and subgingival peri-implant microbiota. Besides, Actinomyces
as well as Rothia and Neisseria species have also been continually
isolated (Quirynen et al., 2005).

Whereas 12 species were enriched in peri-implantitis:
Fretibacterium fastidiosum (F. fastidiosum), T. forsythia,
Desulfobulbus spp. oral taxon 041, Treponema socranskii,
Filifactor alocis, T. denticola, Porphyromonas endodontalis (P.
endodontalis), Treponema maltophilum, Pseudoramibacter
alactolyticus, Treponema lecithinolyticum, P. gingivalis, F.
nucleatum (Ghensi et al., 2020). Using 16S rRNA sequencing,
Schaumann et al investigated the microbial composition of
biofilms at different oral sites in individuals with peri-
implantitis (Schaumann et al., 2014). The study found that the
most abundant submucosal species on implants were Rothia,
Streptococcaceae, and Porphyromonas, while the most abundant
subgingival bacteria on teeth were Prevotella, Streptococcaceae,
and TG5.
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A recent study by Shi et al. determined that the richness,
diversity, and distribution of microbiota were very similar
between peri-implant mucositis and peri-implantitis, both
having the core microbiota: Porphyromonas, Fusobacterium,
Treponema, Prevotella, and Campylobacter (Shi et al., 2022).
Compared with periodontal diseases, peri-implant diseases are
related to higher levels of Peptococcus, Mycoplasma ,
Eubacterium, Campylobacter, Butyrivibrio, S. mutans, and
Treponema, and lower levels of Prevotella, non-mutans
Streptococcus, Lactobacillus, Selenomonas, Leptotrichia,
Actinomyces (Robitaille et al., 2016). Another study showed
some interesting results, such as Selenomonas artemidis,
Eikenella corrodens, Ottowia sp. HOT894 and Neisseria
meningitidis appeared to uniquely be relevant to peri-implants
inflammation (Schincaglia et al., 2017). Ghensi et al. suggested
defining the “peri-implantitis-related complex” of 7 species
strongly characterizing peri-implantitis sites: the red complex
triad (P. gingivalis, T. forsythia, T. denticola), the P. endodontalis
and F. fastidiosum species, the Prevotella intermedia, and F.
nucleatum species (Ghensi et al., 2020). Among them, F.
nucleatum is closely associated with peri-implant diseases,
especially peri-implant mucositis, and is also a key bacterium
in the microbiota associated with periodontal disease.

In addition, observational studies suggested that peri-
implantitis was an intricate and multifactorial infection,
associated with opportunistic pathogens such as Staphylococcus
aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa),
fungal organisms (C. albicans, Candida boidinii, Paelicomyces
spp., Penicillum spp., Rhadotorula laryngis), and viruses (human
cytomegalovirus, Epstein-Barr virus) (Schwarz et al., 2018).

In a word, the peri-implant disease is associated with dysbiosis
in the microbiota, some of which may take part in the initiation of
disease while others contribute to disease progression.

2.3.2 Host Immune Defense
Peri-implant mucositis is characterized by changes in the
composition of the microbiota with an increase in gram-
negative microorganisms and activation of local host
responses. Microbiota dysbiosis causes the release of
chemotactic peptides and cytokines that recruit leukocytes
such as neutrophils to peri-implant pockets, thus engulfing
and digesting bacteria. However, if the neutrophils degranulate
by excessive bacteria, they will release toxic enzymes and
damage peri-implant tissue (Petkovic et al., 2010).

Health-associated bacterial biomarkers include chaperonin,
iron uptake protein A2, and phosphoenolpyruvate carboxylase.
Some biomarkers like ribulose biphosphate carboxylase, succinyl-
CoA:3-ketoacid-coenzyme A transferase, and DNA-directed RNA
polymerase subunit beta are specific in periodontitis and are also
important in peri-implantitis (Baliban et al., 2012). Chemokines
(IL-8 and MIP-1a) and proinflammatory cytokines (IL-1b and
TNF-a) may serve as markers for monitoring the condition of
peri-implant tissues (Petkovic et al., 2010). Immunohistochemical
staining showed that IL-1a expression was more prevalent in peri-
implant tissues, whereas TNF-a expression was more prevalent in
periodontitis tissues (Konittinen et al., 2006).
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The pro-inflammatory molecule IL-17, produced by Th17
cells, modulates multiple biological inflammatory effects,
including recruiting neutrophils and macrophages and
stimulating other pro-inflammatory mechanisms (Ouyang
et al., 2008). Mardegan et al. investigated the Th17 (IL-17 and
interleukin-23, IL-23) and Treg (transforming growth factor-b,
TGF-b) cytokine gene expression levels in healthy and peri-
implantitis tissues (Mardegan et al., 2017). A predominant Th17
response and a reduction of Treg response was observed in peri-
implantitis tissue compared to healthy tissue, especially arising
from up-regulation of IL-23 and down-regulation of TGF-b
around the implant.

Mikolai et al investigated early host-microbe interaction based
on a peri-implant oral mucosa-biofilm model and obtained
profound knowledge (Mikolai et al., 2020). The study showed P.
gingivalis is capable of attenuating the PI3K-Akt signaling pathway
and disrupting cell-cell junctions at gene and protein levels,
thereby enhancing bacterial colonization and damaging the
epithelial barrier. Furthermore, the release of antimicrobial
peptides or mucosa breakdown products and/or the presence of
P. gingivalis may lead to altered bacterial distribution with
an increased proportion of Veillonella dispar, deriving
lipopolysaccharides to induce TLR4-dependent host cell
responses, which can lead to inflammation. Intriguingly,
compared to periodontitis, fibroblasts isolated from peri-
implantitis had greater production of matrix metalloproteinases
(MMP), vascularizing factors, and complement receptor C1q, and
less production of metalloproteinase inhibitors and growth factors,
which promote collagen synthesis, which may explain the faster
and more extensive tissue destruction in peri-implantitis
(Belibasakis, 2014).

Duarte et al. used quantitative polymerase chain reaction to
assess the gene expression of different inflammatory factors in
gingiva from healthy implants and various degrees of peri-
implant diseases (Duarte et al., 2009). The study revealed that,
concerning inflammatory factors, IL-12 and TNF-a were
higher in severe peri-implantitis, followed by initial peri-
implantitis and mucositis, while IL-4 was higher in healthy
projects, followed by mucositis, severe, and initial peri-
implantitis. In consideration of osteoclastogenesis-related
factors, RANKL increased with peri-implantitis severity, while
OPG mRNA levels were higher in healthy implants, followed by
initial, severe peri-implantitis, and mucositis.
3 MATERIALS STRATEGIES

3.1 Antifouling Materials
Building an early biofilm asks for the absorption of protein to the
solid surfaces to construct the salivary acquired pellicles, along
with the adherence of initial colonizers to them. Then the
subsequent adhering of other oral pathogens to immobilized
bacteria, also known as cohesion or coaggregation, leads to
maturation of the biofilm (Kolenbrander et al., 2010). The
antifouling property of biomaterials, including protein
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repulsion and bacteria anti-adhesion, can protect surfaces from
invasion of early biofilm. In addition, the accumulation of dead
pathogens and bio-foulants on oral surfaces or dental materials
can be prevented by introducing the antifouling property, which
unblocks other biofunctions (Duan et al., 2022). Current
antifouling materials are usually polymeric antifouling agents,
besides, some biomolecules and special metals also show the
antifouling property.

3.1.1 Polymeric Agents
An effective intervention for inhibiting the absorption of bacteria
and protein on the material surfaces is to reduce the contact area
among them. For this purpose, the water barrier effect of
hydrophilic materials can play a certain role. In theory, a
hydrophilic material usually has strong hydrogen bond
interactions with water molecules, which can induce water
molecules to bind intensively with material surfaces, leading to
the formation of a hydration layer with the shielding effect. The
existence of a hydration layer can make it difficult for bacteria
and protein to get close to material surfaces, thus achieving a
good anti-fouling property (Jin et al., 2022). Currently,
polyethylene glycol (PEG) and zwitterionic polymer are the
two most widely used hydrophilic anti-fouling materials
(Venault et al., 2014; Lee et al., 2019). PEG is a flexible
polymer with -CH2-CH2-O- as the repeated unit, which make
it not only has hydrogen bonding with water molecules, but also
equip with the steric repulsion effect to prevent the invasion of
bacteria and protein. Benefitting from the ion’s solvent effect,
zwitterionics has a stronger interaction to form a denser
hydration layer. Among all , 2-methacryloyloxyethyl
phosphorylcholine (MPC) has been used in the antifouling
application due to its optimizable molecular structure
(Baggerman et al., 2019). The surface charge can be adjusted
by controlling the positive to negative groups ratio.
Consequently, the antiadhesion propertied can be tuned.
However, materials with the hydrophilic property are not
stable to bind with the matrix, which is also the main
limitation to develop them as the antifouling coating.
Buxadera-Palomero et al. once prepared PEG coatings on the
titanium (Ti, still contemplated to be the first choice in dental
implant therapy) surface by plasma polymerization (Hwang
et al., 2012). Subsequently, they took advantage of the pulsed
electrodeposition technology to construct the PEG coating on Ti
surfaces (Buxadera-Palomero et al., 2020). Both two means can
achieve expected bacteria antiadhesion. But the successful
coating by plasma polymerization and electrodeposition
depends on extra devices, complicating the whole process. To
solve it, the method that PEG or zwitterionics are fixed on the
substrate surfaces by chemical grafting has come into view. Choi
et al. grafted MPC brushes on the PMMA resins with different
grafting efficiencies by the free radical polymerization (Choi
et al., 2020). Meanwhile, the hydration and MPC dynamics
were evaluated logically and quantitatively by molecular
simulation and Raman spectroscope to optimize the
antifouling property. The resulting resins proved a nonspecific
bacteria antiadhesion behavior aiming at A. naeslundii, S. aureus
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and P. aeruginosa (Figure 1A). Silane chemistry is another
available method to graft organic polymers to inorganic
substrates. Alkoxysilane of silane coupling agents is reactive to
inorganic matter, while organo-functional groups can be
compatible with organic matter. Peng et al. prepared silane-
ended PEG chain with varied molecular weight and coated it on
the tooth stainless steel archwire (Peng et al., 2017). The PEG-
coated archwire showed excellent long-term bacteria
antiadhesion properties (Figure 1B). Coating materials with
chemical grafting is only applicable to the modification of
dental materials such as implants or resins rather than oral
tissue. In view of the abundant existence of Ca2+ ions on the
tooth surfaces, modifying polymers with groups that can interact
with these ions has been an alternative. For example, Hou et al.
synthesized a highly hydrophilic diblock copolymer polyethylene
glycol-poly (aspartic acid) (PEG-PAsp), where carboxyl groups
in the PAsp segments provide binding sites with Ca2+ on the
enamel surfaces, so that PEG segments on the other side can
inhibit S. mutans and Stoeptococcus sanguis (S. sanguis)
adhesion on the enamel (Hou et al., 2020). Compared with
carboxyl groups, PO3−

4 groups are equipped with stronger ability
to bind with Ca2+. Inspired by this, Kang et al. modified MPC
polymers with PO3−

4 to immobilize them on the tooth surfaces
(Kang et al., 2016). Researches demonstrated that the
introduction of PO3−

4 ensured sufficient MPC coatings,
resulting in increasing hydrophilicity and decreasing the
adhesion of protein and S. mutans.

When the solution of bacteria or protein contacts the solid
surface of materials, the new interaction between foulants and
materials needs to be supplied to support the disruption of original
liquid-liquid and solid-solid intermolecular force and to form the
intermolecular force between the liquid and the solid surface.
During this process, the former reflects the surface energy of liquid
and solid materials respectively, and the latter represents the
wettability of materials. So hydrophobic materials, or rather
materials with lower surface energy, can weaken the interaction
between foulants and materials, further improving the
antiadhesion capability (Cazzaniga et al., 2015). The silicon-
based materials are one of the most widely used polymeric
antifouling agents for their low surface energy. Polysiloxane and
its derivatives are typical silicone materials and have been
demonstrated to serve as coatings for resistance to protein
sorption (Yilgör and Yilgör, 2014; Santiago et al., 2016).
Recently, Yu et al. synthesized a branched silicone methacrylate
and incorporated it into the resin composites aiming at inhibiting
the bacterial adhesion by decreasing the resin surface energy (Yu
et al., 2020). Fluoropolymers are another option to serve as the
low-surface-energy coatings for oral care. Churchley et al.
synthesized a series of fluoropolymers and investigated their
effectiveness as dental-care coatings (Churchley et al., 2008).
These coatings behaved good resistance to several oral bacteria
including S. sanguinis, A. naeslundii and cariogenic S. mutans and
showed the potential of inhibiting acid demineralization. But it is
regrettable that a correlation between anti-adhesion capability of
fluoropolymers and their fluorine content or surface energy has
not been established.
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3.1.2 Biomolecules
DNA is an emerging highly stable biopolymer in the biomedical
field due to its unique and predictable properties. Attributed to
the fact that some bacteria are known to deposit DNA to
prevent the colonization of other bacteria around them,
recent research has hypothesized that DNA coatings possess
antifouling properties against bacteria (Berne et al., 2010).
Subbiahdoss et al. coated DNA on the matrix by the layer by
layer (LBL) technique to determine whether DNA coatings can
inhibit microbial fouling (Subbiahdoss et al., 2019). Reduced
number of several adherent bacteria on the DNA-coated matrix
showed the potential in antifouling applications. Later, this
team used a multilayer coating composed of DNA and chitosan
by the LbL deposition on PMMA resins and Ti implants and
demonstrated that these modified surfaces can prevent bacteria
adhesion and biofilm formation (Ouni et al., 2021).
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3.1.3 Metal Oxide
The light-induced hydrophobic and hydrophilic transformation
property of metal oxides enable them to be used for surface self-
cleaning.Under the illuminationof ultraviolet (UV) lightwith energy
greater than the band gap, the valence band electrons of the metal
oxides are excited to the conduction band, resulting in the formation
ofholes in thevalenceband.Theholes “randomlywalk” to the surface
of themetal oxides and reactwith surface oxygen ions to formoxygen
vacancies. At this time, oxygen vacancies can promote the
dissociation and absorption of water molecules in the air to form a
chemical adsorption surface (surface hydroxyl groups). Hydroxyl
groups can further adsorb water molecules, thereby improving the
hydrophilicity of the surface (Caputo et al., 2008; Sahoo et al., 2013).
Since theviewpoint that thehydrophilicityandwettabilityof titanium
dioxide (TiO2) polycrystalline films can be transformed by UV
irradiation was proposed by Fujishima in 1997 (Wang et al., 1997),
A

B

FIGURE 1 | Polymeric anti-fouling strategies: (A) zwitterionic antifouling coating grafted onto the PMMA resin for bacterial anti-adhesion; (B) hydrophilic PEG-coated
stainless steel archwire to achieve antiadhesive property.
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several metal oxides including ZnO,a-Fe2O3,WO3, V2O5 and SnO2

have been found successively to possess the photo-induced
hydrophilicity (Feng et al., 2004; Lim et al., 2007; Papadopoulou
et al., 2009; Gu et al., 2010; Talinungsang et al., 2019). For example,
Papadopoulou et al. prepared ZnO nanograins by pulsed laser
deposition and proved the light-induced superhydrophilicity in the
hydrophobic structures (Papadopoulou et al., 2009). Yan et al.
observed that the hydrophilic transformation behavior can also
occur in a-Fe2O3 nanoflake films, whose contact angles can be
switched from 160 to 0° upon stimulation brought from UV
irradiation (Feng et al., 2004).

However, the light-induced hydrophobic and hydrophilic
transformation property of metal oxides is reversible (Caputo
et al., 2008). That is to say, the absorbed hydroxyl groups on the
surface would be replaced again with oxygen in the air and
hydrophilic materials return to their hydrophobic state once UV
irradiation was stopped. The inevitable reversibility limits the
application of metal oxides as light-induced antifouling materials
in the treatment of oral diseases.

From the application point of view, the major disadvantage of
metal oxides lies in its roughness and wettability, which is closely
related to the surface topological structures (Packham, 2003; Chen
et al., 2021). Hence, it is important to achieve their structure
adjustable, especially at the micro/nanoscale. TiO2 nanomaterials
are representative of nano-topological surfaces with the bacterial
anti-adhesion property. Nowadays, nanostructured TiO2 materials
with good wettability were extensively investigated in antifouling
applications. Hu et al. constructed a composite nanostructure of
TiO2 nanotubes on the substrates, which exhibited S. sanguinis and
S. mutans antiadhesion behaviors (Hu et al., 2018). In addition to
nanotubes, nanostructure surfaces such as nanopores, nanorods and
nanogrooves have been indicated to possess good bacteria
antiadhesion properties (Ferraris et al., 2017; Valdez-Salas et al.,
2019). Besides, changing parameters of nanopatterns can lead to the
changes of roughness and hydrophilicity on the surfaces, affecting
the antiadhesion ability (Chen et al., 2021). For example, Krunal
et al. studied the effects of different diameters of TiO2 nanotubes on
the adherence of two oral bacteria S. sanguinis and S. mutans
(Narendrakumar et al., 2015). In this study, they showed that the
amount of attached bacteria can be adjusted as changing the
nanotube diameters and demonstrated the possibility of
tailoring nanostructure.

3.2 Antibacterial Materials
Antifouling agents have surely come into play in preventing
microbial attachment and biofilm formation. Once bacteria are
attached on the surfaces of teeth and dental materials to form
the biofilm, antifouling agents are of no effect. While materials
with antimicrobial properties are capable of killing those
attached bacteria or destroying EPS according to several
mechanisms and have become a strong candidate to regulate
microbial environments.

3.2.1 Metal and Metal Oxide
Many metal elements such as Ag, Cu, Zn and so on perform
broad-spectrum antibacterial ability as positively charged metal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
ions (Ag+, Cu2+, Zn2+) can cause membrane destabilization and
pore formation, leading to cytoplasmic metabolites leakage
(Kędziora et al., 2018). However, releasing large amounts of
metal ions in a short period of time will cause local excessive
concentrations, producing a toxic effect on cells. To solve the
problem, metal and metal oxide nanoparticles are used to achieve
the ions’ slow release by the oxidative dissolution of ions from
the nanoparticle surface. Besides, nanoparticles themselves have
the ability of physical damage and membrane destabilization,
which can reduce the number of needed metal ions (Gold et al.,
2018). Dutra-Correa et al. functioned Ag nanoparticles with
stabilizers to control the nanoparticle sizes and prevent
aggregation (Dutra-Correa et al., 2018). These functioned
nanoparticles can be incorporated into the dental adhesive at a
lower concentration than that of previous studies. The
antibacterial experiment and mechanical analysis demonstrated
that Ag nanoparticles at a low concentration can still have the
antibacterial effect on S. mutans without increasing the influence
on mechanical properties of adhesive.

In addition to the contact-killing mechanism of metal
nanoparticles, they can also lead to the change of surrounding
environment such as elevating temperature or generating reactive
oxygen species (ROS) to kill bacteria by response to external
stimulus. Photothermal therapy (PTT) is a kind of emerging
antibacterial means and has been achieved by the absorption of
near-infrared light (NIR) of metal nanoparticles, especially Ag
nanoparticles to generate heat, thus causing high temperature in
the local to denature proteins of bacteria and kill them. Xu et al.
developed a removable multilevel photothermal antibacterial
nanoagent in which Fe3O4 was used as the core and
polydopamine (PDA), Ag and glycol chitosan were coated in
sequence (Xu et al., 2022). The existence of PDA slowed down the
release of Ag+ so as to avoid tissue damage while the photothermal
conversion property of Ag nanoparticles can realize effective
sterilization within a short time when they were irradiated by
NIR. The antibacterial experiment revealed the excellent bacterial
and biofilm inhibition ratio (over 95% and 50% respectively)
aiming at oral cariogenic bacteria.

In 2007, paramagnetic Fe3O4 nanoparticles with the peroxidase-
like activity were discovered by Yan’s team for the first time (Gao
et al., 2007). The finding led to rapid development in the research
for nanoparticles with similar property. So far, several kinds of metal
and metal oxide nanoparticles including Fe3O4, Pt, Pd, Au, CeO2,
CuO and so on have been confirmed to have the peroxidase-like
activity (Fang et al., 2018; Xiang et al., 2020). Such nanoparticles
with enzyme-like catalytic activity are also known as nanoenzyme,
which can break down H2O2 to generate ROS at acidic pH values
for degrading the biofilm EPS and simultaneously killing embedded
bacteria. Gao et al. synthesized catalytic nanoparticles containing
biocompatible Fe3O4 with peroxidase-like activity in a solvothermal
system (Gao et al., 2016). These catalytic nanoparticles have been
shown to activate exogenous H2O2 in situ to generate ROS that can
achieve not only rapid bacteria killing but glucan degradation in
biofilm EPS. Furthermore, the nanoparticles also exhibited an
addi t iona l proper ty of prevent ing hydroxyapat i te
demineralization, which was beneficial from the caries treatment.
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Likewise, Liu et al. designed a nanoparticles Ferumoxytol, which
was comprised of iron oxide cores coated with carboxymethyl-
dextran (Liu et al., 2018a). The nanoparticles also displayed biofilm
disruption capability by activating H2O2 to cause S. mutans death
and EPS matrix degradation (Figure 2A). The subsequent research
revealed the antibacterial specificity of Ferumoxytol against S.
mutans. They analyzed that the targeting property could be
attributed to the interactions between carboxymethyl-dextran of
Ferumoxytol and specific glucan-binding proteins of S. mutans
(Figure 2B) (Liu et al., 2021b). Although these catalytic
nanoparticles exhibited excellent antibacterial properties, the
inappropriate additive amount of exogenous H2O2 can induce
excess ROS causing cell damage. Considering that, glucose
oxidase (GOx), an endogenous oxidoreductase that can catalyze
the oxidation of b-D glucose into H2O2, has come into view
(Chaichi and Ehsani, 2016; Laothanachareon et al., 2018). Ji et al.
prepared Fe3O4 nanoparticles and modified them with GOx (Ji
et al., 2021). GOx can catalyze glucose in the biofilm matrix to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
generate H2O2, which can be further catalyzed by Fe3O4

nanoparticles to produce ROS. In addition, the oxidation of GOx
depleted the oxygen and glucan, helping to starve bacteria to death.
Inspired by the specific binding of glucan and oxidation capability
of GOx, Huang et al. coated iron oxide nanoparticles with both
glucan and GOx (Huang et al., 2021). The resulting nanohybrid had
significant S. mutans killing efficacy without affecting commensal S.
oralis. To reduce the used amount of nanoparticles, these metals can
be fixed in other materials such as carbon nitride and metal-organic
frameworks (MOF) (Wang et al., 2020; Wu et al., 2021b). Yu et al.
reported single-atom dopped MOF catalytic systems with several
metal atoms including Pt, Au, Cu, and Ru for the treatment of
periodontitis (Yu et al., 2022). Due to its three-dimensional and
porous structure, the MOF-based catalytic system had plentiful
catalytic sites so as to improve catalytic activity and reduce metal
consumption (Liu et al., 2020).

In addition to being a light-responsive antifouling agent, TiO2

is a commonly used photocatalyst, which could respond to UV to
A

B C

FIGURE 2 | Metal nanoparticles antibacterial strategies: (A) combining Dex-IONP nanoparticles and additional H2O2 to generate ROS for disturbing biofilms;
(B) Dex-IONP-GOx nanoparticles as nanoenzyme to release ROS for precision targeting of bacteria; (C) Oxygen-deficient nanotitania with enhanced photothermal
Fenton-like reaction for destroying biofilms.
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generate ROS for destroying microbes. However, exposure to UV
light is harmful to cells and tissues restricts the application of
TiO2 (Musk et al., 1989). So, the current advancements mainly
focus on facilitating visible light adsorption by narrowing the
TiO2 band gap (Asahi et al., 2001). Previous literature found that
doping with nitrogen endowed TiO2 with superior visible light-
catalytic activity (Livraghi et al., 2006). Inspired by this, Florez
et al. synthesized nitrogen-dopped TiO2 nanoparticles and
immobilized them in the dental adhesive resins (Esteban Florez
et al., 2018). There was a higher antibacterial level when exposed
to blue light than in the dark, which demonstrated the
contribution of nitrogen to band-gap narrows. In addition to
nonmetal atoms doping, oxygen-deficient titania (TiO2-x) can
exhibit better photo-catalytic performance than TiO2 due to its
improved separation of electron-hole pairs and extended visible
light absorbance regions (Chen et al., 2011; Naldoni et al., 2012).
Hu et al. prepared TiO2-x nanoparticles from TiO2 based on
the solid-state chemical reduction method (Hu et al., 2021).
The presence of oxygen vacancy improved the catalytic activity
under NIR irradiation and meanwhile, elevated temperature
brought from photo-thermal conversion can also kill
bacteria (Figure 2C).

3.2.2 Inorganic Nonmetallic Materials
As the two main inorganic nonmetal materials, carbon
nanotube and graphene oxide (GO) have a similar
antibacterial mechanism. The penetration of the sharp and
narrow structure of two materials onto the surface of bacteria
can cause damage in the integrity of cell walls (Teh and Lai,
2019). F. Al-Thani et al. have studied the antibacterial efficiency
of GO and concluded that GO can work against several
microbiomes including eukaryotic fungus, Gram-negative and
positive bacteria (Al-thani et al., 2014).

Nitric oxide (NO) is an endogenous diatomic radical whose
antibacterial activity origin from its reaction with superoxide and
oxygen. In the process, peroxynitrite and dinitrogen trioxide
were formed to kill bacteria through lipid peroxidation and DNA
cleavage (Bogdan, 2001; Hetrick et al., 2008). Compared with
direct delivery of NO, a NO-releasing system will be applicable to
oral surgery. J. Backlund et al. loaded NO into PAMAM
dendrimers and discussed the influence of different pH and the
alkyl chains length of dendrimers on NO-release kinetics
(Backlund et al., 2016). Improved antibacterial actions can be
observed at lower pH values and when NO was loaded into
longer alkyl chain-modified dendrimers. Similarly, NO-releasing
hyperbranched polykanamycins and hyperbranched
polyamidoamines systems designed by Yang et al. can not only
reduce the metabolic activity of biofilm, but also kill embed
bacteria. The greater efficacy was observed under aerobic versus
anaerobic conditions (Ma et al., 2020).

3.2.3 Organic Small Molecules
The gold standard aiming at oral bacteria in the clinical
treatment is the use of antibacterial agent chlorhexidine
(Balagopal and Arjunkumar, 2013). Recent advances about the
delivery of chlorhexidine in different carrier systems can achieve
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org
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a slow release or controlled release of chlorhexidine for
prolonging the releasing time and reducing drugs usage.
Akram et al. reported a strategy that mesoporous silica
nanoparticles (MSNs) were grafted with poly (L-glycolic acid)
to load chlorhexidine and studied the release behaviors under the
oral acid-producing environment (Akram et al., 2021). Equipped
with exceptional surface area and porous structures, MSNs can
load drugs for improving efficacy. PGA is a kind of synthesized
polypeptide with the pH-responsive property, which guaranteed
a significant effect on chlorhexidine release behaviors and
nanoparticles degradation.

Quaternary ammonium salts (QAS) have been one of the most
widely studied antibacterial agents on account of their chemical
structure with ease of design and modification. The antibacterial
capability originates from the interactions between cationic QAS
molecules and the bacterial cell membranes with negative charges
(Ramburrun et al., 2021). The antibacterial property of QAS can
be optimized by changing the length of alkyl chains of QAS
molecules. For example, QAS molecules with longer alkyl chains
(C6-C18) are more applicable to kill bacteria because long alkyl
chains can disrupt the phospholipid molecules on the cell
membranes (Jiao et al., 2017). While relating to the antifungal
therapy, it’s necessary to expose more quaternary ammonium
groups with positive charge, thus shorter alkyl chains are rather
needed (De Prijck et al. , 2010; Duan et al. , 2022).
Dimethylaminohexadecyl methacrylate (DMAHDM) is a kind
of QAS antibacterial monomer with an alkyl length of 16,
showing strong antibacterial activity and antibacterial efficacy
(Zhou et al., 2013). Bhadila et al. developed a bioactive
antibacterial composite with DMAHDM and amorphous
calcium phosphate (ACP) (Bhadila et al., 2020). The composite
can not only protect dentin at the restoration margins from
invading of S. mutans biofilm, but also promote dentin
remineralization. As a small molecular antibacterial agent, QAS
can also be grafted onto polymer chains with biological functions
to play an antibacterial role. Fanfoni et al. designed and
synthesized a series of di-methacrylate bis-QAS that bear two
quaternary ammonium groups in a monomer (Fanfoni et al.,
2021). These synthesized monomers had the potential of
stabilizing polymer networks as crosslinkers, and the existence
of two quaternary ammonium groups increased the
antibacterial activity.

N-halamines are a class of small molecular compounds with one
or several nitrogen-halogen (N-X) bonds, in which X could be Cl, Br
or I. Among them, Cl is the most widely used element because of the
most advantageous stability of N-Cl bonds. The antibacterial
property of N-halamines originates from the release of Cl+.
Releasing Cl+ first chlorinates the external protein matrix of the
bacteria to form a protective layer around the bacteria, which helps
it penetrate into the bacterial cells. Cl+ going into the bacteria
further oxidizes the key cellular components containing mercaptan
and sulfide, and finally denatures the proteins by counter-
chlorination (Dong et al., 2017). It can be seen from the structure
of N-halamines that the dissociation constant of Cl element in
aqueous solution decreases in the order of imide > amide > amine,
which means that the Cl+ releasing capability decreases in the same
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order (Akdag et al., 2006). Contrarily, the durable stability of N-
halamines can get improved in order. Wu et al. grafted polyacrylic
acid (PAA) onto Ti implants for N-Cl functionalization to acquire
porous renewable antibacterial coatings (Wu et al., 2021a). In the
research, they utilize excess ethanediamine to react with PAA to
ensure that the resulting coatings can contain not only amide but
also amine. Such molecular design can provide a synergistic
antibacterial effect of rapid and long-lasting functions (Figure 3A).

Antibacterial photodynamic therapy (PDT) enjoys a tough
interest in current oral and dental applications. Photosensitizers
around tissues are activated by the light irradiation of a specific
wavelength, and the excited photosensitizers transfer the energy
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
to the surrounding oxygen to generate the highly active ROS,
which can oxidize the adjacent biological macromolecules for
killing bacteria (Stájer et al., 2020). Current photosensitizers used
for PDT are porphyrin, chlorophyll, toluidine blue O (TBO),
phthalocyanine compounds and these derivatives (Li et al.,
2021). Zhang et al. designed a zwitterion-modified porphyrin
by the conjugation of protoporphyrin IX (PP) and a zwitterion
moiety (Zhang et al., 2021). PP segments can improve the
generation of ROS by purple light irradiation for tooth
whitening and S. mutans biofilm eradication, while the
superhydrophilic zwitterion can increase the solubility of
modified porphyrin and ROS yields. Chlorin e6 (Ce 6), a class
A

B

FIGURE 3 | Organic micromolecules antibacterial strategies: (A) the renewal of active chlorine from N-halamines coating to achieve long-lasting antibacterial
property; (B) chlorin e6-mediated PDT therapy for bioresponsive bacterial resistance.
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of small molecular photosensitizer extracted from natural
chlorophyll, has been revealed to have a brilliant ROS
generation efficacy and absorption of visible red light (Ding
et al., 2018). Liu et al. once designed an amphiphilic and pH-
responsive polymer, which can self-assemble into spherical
structure in a neutral condition and disassemble under an
acidic environment. Considering the lower pH in the caries
environment, they encapsulated Ce 6 with the polymer for
PDT on demand (Figure 3B) (Liu et al., 2021a). A. Balhaddad
et al. constructed a nanoplatform by assembling TBO and
magnetic Fe3O4. In addition to the photodynamic antibacterial
property of Ce 6, Fe3O4 equipped the nanoplatform with the
capability to penetrate deep sites under external magnetic forces,
resulting in an improved disinfection effect (Balhaddad
et al., 2021).

3.2.4 Polymers
Compared to inorganic and organic small molecular antimicrobial
agents, polymer with antibacterial activity is a hot topic of current
research due to its high density of effective functional groups.
Usual polymers can be divided into synthetic polymers and
natural polymers. Among them, Polyethyleneimine (PEI) is a
typical synthetic cationic antibacterial polymer, which can
interact with the polar acid groups on the bacteria to destroy
cell membranes (Pietrokovski et al., 2016). Karatepe et al.
incorporated PEI and silk fibroin (SF) into dental resins. In
addition to reinforced mechanical strength brought from SF,
PEI endowed resins with the resistance to bacterial erosion of P.
aeruginosa (Karatepe and Ozdemir, 2020).

As extracted from matters in nature, natural polymers often
exhibit low toxicity, good biocompatibility and biodegradation.
For example, chitosan is extracted by the deacetylation of chitin
and the positively charged ammonium groups (NH+

3 ) can be
generated upon protonation of amino groups. NH+

3 can interact
with negatively charged bacterial cell membranes to cause
leakage (Benhabiles et al., 2012). Peng et al. reported an
antimicrobial coating by incorporating PEG and chitosan to
combat bacterial infection (Peng et al., 2020). Herein, the coating
showed a long-lasting colony-suppression activity against S.
mutans. Similar to QAS, the length of hydrophobic groups can
also influence the antibacterial activity. Phuangkaew et al.
introduced hydrophobic entities and quaternary ammonium
groups to improve the antibacterial capability (Phuangkaew
et al., 2022).

3.2.5 Antimicrobial Peptides
Natural AMPs are a class of polypeptides with broad
antibacterial activity extracted from plants, amphibians or
human bodies, which are usually composed of hydrophobic
regions and positively charged hydrophilic regions (Parhi et al.,
2021). The hydrophobic regions, such as tryptophan and leucine,
can be in combination with the phospholipid bilayer membrane,
while the presence of hydrophilic positively charged arginine and
lysine can play an antibacterial role. Even though human oral
saliva contains different kinds of AMPs, when acting on oral
microorganisms, the minimum inhibitory concentration (MIC)
should be reached. It is worth noting that the concentration of
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natural AMPs in the gingival crevicular fluid is much lower than
MIC of most microorganisms. Although oral endogenous AMPs
are not enough to produce antibacterial effect on pathogenic
bacteria, the wide range of sources provides a new idea for the
treatment of oral diseases with additional AMPs. A variety of
AMPs, including a-defensin, b-defensin, histatin, and
histoprotestatin (such as LL-37), are normally present in oral
saliva and have been shown to have antibacterial effects against
multiple oral bacteria (Gorr, 2009).

The antibacterial activities of natural AMPs have been
extensively studied, but their sources are limited and
polypeptide chains are too long and complex to be flexible. On
the contrary, de novo designed AMPs and the antibacterial units
extracted from natural AMPs can solve these problems without
impairing the antibacterial activity. For example, G(IIKK)3I-NH2

(called as G3) is a man-made helical peptide, and has been
proven to have antibacterial activity against S. mutans biofilms
(Zhang et al., 2020). P-113 (AKRHHGYKRKFH-NH2) is a
histidine-rich 12-amino acid polypeptide from saliva protein
histatin 5. In light of previous research, P-113 has bactericidal
effects on oral important pathogenic microorganisms (Rothstein
et al., 2001; Sajjan et al., 2001). Wang et al. provided a novel and
stable Nal-P-113 by replacing tryptophan and histidine residues
with the bulky amino acids b-naphthylalanine and b-(4,4’-
biphenyl) alanine to increase salt resistance. The variant AMP
retained high antibacterial activity against Stoeptococcus
gordonii, F. nucleatum and P. gingivalis even at high salt
concentrations (Wang et al., 2015).

3.3 Materials for the Disease Treatment
The emergence of antifouling and bactericidal materials provides
a new means for the treatment of oral diseases caused by
dysbiosis of bacteria. However, the actual oral environment
determines the diversity of causes and complexity of results of
oral diseases, so single anti-fouling or bactericidal performance is
not enough to meet the needs of disease treatment. For example,
the overgrowth of oral caries-causing bacteria S. mutans is the
direct cause of dental caries. In this process, the local pH of oral
cavity is also decreased, which further leads to tooth hard tissue
demineralization in acidic environment. Consequently, the
treatment for dental caries is usually involving a combination
of antifouling/antibacterial property and promoting tooth
remineralization. Zhou et al. grafted P-113 (the smallest
fragment of AMP H5) with different end moieties in order to
achieve binding to tooth enamel, killing S. mutans, resisting
demineralization and promoting remineralization (Zhou et al.,
2021). The study suggested the potential of modified P-113 as the
functional agent for preventing dental caries (Figure 4A). To
inhibit the failure of resin-based dental materials brought from
recurrent caries, Melo et al. filled resin with Ag nanoparticles,
DMAHDM and ACP. In addition to the antibacterial activity of
Ag and DMADHM, ACP can release Ca2+ and PO3−

4 for
remineralization and acid neutralization (Melo et al., 2016).

As one of the most common chronic infections, periodontitis
will result in the destruction of periodontal tissue including
alveolar bone, periodontal ligament and cementum root. The
ultimate goal of periodontal therapy is the regeneration of all
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periodontal components, while the therapy usually combines
conventional anti-infective measures with guided tissue
regeneration (GTR) or the application of cytokines, growth
factors, or bioactive molecules (Bottino and Thomas, 2015).
Nasajpour et al. developed a biodegradable GTR membrane
made with a mixed solution of poly(caprolactone) and ZnO by
electrospinning for treating periodontitis (Nasajpour et al.,
2018). The incorporation of ZnO improved the antibacterial
activity and osteoconductivity simultaneously. Xu et al. proposed
an injectable sodium alginate hydrogel containing Cu2O and
PDA-coated TiO2 (Xu et al., 2020). The liquid to solid phase
transition during the gelation process can make the hydrogel
match the irregular defect sites. The blue light-responsive
property of TiO2 can generate ROS that can not only kill
bacteria but also oxide Cu+ to Cu2+ for stimulating
osteogenesis (Figure 4B). Zhang et al. developed a microneedle
patch for drug delivery of antibiotics and cytokines IL-4 and
TGF-b to achieve immunoregulation and tissue regeneration
(Zhang et al., 2022).

Like periodontal infect ion, peri- implanti t is is a
multimicrobial disease that causes bone absorption and
ultimately implant failure. In view of the fact that bacterial
infection is the main cause of peri-implantitis, the common
treatment method is still to improve the antibacterial
performance of implants through bacterial adhesion prevention
and sterilization (De Avila et al., 2020). At present, most
implants are made of pure titanium and titanium alloy
materials. However, titanium implants widely used in clinical
practice do not have outstanding anti-infection ability (Chen
et al., 2021). More recently, researchers have tried to kill bacteria
by mixing pure titanium or its alloys with other metals such as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
Ag, Cu, and Zn that have inherent antibacterial properties (Chen
et al., 2016; Wang et al., 2019). Another way to improve the
antibacterial ability of implants is the usage of an antifouling or
bactericidal material as the coating of the implant surface.
Hoyos-Nogués et al. presented a three-in-one trifunctional
strategy by preparing a coating with PEG, AMP and RGD
tripeptide. The strategy can promote the attachment and
spreading of osteoblasts on implant surfaces and inhibit
bacterial colonization on them (Hoyos-Nogues et al., 2018).
4 CONCLUSIONS AND PERSPECTIVES

The oral ecosystem contains several distinct niches, which
support the colonization of complex and heterogeneous
microbial communities. There are dynamic interactions
between oral environments and the compositions of oral
microbiota and between oral microorganisms. These
interactions can prevent humans from invasion and attack.
The oral microbiome is individual and relatively stable as time
goes on as long as the oral health is maintained. However, the
significant change of key parameters influencing microbial
growth will disturb the balanced interactions and lead to the
development of pathogenic microorganisms. Once the oral
microbial dysbiosis occurs, people are susceptible to being
attacked by oral diseases such as dental caries, periodontitis,
and peri-implantitis.

There is a close relationship between the occurrence of oral
diseases and the overgrowth of pathogenic bacteria and the
formation of their biofilms. In the past few decades, the
development of materials science, chemistry and biomedical
A B

FIGURE 4 | The combined treatment of oral diseases: (A) a multifunctional antibacterial peptide coating with modified end groups for adhering to enamel, bacterial
anti-adherence and enamel remineralization to achieve caries management; (B) an injectable dual light-responsive GTR membrane with the antibacterial property and
osteogenic capability to address requirements of periodontitis therapy.
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engineering as well as their intersection promote the blooming
research aiming at antibacterial materials. The methods of
resisting microbial invasion involve antiadhesion, sterilization
and even their combination. In addition to hydrophilic and
hydrophobic materials that have been studied extensively,
bioinspired DNA is an optional antifouling agent. The
photoinduced hydrophobic-hydrophilic transformation
property of TiO2 and its modification of surface morphology
can achieve controllable bacterial adhesion, showing potential in
preventing peri-implantitis. There is a wider range of bactericidal
materials, ranging from inorganic materials such as metals and
carbides to organic small molecules, synthetic polymers and
some natural molecules. the development of distinct categories
of materials enriches antibacterial means: metal ions,
chlorhexidine and QAS are still mainstreams, while the
application of NO, Cl+ and AMP is also increasingly emerging.
Moreover, mature nanotechnology makes it possible for
nanoenzyme, PTT and PDT to be used in the treatment of oral
diseases, which further expands the application of some metal
and organic molecules. These antibacterial materials have been
combined with other methods for the research of treating oral
diseases such as dental caries, periodontitis and peri-implantitis
based on the characteristics of different oral diseases, showing
excellent results.

Although the research on oral antibacterial materials is thriving,
these materials are not widely used in clinic. The antibacterial
experiment in vitro only focuses on one or several pathogenic
bacteria. Considering the complexity of microorganisms in the oral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
environment, it is difficult to predict the effect of antibacterial
materials applied to oral cavity. Materials possessing bactericidal
effects usually have cytotoxicity as well. In order to achieve good
antibacterial properties, it is usually necessary to increase the
concentration of materials with low antibacterial activity, which
may cause worse biocompatibility. Therefore, a balance between the
antibacterial activity and biocompatibility of materials needs to be
found in the future. Finally, the results of basic research should be
effectively translated into real and affordable products, which
requires the joint cooperation and efforts of researchers, doctors
and patients.
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