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Abstract

High throughput and high content screening involve determination of the effect of many compounds on a given
target. As currently practiced, screening for each new target typically makes little use of information from screens of
prior targets. Further, choices of compounds to advance to drug development are made without significant screening
against off-target effects. The overall drug development process could be made more effective, as well as less
expensive and time consuming, if potential effects of all compounds on all possible targets could be considered, yet
the cost of such full experimentation would be prohibitive. In this paper, we describe a potential solution: probabilistic
models that can be used to predict results for unmeasured combinations, and active learning algorithms for efficiently
selecting which experiments to perform in order to build those models and determining when to stop. Using simulated
and experimental data, we show that our approaches can produce powerful predictive models without exhaustive
experimentation and can learn them much faster than by selecting experiments at random.
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Introduction

It is increasingly accepted that the study of biology requires a
paradigm shift from a reductionist framework to a complex
systems approach [1-3]. Reductionist frameworks implicitly
assume that the object of study is comprised of a finite set of
subsystems, each functionally and essentially physically
distinct. In this case there is a reasonable upper bound for the
total number of experiments necessary to characterize the
whole, one experiment per component per subsystem. For
complex systems the upper bound on the total number of
experiments is the number of ways in which the components
can be taken in combinations up to some maximum number
per experiment (ten thousand components even taken only five
at a time would require over 10" experiments).

This problem is manifest when trying to determine the effects
of potential drugs on complex systems, since drugs with
desired effects often have undesired side effects. It has been
argued that these constitute the greatest component of risk in
drug development since unforeseen deleterious behaviors are
costly to correct [4,5]. The only way to be sure that a drug does
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not have side effects is to measure its effect in assays for all
potential targets. Since explicit characterization in this manner
is infeasible, approaches that do not require exhaustive
experimentation need to be considered [6]. To do this, we must
assume some structure or correlations exist within the
complete data, and that predictive models can be used to
capture them and guide future experimentation. Algorithms for
this type of problem are termed Active Learning in the machine
learning literature [7-10]. There have been limited applications
of these methods to biological problems [11-15], but none in
the context of multi-target, multi-drug analysis. Furthermore,
the methods we present here are equally applicable to more
general conditions than just drugs. In this paper, we show in
extensive computational experiments that a combination of a
structure learning method and active learning can achieve high
accuracy of prediction of condition-specific effects on targets
with significantly fewer experiments than a random learner, in
many cases with perfect accuracy without exhaustive
experimentation. The experiments were done with both
synthetic and experimental data. Further, we provide a method
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Figure 1. Active Learning Process. (A) An experiment is a combination of a target and a condition; observed experiments (filled
circles) associate a target and condition with a vector encoding an experiment result. (B) Phenotypes (filled colored circles) are
identified by cluster analysis of the experiment results. (C) From the arrangement of phenotypes across targets and conditions, a
small set of correlations ¢ (distributions of phenotypes across targets) are identified which are then used to impute unobserved
experiments. (D) A batch of experiments (filled grey circles) is selected based in part on predictions (outlined colored circles) from
the identified correlations. The process (B-D) is repeated until a desired goal is met.

doi: 10.1371/journal.pone.0083996.g001

for learning when to stop experimentation, a critical step for
practical use of active learning.

Materials and Methods

Definitions

We consider a general problem consisting of finite sets of
targets and conditions, combinations of which define an
experiment, whose outcome is an experimental result (Figure
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1). This is expressed as a categorical phenotype, and we are
interested in knowing the phenotype for all possible
experiments.

The inputs to the learning procedures considered here are a
set of targets T, discrete conditions C and a procedure F which
is used to form phenotypes from a space of observations O; T
and C are fixed and finite. Observations arise by performing
experiments taken from TxC (the experiment space).
Observations are interpreted by F to produce categorical
phenotypes F(O). Collectively, these define the experiment
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result space Q=TxCxF(O); for convenience we also define a
function E which returns the experiment of an experiment
result: E(w) = (t,c) when w=(t,c,0).

The learners considered here do not initially assume that
targets may be directly compared among themselves, nor that
conditions may be directly compared among themselves. This
allows us to consider potentially complicated experiment
spaces. For instance, conditions may consist of addition of
drugs, knockdown of gene expression, or changes in
temperature — it is not clear how to directly compare (or
express similarity between) temperature changes to drugs or
drugs to gene knockdowns. Likewise, the targets may also be
heterogeneous: some of the targets may be proteins, some
may be RNAs and again it is not clear how to directly compare
these. The phenotypes F(O) are therefore the sole basis of
comparison: two experiments (t,,c,) and (t,, ¢,) are considered
similar if they have the same phenotype. Various ways of
extending this concept produces a way of measuring similarity
of two targets across different conditions or vice versa.

The learning process constructs a sequence of predictive
models over E(Q) by iteratively performing batches of
experiments; each step in the sequence is called a round of
experimentation. We consider the case where experiments are
acquired in batches of fixed size S; this models the case where
it is cost-effective to perform several experiments at a time
such as for high-throughput technologies. Each batch of
experiments is disjoint to experiments already observed. The
sequence of models progressively identifies nested subsets of
Q (and E(Q)); after n rounds of experiments the collected data
are Z, <€ Q.

At each round the structure learning problem is to identify a
predictive model M, (M,[Z,]). This may be used to propose a
next batch of experiments B,,, & E(Q)\E(Z,). Active learning
strategies choose experiments based on observed data: B, ,4|Z,
~ f(Z,) for some function f, whereas a random learner ignores
the dependence and uniformly samples S experiments from the
remainder: B, ,4|Z, ~ Uniform[E(Q)\E(Z,)].

Structure Learning

We introduce a model class which assumes that
observations O are distributed in condition-specific manners.
That is, we will estimate a set of distributions ®, the size of
which is re-estimated each round. Each distribution ¢ is a
function from a subset of the targets T (called its “support”) to
the set of phenotypes F(O); for targets not in the support of a
distribution, no phenotype is associated. For each condition c,
there is at least one distribution that can make predictions for
some of the targets. Informally, since several conditions can be
associated with the same distributions, these correlations
describe mutual predictions from one target-phenotype pair to
another across conditions. From these we can build an
asymmetric model of the distribution P[F(O) | (t,c)].

The conditional independence structure is encoded by a
valuation I which indicates which distributions each experiment
(t,c)EE(Q) depends on. For convenience, we assume an
indexing of the distributions. Formally, a valuation I :T x C —
20*1 maps an experiment to a set of indices over the
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distributions. Independence of two experiments e,,e,€EE(Q) is
expressed as disjoint valuations, P[e,] L P[e,] = I'(e4) N I'(e,)
=@; informally this means that these two experiments were
estimated to have their phenotypes by unrelated causes. A
choice operator € resolves cases where an unobserved
(predicted) experiment has multiple valuations (|['(e)|>1) to
form coherent predictions; different ¢ lead to different
generalizations.

Choices for these form a model M = (®,I,¢). Predictions for
an observed experiment w=(t,c,0) in £ are produced through I":

Pl F(0)|E(w).p]=dro[r]=Flo)

In words, the predicted phenotype of an observed
experiment is such that the valuation of the experiment is a
distribution that maps the target to the observed phenotype.
Estimates for observed data do not depend on €. Predictions
for unobserved (t,c) € E(Q)\E(Z) are also constructed over ®
and . To do this, for every condition we identify the
distributions that could be used to make predictions for
unobserved targets in that condition. These sets '® are given
by the common refinement

u I(tc)
(t,c)EE(Y)

Since the correlations in I© may make different phenotype
predictions for the same target, the choice operator will pick
one of them. Taken together, given a model M = (®,l,¢),
predictions (when they exist) are defined as

M br] ifi=I(t.c) and (t.c) € E(Z)
t,c|, =
br] if i=¢(r9) and (r.c) g E£(Z)

These predictions may be augmented by various data
imputation methods (described below). In their absence, we
choose ¢ to be the function such that we predict the most
common correlation for each target to make a phenotype
prediction.

We considered two methods, a “Greedy Merge” and a
Quantified Boolean Formula Satisfaction (QBF/SAT) [16] based
estimation procedure termed “B-Clustering.”

P\F|O

Greedy Merge Structure Learning

Greedy Merge produces ® and I' from data and a clustering
of observations by iteratively combining condition-specific
distributions under the assumption that some of the conditions
affect all targets in the same ways. These are determined by
iteratively computing model estimates M, = (®,, I',, €) which are
monotone decreasing in the size of ®. We considered two
variants, one variant considered performs the first two steps
below and the second variant, Greedy Merge which is used
throughout our work, performs all three steps below.

Initialization. Let M, = (®,, [, €). Associate a ¢, with every
¢ € C such that for all observed (t,c,0) € Z, ¢[f] = F(O). Set &,
to be the set of all ¢, and 'y (t,c) = c. This produces an initial
model estimate where observed experiments are assumed
conditionally independent if they differ in condition.
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Merge Overlapping. To produce M,,, from M, = (®,, I,, €),
arbitrarily choose two different ¢; ,¢; € ®, such that their
supports overlap and in the overlap predictions do not differ
(] = ¢|[t] for t in the common support). Set fresh ¢, = ¢; U ;.
Replace ¢;, ¢; with ¢, to make a new ®,,,. Likewise, update
references to i and j in I" with z. This step is iteratively applied.
At termination there are no more overlapping ¢;,¢; to merge
and so M, distinguishes between two experiments e, e, if the
distributions they are assigned to in ' differ in any target's
phenotype. M, may produce identical predictions for some
target t across two conditions c,, ¢, (P[F(O)|(t,c,)] = P[F(O)|
(t,c;)]) but treat them as conditionally independent events
(F(t,c,) N T(tc,) = @) if there is some other ' where P[F(O)|
(f,c)] # P[F(O)| (t.c)].

Merge Nonconflicting. This step is similar to Merge
Overlapping, but the requirement that two distributions have
common support is removed and any two nonconflicting
distributions can be merged.

B-Clustering

An alternative procedure would be to define properties that
are believed to describe “good” models of the data, and then
use an efficient search procedure (a satisfiability solver) to find
examples of those models. This is most helpful when it is
unclear how to construct an algorithm that directly estimates
models which will satisfy the desired properties. We considered
the use of Quantified Boolean Formula (QBF/SAT) methods
built using the MiniSat solver [17] to identify a model subject to
constraints defining an optimum. In this framework, each
observed target and phenotype pair is associated with an index
of a distribution. This implicitly defines distributions (which map
targets to phenotypes) as the collection of target and
phenotype pairs with the same index. To do this, each unique
observed target and phenotype pair (t,F(0)) is associated with a
vector of literals v,, which encodes in two's complement the
index of a distribution in ® (e.g. a binary encoding of a natural
number). Legal assignments of each of these literals to true or
false will define the distributions. The set of legal assignments
is constrained by introducing logical formulas which encode
different criteria.

An example criterion is to constrain the choice of model such
that each (t,F(0)) is described by exactly one distribution ¢,;
ensures that each distribution predicts at most one phenotype
per target, and that all occurrences of a particular target and
phenotype pair must have a common cause. This is encoded in
a per-target constraint SingleOwner(t) which asserts that for
the set =[t] of all (f, F(0)) with the same target, their distribution
indices v,, must be different.

E[l])]
2

Vi oF Vi if [(t,o),(t,d

Another criterion (Coobserved(t,0)) is that for each
distribution ¢,, each pair of distinct targets t,t' in the support is
coobserved at least once in some condition ¢. That is, we
disallow distributions which make predictions that are totally
unsupported by mutual observations. Let 3(f,F(0)) be the set of
conditions that a pair (f,F(0)) was observed in.

SingleOwner|t|= A €
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(v { Vo # Vi forall (1,0").|4(t,0)n f(t,0)|>0 and t#1' })v
(/\ { Vo # Vo forall (f,0") #(1,0) })

Coobserved(t,0)=

A third criterion restricts the valuations of each condition (')
to be disjoint, so that predictions of unobserved targets for
each condition are always unique.

(/\{v)ﬁévw ifer[t]})/\
(A {vxq’:vmv ifxEE[l'] })

Noncontradiction||t,0|,|t',0'

B

) = Vt,o # Vt'vu' =

Other conditions may be applied. The model estimate
chosen is found by identifying the least number of distributions
N such that the SAT solver finds a solution where all of the
above hold:

A

/\SingleOwner(t))/\( A Coobserved(t,0)
(

t to)EE

argmin3N.
N
A Noncontradiction(x,y)

[BINB()>0]

A

A v, <N
(to)ex

Imputation as Model Augmentation

Ordinarily data or model imputation methods attempt to
correct situations where most data are available and only a
very small set are missing at random. In these situations, it
may be reasonable to impute missing data by marginal
estimates. Our learning problem is diametric: most of the data
are missing and not at random. We therefore chose two
alternate imputation rules to augment the model. For each we
modify € to either be the unique imputed phenotype (if it exists)
for some (t,c) or the imputation arising from the most common
correlation for that t. However, we keep all possible imputations
for each (t,c) in a relation / which maps from TxC to subsets of
the phenotypes F(O).

Target Equivalence Estimation

A simple imputation procedure estimates equivalence
classes of targets as measured by common or similar
observations. If two targets agree in their observations
everywhere that they are coobserved then we may reduce the
model by associating the predictions of one with the other,
possibly leading to a larger set of concrete predictions for both.

Three-Point Imputation

Deductive reasoning produces other structural assumptions.
We can interpret each distribution $&® as an assertion that for
any two distinct targets t, in its support, whenever we observe
in a condition ¢ that one target t had phenotype ¢[t] we may
predict that an unobserved experiment (f,c) has phenotype
o[t]. If we iterate these predictions by assuming the largest set
possible of them, we can potentially make many more
predictions than are immediately justified by the model.
Formally, for each distribution ¢; we form the relation

R[ga,](t,c){: 3r'. F(t',c) and 3c'. F(t',c') and F(t,c')

An experiment (t,c) is in R[$p] if there was a way to obtain
pairwise target predictions of ¢, as described above from some
other condition ¢'. We write the transitive closure of R[$p] as cl
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R[¢]; this relation captures the logical extension of ¢, to as
many (t,c)€E(Q) as possible by iterating untii no new
experiments are added. These are computed for each
distribution ¢ separately. We interpret the case where (t,c)Ecl
R[$] as weak predictions: “the phenotype of experiment (t,c)
might be ¢[t].” Since an unobserved experiment (f,c) can be in
the closure of R for different distributions, it is sometimes the
case that there are multiple and distinct weak predictions for
that experiment. That is, if (t,c)€ cl R[¢,] and (t,c)E cl R[¢,] it
can be the case that ¢,[t]#d,[t]. The set of unobserved
experiments that have multiple weak predictions are where the
model may be considered concretely uncertain as opposed to
simply latent.

Active Learner

A batch learner sequentially proposes experiments for
observation given observed data. At batch step n, given data
X, the following are provided: model M = M,[%] = (D,l,¢), the
collection of all possible imputations / and the model reductions
R < 27 used to form /. The goal is to balance choosing
experiments amongst all those with imputations in /, and all
possible refutations of identified correlations, taking into
account any symmetry relationships induced by R and their
refutations. Each unobserved experiment is given a rank
reflecting the number of distinct imputed observations and
through R, | and ® forms a set system. The next batch B, is
computed as a weighted S-hitting set so as to minimize the
number of experiments expected to be imputable from each
other and to refute the greatest number of assumed conditional
independences.

Ranking Experiments and Symmetry Breaking

We partition E(U,) into disjoint subsets, U, U" where U' =
E(U,)UE(l) and U" is the remainder (slightly abusing notation
for E). We form a lookup R which returns all the targets which
are in the same model reduction equivalence class; if one was
not estimated, then R is just the identity map. Let C, be those
c€C with no observations in %; this set is usually empty after
learner initialization. A weak association on C x 2€ is introduced
in the following manner: for each c, let Q(c) be the relation that
identifies those c'#c whose model predictions are equal for
some ftET. Q(c) need not be symmetric and is always
irreflexive. Q is used to break symmetry through R in batch
selection by the relation W, which identifies those unobserved
(t,c) with any (f',c") such that c is weakly associated to ¢' (cRc'")
and the model predictions differ (P[F(O)|(t,c)]# P[F(O)| (.c")]).
In words, W marks those experiments which have shown any
variation amongst similar conditions.

Given the above, a rank z(t,c) is computed over E(U,). For
each (t,c), define the pre-rank zZ’ to be the number of
imputations for (t,c) that have different phenotype
predictions:Z'(f,c)=|{g/[f] for (t,c,p)EN}|. Rank is defined as:

W(t,c)+1 if Z(¢,c)=1
Zlt,c|= .
W(t,c)+7(t,c)+3 otherwise

Notice that this ranks all elements in U' over experiments
with a single concrete imputation. Informally this chooses
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experiments that have many possible imputations, and then
those with no imputations and only then consider choosing
experiments that have single imputations.

Batch Selection

From these ranks, a weighted S-hitting set is computed as B,
+1 SO as to minimize the number of experiments expected to be
imputable from each other through R and ®. This is done
greedily, starting from the set of greatest rank, choosing an
unobserved experiment uniformly at random, and then
(temporarily) eliminating from consideration all those
experiments reachable through R and then selecting a next
experiment from the greatest nonempty rank set by repeating.
If S many elements have not been selected, then the
temporarily removed experiments are placed back into
consideration and the selection process is again applied; this
case generally only occurs when the apparent uniqueness of
the data is very low.

Learner Initialization
The learning process initializes from an empty Z, to request

,ICIW

|T|+max(|T

§
many experiments will cover two sample sets. The first is all
targets under the unperturbed condition. The remaining
initializing experiments consists of a scoreboard of max(|T],|C|)
points chosen such that each target and each condition is
sampled at least once, with the possibility of padding points
chosen at random to fill a complete batch B,. This starting
choice for Z; allows Target Equivalence Estimation to produce a
maximal (but not necessarily accurate) upper bound
equivalence reduction and observes every target at least twice
which provides a reasonable initial minimum bound estimate of
the number and partial identity of correlations.

many batches of experiments. These S x i

Parameterization of Experiment Problem Space

A description of experimental spaces with an equal number
N of targets T and conditions C can be parameterized in three
terms 6=(m, A, A,) as follows. For convenience, fix an ordering
of T and C each over [N] with condition c=1 as the unperturbed
condition. Influenced conditions c&€2..N are perturbations from
the unperturbed condition. Let m be the size of F(O). When the
observation for a particular t differs in condition c#1 from
condition c=1 we say that the experiment was responsive; let A,
be the expected fraction of targets that are responsive.
Different t may have identical response across C and likewise
different ¢ may similarly perturb T; let A, be the expected
fraction of each of T,C that are unique up to equivalence
through phenotypes. A, and A, are therefore rate parameters for
a truncated Poisson distribution.

A choice of 6 generates data Q = Q [6] by the following
process. Let n;, n. be the number of underlying (to be
replicated) targets and conditions respectively, n=[(N-1)A,
+1land similarly for n.. For each unperturbed experiment (t,1)
sample uniformly with replacement from [m]. Sample nc-1
times from the truncated Poisson distribution to determine the
number of responses per responsive condition. For each
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condition ¢ € 2..n; choose d, many indices in [n{]; observations
for these indices are set distinct from the unperturbed
condition. The data are completed by sampling with
replacement from [n;] to fill out the N - n; many replicated T,
and similarly for C.

Predicted Accuracy Score Regression and Stopping
Rule Construction

To characterize a model learned at a particular batch, we
measured several features on both that model and on
differences between that model and the model learned at the
previous batch. All of these features are based on data
available to the model; in particular, the parameterization of
data used was not included. These features fell into several
broad categories.

The first set of features measured simple counts: (1) the
current batch number, (2) the number of distributions in the
model, (3) the number of unique phenotypes observed, (4) the
number of experiments whose (predicted) phenotype is in
agreement between the previous model and the current model
and (5) the number of experimental conditions that differ within
a target.

The next set of features measures aspects of the model as a
Markov hypergraph system: (6) the minimum fraction of each
current distribution that was observed in the previous batch a
particular condition, (7) the maximum fraction as above (6), (8)
the maximum of the fraction of current imputations or
distributions that the previous batch covered (e.g. how good an
g-approximation the last model was to the current model) (9),
the difference of the average number of each phenotype
observed between the previous and current models and (10)
the size of the maximal matching of distributions between the
previous and current models.

These features were combined with their pairwise products
and z-scored and formed the design matrix for regression. The
dependent variable was the measured accuracy was adjusted
by subtracting the percentage of the population observed per-
batch; this essentially removes the expected fraction of
accuracy one would expect at random. The design matrix was
regressed in logistic lasso [18] against the adjusted measured
accuracy; the choice of regularization constant was determined
by minimizing 10-fold cross validation (folds formed over the
whole of the data). Loadings were computed by ordinary least
squares fit using the nonzero features identified by lasso
regression, and used to produce predicted accuracy scores
from the design matrix. The resulting scores were then re-
adjusted by adding back in the percentage of population
observed per-batch and normalized so that the maximum was
1.0 instead of ~1.1.

Gene Expression Analysis

Normalized gene expression data were taken from the
Connectivity Map [19,20] dataset (available at http:/
lincscloud.org as of time of writing). The dataset consists of
gene expression profiles in 48 cell lines under treatment by 280
drugs. We identified a completely observed submatrix of 50
highly drug-responsive genes (targets), 280 drugs (conditions)
and formed phenotypes of the measured gene expressions
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across the 48 cell lines by k-means clustering. To identify the
50 genes, expression levels were z-scored per-gene and
ranked by variance explained by 280 treatments (variance of
gene expression levels conditioned on drug). The 50 genes
most varying according to treatment were chosen so the
resulting dataset was not trivial (i.e. there would likely be more
than one phenotype) and to limit computational requirements
for simulation. A (280x50, 48)-matrix of observations across
cell lines was formed with averages of technical replicates and
clustered with varying k-means; for each k the model that
minimized reconstruction error from 200 seeds was used. For
each of these, a (280, 50)-matrix was formed from the
phenotypes for the simulations to query.

Availability

Scripts for setting up the simulations and generating figures
from the results are available from http://
murphylab.web.cmu.edu/software. Active learning software will
be made available for non-commercial use upon request.

Results

Learning Problem

As described in the Methods, we consider a general problem
consisting of learning a model for the effects of different
conditions upon different targets (the combination of which
define an experiment) (Figure 1a). The result of each
experiment is expressed as a categorical phenotype. Given
some initial data, either in the form of phenotypes or other
measurements from which we can obtain phenotypes (Figure
1b), we learn correlations between the behaviors of targets and
conditions that allow us to make predictions for unobserved
experiments (Figure 1c). We then construct a batch of
experiments to observe next in order to improve the model
(Figure 1d).

For this task, we considered different possible learning
processes, each comprised of (i) a probabilistic model, (ii) a
structure learning method for the model, (iii) a choice of data
imputation methods and (iv) a choice of active or random
learning strategy along with (v) a stopping rule which gives an
estimate for when a ‘good enough’ model has been learned
(Methods).

Model Selection

In order to test the ability of the models described above to
support active learning, we performed computational
experiments for several model designs. For these simulations,
we generated datasets consisting of m phenotypes for a set of
targets and conditions. Each target was assigned a base
(unperturbed) phenotype; the probability that a target would
change phenotype for other conditions was given by a
parameter A, (“responsiveness”). The extent to which targets
showed the same responses across all conditions, and the
extent to which conditions had the same effect on all targets,
was controlled by a parameter A, (“‘uniqueness”). For
illustration, A,=1 would correspond to all targets and conditions
showing a unique combination of phenotypes, and A,=0.1
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would correspond to an average of 10% of targets and
conditions showing the same combination.

We performed computational experiments for several model
designs, each consisting of a choice between two structure
learning methods (Greedy Merge and B-Clustering) with
predictions augmented with one of four combinations of
imputations. The simulations were evaluated for 100 targets
and 100 conditions with parameterization 6=(m=8, A=80%,
A=40%) with a fixed batch size of 100 (Methods). At each
batch the best accuracy for either the random or active learning
strategy was chosen as an indication of how well that design
can perform. These are displayed in Figure 2A. Most model
designs showed linear increase in accuracy with batches as
would be expected for a model-free random sampler. Only five
model designs showed learning that was superlinear. The
batch-wise difference between active and random learning
accuracies for these five designs are shown in Figure 2B.
Different designs show peaks in improvement over random
after different numbers of batches have been observed.

Model Performance

We then evaluated the performance of active and random
learning methods for each of these model designs across a
broad range of A, and A, for 32 phenotypes. We measured the
difference in the number of batches required to achieve 100%
predictive accuracy between active and random learning
methods. As Figure 3A indicates, our active learning strategy
with Greedy Merge structure learning achieved 100%
predictive accuracy more rapidly than random learning over the
majority of the sampled range of A, and A,, with qualitatively
similar behavior for 90% accuracy (Figure 3B). The
improvement is much less for B-Clustering (Figure 3C,D).
However, as discussed below, there are cases where each
method dramatically outperforms random sampling.

Figure 4 shows example learning curves for specific
combinations of A, and A. The most striking conclusion
(echoing Figure 2) is that the models learn much more rapidly
than random sampling. Figure 4A shows a case that with a
high A, and low A,. The initial models are poor in these cases as
predictions from the unperturbed condition do not generalize
well, but rapidly improve as correlations are learned,
generalized and used to identify likely responsive experiments.
The combination of the Greedy Merge model with active
learning gives a perfect accuracy after only about 30% of the
data have been sampled. By contrast, the “needle in the
haystack” case in Figure 4B (small A, and large A)) is initially
predicted well by either learner with either structure learning
method but further progress is slow and occasionally leads to
poor models. Nonetheless, high accuracy is achieved before
full sampling. Overall, while the efficacy of different active
learning methods varies somewhat for different A, and A
values, the results of Figures 3 and 4 show a significant benefit
in sampling with our active learners for the same number of
batches as compared to a random learner in almost all cases
(an important conclusion since A, and A, will not usually be
known).
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Probability of Approximate Correctness

One potential problem with using active learning to perform
only selected experiments is knowing when to stop. We
therefore asked if it is possible for an experimenter to estimate
the predictive accuracy of an actively learned model without
completing all experiments. One way to do this would be to
form a prediction of the accuracy of a model and a confidence
that measures how likely the true accuracy (which the
experimenter does not know) meets or exceeds the predicted
accuracy.

We empirically evaluated this possibility for the Greedy
Merge model by simulating a broad range of data with
dimensions as before. These data were formed by randomly
and uniformly sampling parameters in the cube (m=18..100,
A=5..95%, Au=5..95%). For each of these, we measured
features at every batch that described differences between the
model learned at the previous and current batches. Features
were limited to knowledge available to the learner at a
particular batch and not reliant on unseen data, or on the
parameters the data were drawn from. These features were
then collected and regressed against the true model accuracy
to produce a predicted accuracy score (Methods).

The predicted accuracy score is in general a conservative
estimate of accuracy, with the highest correspondences at
higher true accuracies (Figure 5A). On the whole (Figure 5B)
extremes in the true accuracy are identified with high
confidence. A practitioner may then be confident that a model
with a predicted accuracy score above ~80% is almost certainly
at least that good. Furthermore the per-batch and predicted
accuracy score confidences (Figure 5C) are conservative
estimates everywhere. As an example, for a model acquired
early in the learning process (batch 10) if we obtain a predicted
accuracy score of 70%, we can be ~90% certain that the true
model accuracy is in excess of 70%. Likewise, hard to learn
cases are identified as such with low predicted accuracy scores
or low confidence. With these a practitioner may choose a
minimum target accuracy, or limit the total number of
experiments performed, and still assert a quantitative bound on
the accuracy of the model.

Application: Learning the Effects of Drugs on Gene
Expression Levels across Cell Lines

In order to demonstrate the utility of this approach using
experimental data rather than simulated data, we applied the
Greedy Merge model to a dataset of gene expression profiles
in 48 cell lines under treatment by 280 drugs. An unresolved
issue is how to decompose these profiles into distinct
phenotypes. To avoid justifying a specific choice, we
considered a wide range of possible values (2.73) for the
number m of distinct expression phenotypes and formed them
by k-means clustering. For a given number of phenotypes, we
can calculate the average A, and A, Figure 6 shows the
improvement of Greedy Merge with Active learning over
Random learning as a function of these average A, and A,
values. Consistent with Figure 3, a 21%-40% reduction in the
percent of experiment space required to achieve 95% accuracy
was observed.
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Accuracy

Active-Random Learner Accuracy

Batch

Figure 2. Learning performance dependence on model design: structure learning and imputation rule choice. (A) Each
model design was evaluated with both active and random learners on two simulated 100 target x 100 condition datasets, each
having eight phenotypes, 80% responsiveness and 40% uniqueness. For each model design the best average accuracy for either
the active or random learner is plotted at each batch. For six cases displaying superlinear performance, structure learning methods
are indicated in color, with different design variations plotted as separate lines and with filled circles to indicate batches where the
active learner had higher accuracy: Greedy Merge (blue), a ‘strict’ variation of Greedy Merge (red), and B-Clustering (green, one
design). These each had both Target Equivalence Class and Three-Point Imputation rules. (B) The difference in random and active
learner accuracies for the superlinear model designs with structure learning method plotted by color as above; filled circles at tails
indicate that the active learner had reached 100% accuracy.

doi: 10.1371/journal.pone.0083996.g002
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Figure 3. Active learning performance for different model designs. Performance was measured as the difference in the
number of batches to achieve (A,B) 100% or (C,D) 90% accuracy between active and random learning. (A,C) Greedy Merge, (B,D)
B-Clustering. Warmer colors indicate greater experiment savings with an active learner.

doi: 10.1371/journal.pone.0083996.g003

Discussion

We have described a learning approach suitable for the
study of large, complex systems where the constituents have
unknown or incomparable relationships. We have developed
and presented empirical characterization of a class of models
that capture the structure which target-condition dependence
exhibits, structure inference algorithms for the class of models
that are suitable for sparse data and methods for imputing
missing values based on the structure of the learned models.
Importantly, since different targets may be part of very different
biological mechanisms, and yet have correlated responses in
various conditions, the models capture patterns in the
phenotypes without assuming a causal structure among the
targets. From these we have described and evaluated a batch
active learner capable of sequentially proposing informative
experiments. Our results show that it is possible to learn highly
accurate models without exhaustive experimentation.

Critically, we have also shown that it is possible to produce
an estimate of probable approximate correctness of the
learning process without access to complete data. To the best
of our knowledge, this is the first nontrivial active learner that
(empirically) enjoys useful learning guarantees analogous to
classical random sampling methods. This permits a decision
about when an active learning process can safely be stopped.

PLOS ONE | www.plosone.org

An important application of this work will be to efficiently
identify and model the dependencies of cellular targets upon
potential drugs or drug cocktails; we are unaware of previous
methods approaching the efficiencies reported here. Towards
this, we were able to show that the expression levels of genes
across diverse cell types under different drugs can form
consistent patterns whose emergent structure can be
accurately and rapidly learned. Interestingly, our results
indicate that while it is possible to learn efficiently even for the
binarized case (two phenotypes), there are may be even
greater efficiencies when considering finer granularity of drug
responses.

The learning problem here is similar to other well-studied
problems. DNF formula learning [21] and multiarm bandit
optimization [8] commonly consider categorical constituents
and restrictions to equality comparisons. Furthermore, as with
black-box optimization [22], we make very weak assumptions
on the structure of the data and rely on nonparametric
estimates. The tradeoff for weak data assumptions is that
nonparametric methods are generally data biased predictors
[23]. Close alternatives to our approach generally make
parametric assumptions on the structure and topology of data.
In particular, matrix completion [24,25] and similar regression-
based methods are the natural extension of our models but
require algebraic invariants on the marginal distributions of
data [26,27]. We were motivated to explore the approaches
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Figure 4. Example learning curves. Mean learning rates for active (solid) and random (dashed) learners across structure
learning methods, Full Greedy Merge (blue) and B-Clustering (green). Data from experiments in Figure 3 for (A) (A=90%, A,=25%);

(B) (A=10%, A=70%).
doi: 10.1371/journal.pone.0083996.9g004

presented here as we thought they would perform better in
cases with sparse, not missing at random data that would be
expected to be obtained from an active learning process.

Our formulation of the target-compound problem intentionally
ignores any prior information about similarities among targets

PLOS ONE | www.plosone.org

and among compounds (i.e., since they are potentially
inaccurate). However, in separate work we have demonstrated
that including it with active learning can increase the learning
rate (Kangas, Naik, Murphy, submitted). The availability of both
types of methods will be important to future work in this area.
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greater experiment savings with an active learner.
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