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Physical contact remains difficult to trace in large metropolitan networks, though it is a key vehicle for the
transmission of contagious outbreaks. Co-presence encounters during daily transit use provide us with a
city-scale time-resolved physical contact network, consisting of 1 billion contacts among 3 million transit
users. Here, we study the advantage that knowledge of such co-presence structures may provide for early
detection of contagious outbreaks. We first examine the ‘‘friend sensor’’ scheme - a simple, but universal
strategy requiring only local information - and demonstrate that it provides significant early detection of
simulated outbreaks. Taking advantage of the full network structure, we then identify advanced ‘‘global
sensor sets’’, obtaining substantial early warning times savings over the friends sensor scheme. Individuals
with highest number of encounters are the most efficient sensors, with performance comparable to
individuals with the highest travel frequency, exploratory behavior and structural centrality. An efficiency
balance emerges when testing the dependency on sensor size and evaluating sensor reliability; we find that
substantial and reliable lead-time could be attained by monitoring only 0.01% of the population with the
highest degree.

D
igital traces generated by citizens, during their commute across metropolitan transportation networks are
helping answer long-standing questions on topics from individual mobility to collective interaction
patterns. A series of landmark papers examining multiple large-scale digital traces has shifted the under-

standing of individual mobility patterns from random to highly structured and predictable1–5. This has important
implications in urban dynamics and epidemiology, particularly as the reproducible structure of metropolitan
face-to-face encounters does significantly shape the spatial-temporal dynamics of disease spreading6–8. Therefore,
advances in deciphering metropolitan encounter patterns play an important role in detection and mitigation of
contagious outbreaks9–11.

In detecting and containing contagious outbreaks, it is crucial to identify ‘‘super-spreaders’’, as they may
provide significant lead indicators for the early response of public health agencies12,13. To measure an individual’s
importance in spreading processes, various centrality measures, such as degree, betweenness, closeness14, k-shell
index13 and activity potential15 have been applied to theoretical diffusion models. Recent empirical works have
confirmed the importance of these diverse measurements in real-world diffusion processes13,15–20. To obtain such
measurements, full knowledge about the contact network structure is usually required; however, other than
simulating human interaction at this level of resolution6,10,21, mapping such structure from real-world physical
contact processes could be expensive to collect, computationally costly, laborious in the filtering of spurious
connectivity, and privacy-sensitive7,22–24. This has been particularly true for large metropolitan contact networks,
where the availability of citywide datasets is still limited25,26.

Disease monitoring is extremely costly, privacy sensitive, and involves enormous technical difficulties. A low-
cost contact network structure constructed from transit use may provide a way to design efficient monitoring
strategies using a small fraction of the population. In this work, we examine the largest metropolitan encounter
dataset collected to date - travel smart card data from all of Singapore’s bus users, covering approximately 3
million users during 1 week. Using one week’s tapping-in/tapping-out data collected from public transit services
in Singapore, we built a large-scale high-resolution physical contact network. In a recent study based on this
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dataset, we demonstrated that physical encounters display a signifi-
cant degree of temporal regularity and these rhythmic interactions
form a large-scale spatial-temporal contact network, spanning all of
Singapore for the whole week5. The study emphasizes that encoun-
ters at this fine-grained scale are also very structured, and far from
random. If the former study identified the global behavioral prop-
erties that generate this citywide co-presence network, our present
study tries to identify the key individuals’ network properties that can
be exploited to combat the spread of infectious disease.

As an alternative to constructing a global structure of contact
networks, recent research exhibits an increasing interest in applying
crowd-sourcing as a potential strategy to detect contagious out-
breaks, from using declared ‘‘friends as sensors’’, to aggregated search
engine queries, to social media27–32. Although these methods pro-
posed are based on simple principles and require only small slices
of information, they also show great advantages in providing early
warning. Still, interesting questions remain in comparing the
possible gains of using full knowledge vs. local methods in an epide-
miological city-wide scenario. We perform such study in this high-
resolution network, as a first evidence of its kind at a population and
metropolitan level.

Results
To explore the dynamics of city-scale contagious outbreaks, we
applied a general Susceptible-Exposed-Infected (SEI) model33 to
simulate the spreading processes (see Methods and Supplementary
Note 1). Briefly, a simulation run is initialized with ten infectious
people (as index cases), who are selected randomly among all transit
users on Saturday. In the temporal weighted physical encounter
network (with each contact as an edge and its duration as weight),
an infectious individual i will transmit disease to neighbor j with
probability pij 5 bdij per 20 seconds (contagion rate b is a universal
parameter across the population and dij represents encounter dura-

tion; see Fig. 1A for example). Once a susceptible individual get
exposed, he/she becomes infectious after 2 hours, starting to spread
the disease to other susceptible people. As almost all transit journeys
are shorter than 2 hours, the introduction of this exposure stage
prevents one from getting infected and then infects others directly
during the same journey (which will significantly boost the spreading
as instantaneous networks for a vehicle is always fully connected).
Note that b 5 0.003 is used in a high-resolution contact network in
Ref7,20; we apply comparable values in our simulations. The full tem-
poral resolution enables us to simulate the spreading processes dur-
ing the whole week based on the proposed scheme for detecting
contagious outbreaks, by registering infection time and transmission
pathway on individual levels (Fig. 1B).

As mentioned above, a simple, but effective strategy for early
detecting contagious outbreaks without mapping the detailed struc-
ture of a social network is to find friend sensors from the popu-
lation22. The inherent principle behind this method: a randomly
selected ‘‘friend’’ (neighbor; in a friend group) of one vertex (in a
control group) has higher degree on average when the network has a
heterogeneous degree distribution, implying that friend group is
more central than the control group (or the population as a whole).
This is commonly referred as the ‘‘friendship paradox’’; your friends
have more friends than you do34. However, as social links initiated by
physical encounters with strangers display a significant degree of
heterogeneity, it remains unclear whether the friend sensor scheme
- obtained from a static network structure - works in temporal
spreading processes. Hence, to assess performance of the friend sen-
sor scheme, we conducted multiple simulation experiments with
different contagion rates b. In each simulation, we first select 1%
individuals from population P randomly as a control set C :5 {cijci

g P}; the corresponding sensor group S is composed of randomly
selected neighbors of each individual in C (S :5 Æsijsi g N (ci), ci g
Cæ, and N (ci) is a neighbor set of individual ci). Note that S is a list

Figure 1 | Modeling contagious outbreaks in a city-scale physical contact network. (A) Simulated infection processes from one infectious individual (red

square). The encounter network is drawn in two layers: effective infection path (solid links in full color) and the remainder physical encounters (thin links

with opacity). (B) Temporal (hourly) change of susceptible and exposed people and infected people across the population. The results come from one

simulation with contagion rate b 5 0.0015, demonstrating how transit users become infected from day to day. (C) Temporal ratio of infected and

susceptible from 20 simulations with different contagion rate b. The solid curves show average ratios ÆIP/NPæ over 20 runs and error bars indicate standard

deviation. The dashed curves show the average trend of infected ratio ÆIS/NSæ of the 1% friend sensors. Lead-time can be estimated by checking time

difference when ÆIP/NPæ reaches certain value. (D) Number of hourly infection incidences during the week, from the same simulation run as in panel (B).

The orange dashed curve and the blue solid curve illustrate the temporal variation in population C and the selected friend group S, respectively.
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instead of a set since an individual might be selected repeatedly from
different N (ci). After obtaining results from 20 simulations, we mea-
sured the average infected ratio ÆIS/NSæ of the sensor groups and ÆIP/
NPæ of the whole population temporally, finding that friend sensors
have large lead-times (Fig. 1C). Given the heterogeneous individual
participation and size of the time window35, spreading exhibits a
linear increase - instead of a saturation process - after the explosive
stage.

In Fig. 1D, we show the temporal change of infection incidence i
(t) from the same simulation as Fig. 1B. The sensor group S is
obtained by the same selection scheme; however, in this case, the
control group C is the whole population. Together with Fig. 1C, we
found that spreading in S not only happens earlier, but also faster
than in the whole population, suggesting that the lead-time also
varies with time (or infected ratio; see Supplementary Note 3 and
Supplementary Fig. S1 and S2). Notably, although the temporal
structure is not used in finding sensors, the friend sensor scheme is
still efficient in early detecting outbreaks in our simulation
experiments.

Considering that friend sensors are identified locally without using
any centrality measures, they could be representative of a universally
applicable strategy when it is costly or impossible to map the detailed
network structure. To investigate the superiority of friend sensors in
a comparable manner, we employed different centrality measures to
quantify an individual’s importance based on the both network
structure and individual travel behavior employing the following
centrality measures (see Supplementary Note 2): (1) Degree k, mea-
suring total number of contacts of each individual during the week,
(2) Travel frequency f, frequency of taking public transit services, (f
could also be interpreted as number of activities in temporal net-
works15) (3) Shell index ks, taken from k-shell decomposition13 on the
static network and (4) Encounter entropy S, capturing temporal
diversity of encounters:

S~{
X

t

pt ln pt , ð1Þ

where pt is the probability of an individual’s physical encounter in
time t (hourly). Using time-stamped encounter transactions, we can
build the whole contact network and determine individual’s central-
ity for both control and sensor sets (see Fig. 2).

Indeed, a sensor group is more central than the randomly selected
control group in terms of degree k (Fig. 2A); however, it is not yet
known whether the friend paradox applies to other measures related
to travel behavior (other than network structure). Before looking for
additional sensors, we first measured other centrality distributions P
(f), P (ks) and P (S) using both population and friend sensors.
Although most people traveled less than 5 times during the week,
we still found that P (f) was characterized by a heavy tail across the
population, indicating a significant degree of heterogeneity in indi-
vidual transit use pattern (Fig. 2B). Moreover, we found that P (f) of
the sensor group clearly exhibited the friend paradox as well, indi-
cating that the people you have encountered on buses traveled more
often than you do. Using the same control and sensor groups, we
then obtained the distributions P (ks) and P (S). As Fig. 2C and D
demonstrate, the friend paradox does exhibit in terms of shell index
ks and encounter entropy S as well, suggesting that friend sensors
have higher k-shell indexes and show higher temporal encounter
diversity than the population. Taken together, Fig. 2 suggests that
the simple friend sensor scheme can universally identify more cent-
rally located social sensors. Nevertheless, as the percentiles show (in
all Fig. 2 panels), there are still significant differences between the
most central individuals and friend sensors, further indicating that
the efficiency of friend sensors might be limited. Taken together, as
one might expect, the simple principle of friend sensor scheme also
prevents itself from performing more efficiently, as better sensors

could always be obtained by using more information on contact
structure.

We next compare performance of the best sensors identified by
each centrality measure against friend sensors by quantifying lead-
time on a universal scale. When individual infected time cannot be
obtained across the whole population, lead-time is estimated as dif-
ference between control and sensor samples in general22. However,
since transit services are generally not operated 24 hours a day, the
cumulative infection curve is not strictly monotonic increasing dur-
ing the monitoring period in our case, resulting in significant differ-
ence when calculating lead-time from multiple runs; thus, using
instantaneous lead-time is a biased measure of sensor performance
(see Supplementary Note 3 and Supplementary Fig. S2). However,
given that individual infection time can be traced from simulations,
we can essentially quantify lead-time against the whole population
instead of a small sample control group. For efficient early detection,
we fixed the monitored infected ratio â~ a1,a2Þ½ ~ 0:05,0:25Þ½ and
measured only the difference of infection time of people in â, obtain-
ing infection time tâ

P~ ti a1ƒFP tið Þj va2f g from population and
tâ
S ~ ti a1ƒFS tið Þva2jf g from sensor group (F represents the empir-

ical distribution of exposed time). We re-define lead-time as the
difference of average tâ

P and tâ
S :

T~ th iâP{ th iâS ð2Þ

Figure 2 | The ‘‘friendship paradox’’ exhibited in temporal encounter
network. (A) Degree distributions P (k) of population and their neighbors

(friends). The average degrees are Ækæcontrol 5 238.5 and Ækæsensor 5 442.0,

respectively. (B) Probability density function P (f) of stage frequency of

population and neighbor set. The inset shows the same plot in semi-log

scale. The mean values are Æfæcontrol 5 8.0 and Æfæsensor 5 13.0. (C)

Probability density functions P (ks) of shell index ks. The mean values are

Æksæcontrol 5 120.5 and Æksæsensor 5 167.3. (D) Distribution of encounter

entropy S. The density function P (S) has centralized peaks around ln 1 5

0, ln 2 5 0.693, ln 3 5 1.099 and ln 4 5 1.386, resulting from individuals

with homogenous encounters in corresponding number of intervals. The

mean values of encounter entropy are ÆSæcontrol 5 1.35nat and ÆSæsensor 5

2.00nat. The purple dashed lines in all these panels (from left to right)

indicate the 90th, 99th, 99.9th and 99.99th percentiles of corresponding values

across the whole population, explaining the degree of heterogeneity among

most centrally located individuals, friend sensors and the population as a

whole.
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Next, we ordered individuals according to their centrality measure
and divided the whole population into 100 percentiles. Using each
percentile as a sensor group, we performed 20 simulation runs and
measured the corresponding lead-times under different contagion
rate b. As Fig. 3 shows, the top 1% slices from all these partitions are
able to provide early detection; however, the less the average cent-
rality is, the shorter the lead-time T will be. For example, the sensor
group provides no advanced detection when k < k0.4 and even falls
behind the general population when k . k0.4 (k0.4 is the 40th percent-
ile of degree). In this case, lead-time may reach infinity if the spread-
ing cannot reach a2 (25%) among sensor group. By comparing these
centrality measures jointly, we found that they actually vary consis-
tently on sensor composition; however, no one outperforms the
others significantly (see Supplementary Fig. S3).

The efficiency of using such sensors to detect contagious outbreaks
depends not only on centrality measures, but also sensor size jSj. On
one hand, a small sample size induces large variation, providing poor
reliability in potential applications. On the other hand, the difference
of average centrality measure might be more and more significant
given the intrinsic heterogeneity of individual behavior, revealing
that we may achieve longer lead-time with lower cost (if the cost is
in proportion to sensor size). In Fig. 4A, we chose degree as primary
centrality and measured lead-time for logarithmically spaced sam-
pling rate n 5 jSj/jPj, spanning from 0.001% (only 27 people with
highest degree) to 100% (the full population is used as sensors; lead-
time is zero in this case). As the figure shows, smaller sample size
indeed provides longer lead-time, but, with larger variation. In
Fig. 4B, we show performance of friend sensors obtained from
equally sized control groups. Given that the sensor group is always
sampled from a deterministic population, we observed a constant
average lead-time, independent of sampling rate n. However, the
standard deviation of lead-time decreases as sample size gets larger

in both Fig. 4A and B, corresponding to the law of large numbers
when calculating lead-time in each simulation.

In practice, one should not just consider average lead-time and
monitoring cost of such sensors; their reliability is equally important.
To evaluate sensor reliability, we created a simulation result set with
500 runs and measured the lead-time distribution P (T) for contagion
rate b 5 0.001. As Fig. 4C shows, average lead-time of different
sensor groups (in terms of sensor sizes) is well characterized by
normal distribution, however, with significant mean and variance
difference. Notably, the top 0.01% group performs extremely well
for both average lead-time provided and reliability. Fig. 4D shows
results of the same analysis for the friend sensor scheme. We
observed that the larger the sensor size is, the more reliable the
lead-time becomes; however, increasing sensor size does not raise
average performance, consistent with what Fig. 4B shows. We also
applied this procedure to other centrality measures: frequency f, k-
shell index ks and encounter entropy S, finding that sensor group
identified by degree outperforms all other centrality measures (see
Supplementary Note 4 and Supplementary Fig. S4). Taken together,
Fig. 4 suggests that the friend sensor scheme indeed provides a sub-
stantial lead-time in early detection; however, the inherent principle
prevents it from performing better by adjusting sensor sizes (in other
words, average performance is independent on sensor size), whereas
a well-defined sensor (obtained by degree centrality in this case) can
easily outperform it. Our results further illustrate a clear advantage of
deriving sensors from the full co-presence network, providing
longer, more reliable lead-time by using a smaller sensor group.

Figure 3 | (A)–(D) Mean and standard deviation of lead-time for sorted
slices (1%) obtained by (A) degree k, (B) frequency f, (C) k-shell index ks

and (D) encounter entropy S. In panel (A), the dashed line and error bars
show lead-time provided by 1% friend sensors as a guide. As no centrality

measure is used in identifying friend sensors, lead-time will not change by

choosing alternative control groups. All curves demonstrate a monotone

increase approximately - except sensors identified by ks; the top 1% even

fall behind friend sensors when b 5 0.005.

Figure 4 | Effect of sensor size on efficiency and reliability in detecting
contagious outbreaks. (A) Lead-time provided by sensors with highest

degree, with sampling rate n 5 | S | / | P | in a logarithmically spaced interval

spanning from 0.001% to 100% with different contagion rate b 5 {0.001,

0.0015, 0.002, 0.005}. The error bars correspond to standard deviation of T.

(B) Lead-time provided by friend sensors identified by random control

group C of different size. Given that sensors are characterized by the same

distribution, lead-time exhibits a convergence pattern with the increase of

sample size. In fact, with sampling rate n increases, the variance of T

determined from one particular simulation run reduces, resulting in the

decreasing overall variance. (C) Distribution P(T) of lead-time T given

different sensor size | S | when contagion rate b 5 0.001, corresponding to

panel (A). (D) The same plot as panel C, however, for friend sensors

corresponding to panel (B).
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Discussion
To summarize, we show the feasibility of a friend sensor scheme in
providing early detection during a contagious outbreak in a met-
ropolitan physical contact network. Indeed, the simple friend sensor
scheme, which does not require a detailed network structure, works
consistently well in finding sensors that are more central in the
network. However, since all friend sensors are actually characterized
by a deterministic neighbor population based on network structure,
their performance is often limited by inherent characteristics of the
neighbor population, providing constant early warning on average,
independent of sample selection and sample size. Therefore, it is still
crucial to show the value of full network structure, in particular for
early detecting contagious outbreaks. Taking advantage of indi-
vidual-based passive data collection techniques on city-scale (transit
fare collection systems in this paper), we mapped detailed spatial and
temporal structures as a whole and identified new sensors given
diverse centrality measures, offering new insight into finding more
efficient social sensors. Considering the weak, passive and indirect
nature of social links enabled by these common daily physical
encounters, k-shell index ks - a well-defined structural centrality -
is less effective than the simple degree k and frequency f (number of
activities) in contagious detection. Note that we did not use between-
ness and closeness centralities as a measure in our study. On one
hand, computing shortest path-based centralities is extremely time-
consuming because of this network’s high density. On the other
hand, considering the temporal nature of daily encounters, the role
of static shortest path is not as significant as it is in social networks of
personal relations. Based on the spreading settings examined in our
study, a well-defined social sensor group based on degree may
account for only 0.01% of the total population; however, it provides
longer and more reliable lead-time - than the friend sensor scheme -
allowing public health officials and governments to plan a quick and
efficient response. In practice, those sensor individuals can be easily
identified by transit agencies given their unique smart card IDs, and
the remaining question is to monitor the health status of sensor
groups. Although sensor groups are deterministic given our observa-
tions, it may still not easy for public health agencies to monitor their
status owing to privacy and technical issues, which are beyond the
goal of our study. Nevertheless, one possibility is to use the emerging
ICT in health monitoring - such as health-care applications in smart-
phones - and ask these special people to willingly provide anonymous
information to public health agencies. Another possibility, assuming
that health authorities could have access to the identities of these
sensor group individuals, is to, instead of monitoring them directly,
track their appearance as cases of selected contagious diseases
reported by hospitals and local clinics. Were this sensor groups to
appear with a certain statistical trend in clinical reports, we would
have in our hands an early-warning signal for the future advance-
ment of the contagious disease.

Having said that, influenza-like diseases are transmitted primarily
by close contacts. Although the network used in our study is created
across the whole metropolitan area, capturing all transit users’ con-
tacts during a whole week, it still covers only a small slice of all
potential contacts in our daily life, forming only a subnetwork of a
network of contacts that would be important in the spread of actual
epidemics. On the other hand, to simulate an outbreak, we fixed
relatively unrealistic simulation settings, such as introducing only
2-hour exposed period and using an simplified SEI model instead
of a full developed SIR or SEIR model, for the outbreak to travel at a
speed where global and local methodologies could be tested. To what
extent the simulation can match a real contagious outbreak and the
relevance of the simulations findings to actual epidemics remain to
be measured. Thus, it is important to note that the specific results in
our study are embedded in the physical encounter network with a
pre-defined spreading mechanism. Such encounters on transit
vehicles occur more often between perfect strangers than among

friends, colleagues or families, making the network incomplete for
predicting epidemic spreading via all possible transmission path-
ways. Therefore, great caution should be exercised in interpreting
the results. In reality, a full contact network for disease spreading
consists of all of social links from diverse circumstances; it remains
unclear to us which part should be given priority with respect to the
characteristics of an unknown virus/disease. Nevertheless, with the
rapid development of information and communication technologies,
mapping the whole structure of close encounters from various data
would be far less difficult and laborious today. Given the high
individual and collective regularities rooted in human behaviors2–5,
patterns of face-to-face encounters in various settings could be
documented as well7,24, helping us build more comprehensive
agent-based models to contain emerging epidemics10,36. Moreover,
with our increasing knowledge about ourselves and various micro-
organisms around us, more efficient social sensors for different scen-
arios can be identified and applied in monitoring contagious
spreading from day to day, providing early and accurate information
to support better decision making. We believe that our work can
serve as a base to help better combat the spread of disease on a
citywide scale37,38 and better understand social contagion
dynamics39–41.

Methods
Data sets. Trip records were collected from Singapore’s smart-card-based fare
collection system, covering more than 96% of public transit trips. The system collects
data for both bus and MRT (subway) modes. Smart card data is widely used in public
transit: network planning, service adjustments, providing ridership statistics, and
indicating service performance. We employ bus, not MRT (Mass Rapid Transit,
railway based) trip records in this study, since it is difficult to identify close proximity
interactions on large MRT trains. For buses, once a smart card holder boards a vehicle
(tapping-in), the system generates a temporary transaction record; after he/she leaves
the vehicle (tapping-out), a complete record will be stored with detailed trip
information.

A full bus trip may contain more than one stages with transfers from one route/
vehicle to another. The stage records are generated separately in the smart card system
(with each tapping-in and tapping-off). Since our goal is to identify in-vehicle
encounters and the people one may encounter in vehicles will differ from stage to
stage, we use the term trip to represent stage in this document. After processing the
raw data, we obtained the trip records used in this study. The fields and their contents
are provided in Supplementary Tab. S1.

This study was performed on the trip records of one week in March, 2012. The
dataset contains 22,455,159 bus trip transaction records from 2,969,320 individual
smart card holders.

Simulation. To evaluate the performance of social sensors in the obtained interaction
network, we use the SEI models to simulate contagious outbreaks among all transit
users33, which are assumed to be in one of two states: susceptible (S) when they are
prone to infection, exposed (E) between exposure and infectiousness, or infected (I)
when they can transmit the disease to others. In studying the outbreak dynamics, we
are more interested in the initial spreading processes and thus we do not consider the
recovery stage in the simulation.

All simulations start on Saturday and end on the next Friday, spanning the whole
week (given the dataset). In the spreading process, the duration of explosive stage
(such that 0 , I/N , 1%) is highly determined by the number of index cases. Thus, a
smaller index size induces larger in terms of temporal spreading processes; however,
after this explosion, the spreading becomes steady and contagion rate b determines
the spreading speed of the rest spreading. Thus, to boost the initial spreading pro-
cesses, we set ten index cases in our simulation, enabling us to observe outbreaks in
one week. On the other hand, since people show great heterogeneity in their transit
use behavior (such that f # 5 for almost 50% of the users during the week), a larger
number of index cases also prevents the disease from dying out at initial stage.
However, as sensor performance is monitored given infected ratio 5% # FP(ti) , 25%
(after the explosive stage and during the steady spreading), lead-times and their
variability are mainly determined by b rather than number of index cases (see
Supplementary Fig. S5). Thus, all our simulations start with ten infected people (ten
infected cases), randomly selected across all transit users who were active on Saturday
(who took buses on Saturday). After being infectious, individual i will transmit disease
to a susceptible individual j, who individual i encountered during his/her journey,
with probability pij 5 b 3 dij (dij is encounter duration). Here, b is an important
parameter determining the speed of contagious spreading. We chose a series of values
from 0.001 to 0.005 per 20 seconds. On one hand, these values are similar to the value
used in Ref. 7. On the other hand, by simulating the spreading processes with different
b, we can better evaluate the performance of different sensors for outbreaks with
different b. Given any instantaneous network in a vehicle is a fully connected one,
disease may spread very fast once one individual get infect. To avoid this, we intro-
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duce the exposure (E) stage - which lasts for 2 hours - in our simulation: once an
individual is exposed, he/she will not spread the disease immediately; however, he/she
begins to begin to spread the disease to other encounter people after 2 hours.
Considering that most transit trips take place in under 2 hours, one is unlikely to get
infected and begin spreading disease to others during the same trip.

In the simulation, each time step represents 0.5 h, such as 7:00–7:30. In any step t,
we first identify all the neighbors he/she has encountered (the time they encountered
each other should be within this time step) and then get them exposed with the
defined probability b. The incubation time is selected as a constant given the time
granularity (2 h), and thus, the exposed individuals become infectious in step t 1 4.
We also tested our results when setting the exposed period to be 6 h and 12 h, finding
that sensors identified by degrees performs consistently better than others
(Supplementary Fig. S6).

Based on these simulation settings, one can monitor the temporal spreading
dynamics from a set of simulations with certain b and random seeds as initial infected
people. Meanwhile, individual infection time could be traced from each simulation.
As Supplementary Fig. S1 shows, although contagion rate b in each panel is the same,
simulations still differ significantly from each other, in particular when b is low. Thus,
estimating lead-time universally is important to establish the difference.
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