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Modelling insights into the COVID-19 pandemic
Educational aims

The reader will be able to appreciate that:

� Modellers use key disease parameters to estimate basic reproduction ratios.
� Knowing the reproduction ratio leads to important outcome estimates, such as the attack rate of an unmitigated epidemic and

herd immunity threshold.
� Reproduction ratios are setting specific and may change with interventions or increased immunity.
� The case fatality rate and infection fatality rate are distinct and should be interpreted differently when estimating disease seve
� All models have limitations and early models may be more limited by data quality.
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Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by the severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) that was declared a pandemic by the World Health
Organization on 11th March, 2020. Response to this ongoing pandemic requires extensive collaboration
across the scientific community in an attempt to contain its impact and limit further transmission.
Mathematical modelling has been at the forefront of these response efforts by: (1) providing initial esti-
mates of the SARS-CoV-2 reproduction rate, R0 (of approximately 2–3); (2) updating these estimates fol-
lowing the implementation of various interventions (with significantly reduced, often sub-critical,
transmission rates); (3) assessing the potential for global spread before significant case numbers had
been reported internationally; and (4) quantifying the expected disease severity and burden of COVID-
19, indicating that the likely true infection rate is often orders of magnitude greater than estimates based
on confirmed case counts alone. In this review, we highlight the critical role played by mathematical
modelling to understand COVID-19 thus far, the challenges posed by data availability and uncertainty,
and the continuing utility of modelling-based approaches to guide decision making and inform the public
health response.
yUnless otherwise stated, all bracketed error margins correspond to the 95% credible interval (CrI) for

reported estimates.
� 2020 Published by Elsevier Ltd.
INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
is a novel beta-coronavirus that first emerged in Wuhan in Hubei
Province of China in late 2019 [1]. Whilst initial case reports were
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limited to Hubei Province, the virus quickly spread to neighbouring
provinces and across mainland China before cases appeared inter-
nationally [2]. Since that time, coronavirus disease 2019 (COVID-
19) – the disease associated with SARS-CoV-2 – has spread to over
188 countries around the globe with approximately 8 million con-
firmed cases, and more than 430,000 deaths (as of 16th June, 2020)
[3].

Amongst the arsenal of public health response strategies, math-
ematical modelling has long played an important role in both char-
acterising infectious disease transmission and evaluating
intervention scenarios. Prominent examples include the Influenza
AH1N1 pandemic in 2009 [4,5], the West-African Ebola outbreak
2013–2015 [6], and Zika emergence in Latin America in 2016–
2017 [7]. Here we provide several examples of how mathematical
modelling has been used throughout the COVID-19 pandemic to
help understand the scale of transmission, disease severity, and
the potential effectiveness of public health interventions. We also
discuss the continuing importance of modelling to forecast the
impact of easing restrictions and vaccination as many regions
around the globe attempt to return to life as normal.
EARLY ASSESSMENT OF POTENTIAL GLOBAL SPREAD

Outside the initial Wuhan epicentre, air travel passenger vol-
umes were a key metric used to evaluate the risk of exportation
of COVID-19 to other regions. Using the significant positive corre-
lation between reported case counts outside of mainland China
and daily air travel volume from Wuhan, models identified outlier
countries with low case numbers compared with travel-related
expected counts, suggesting several regions had low detection
rates [8].

Other groups used more complex fully integrated air-travel
models to predict changes in the COVID-19 epicentre and assess
averted cases due to travel restrictions. For instance, a meta-
population disease transmission model indicated that Australia
reduced imported cases by 79% as a result of the government-
imposed travel ban, potentially preventing Australia from becom-
ing the Asia-Pacific epicentre [9]. Similar assessments were per-
formed for African and South American countries, which were
initially found to be at much lower risk relative to Asian (e.g., Thai-
land, Cambodia, Malaysia), North American and European coun-
tries, due to their lower connectivity with China [10]. However,
the risk to South America and Africa was predicted to increase con-
siderably once a second epicentre was established in Italy [11].
ESTIMATES OF COVID-19 TRANSMISSIBILITY

An important first step in characterising the transmission
potential of any novel infectious pathogen is to estimate the basic
reproduction number (R0), which quantifies the average number of
secondary cases per infected individual in an infection-naïve pop-
ulation. This parameter provides an important threshold for infec-
tion control: when R0 > 1 transmission is expected to be self-
sustaining, whilst when R0 < 1 transmission inevitably dies out
[12].

R0 is often estimated using time series of confirmed case counts
coupled with additional information on the disease epidemiology,
including the time lag between symptom onset in primary and sec-
ondary cases, i.e., the serial interval. These data can be used as
inputs for statistical models to generate estimates of R0 directly;
or can be used to estimate the parameters of compartmental mod-
els of disease transmission from which R0 is subsequently inferred.
Initially, modellers used data on the number of internationally
exported cases from Wuhan to estimate the basic reproduction
number in Wuhan as 2.68 (95% credible interval 2.47–2.86), corre-
sponding to an epidemic doubling time of 6�4 days (5�8–7�1 days)
[13,14].

Subsequent estimates of R0 in Wuhan from several modelling
studies, including both statistical and compartmental-based
approaches, have ranged from 1.40 to 6.49 with a median value
of 2.79 (IQR: 1.16) [15]. Limited data forced early authors to
assume median serial intervals similar to those observed for
SARS-CoV-1 (8.6 days) and MERS (7.6 days); however, later analy-
ses have suggested a shorter median serial interval of 4.0 days
(3.1–4.9 days) for SARS-CoV-2 [16] implying that some original
estimates of R0 may need to be revised down (since R0 estimates
are positively correlated with the serial interval for a given epi-
demic curve) [8,9,11].
SIMPLE MODELS OF DISEASE TRANSMISSION

In the absence of detailed epidemiological data, modellers often
begin with simple models of disease transmission which only dif-
ferentiate individuals according to disease status. For the case of
COVID-19, which has an appreciable incubation period prior to
the onset of active infection, the most appropriate model of this
type is the Susceptible-Expose-Infected-Recovered (SEIR) model
[12] shown in Fig. 1 below.

The main strength of these simple constructions is that they
allow straightforward computation of important results, including
the eventual proportion of the population infected in an unmiti-
gated epidemic (i.e., the final size) and the proportion immune
required to extinguish ongoing transmission (i.e., the herd immu-
nity threshold). As an example of the utility of these simple con-
structions, in Fig. 2 we plot both the final size and herd
immunity threshold as a function of the reproduction number to
determine the reduced reproduction number capable of achieving
the desired level of herd immunity (i.e., that corresponding to the
original reproduction number 2.5).

These simple models can also guide long-term disease control.
For example, they show the vaccine protection target should be
at least 60%, provided the vaccine prevents infection, not just sev-
ere disease. They can also be used to assess whether the first wave
has led to herd immunity and hence the risk of reintroduction in
countries with local elimination [17]. More complex models add
nuance to these estimates, for example elimination is more likely
in the presence of transmission heterogeneity [18]. This is because
in a highly heterogeneous infection most people infect few others,
and when numbers become small, fade-out of the epidemic is more
probable. Similarly establishing infection in naïve populations
requires a greater number of introductions of people with
infection.

Fig. 2 also illustrates the concept of ‘epidemic overshoot’, repre-
sented by the difference between the red and blue lines. For exam-
ple, if an infection with R0 = 2.5 (similar to COVID-19) spreads
rapidly in an immunologically naïve population, it will infect up
to 90% of the population. However, if its spread is sufficiently
restrained by public health measures for natural immunity to
slowly accrue, then only 60% of the population will become
infected even if these restraints are subsequently lifted.
ESTIMATING THE IMPACT ON TRANSMISSION AND DISEASE OF
SPECIFIC INTERVENTIONS

Throughout the global outbreak, many different public health
interventions and government-imposed restrictions on human
movement have been initiated to curtail transmission. To quantify
the effect of these different interventions on the spread of disease,
modellers estimate the time-varying effective reproduction num-
ber, Rt [19,20]. This quantity is analogous to R0, but also accounts



Fig. 1. In the SEIR model individuals are stratified into four broad categories according to their infection status: individuals susceptible to infection (S); exposed individuals
that have been infected but have not yet developed active infection (E); infectious individuals (who may be pre-symptomatic, asymptomatic or symptomatic) (I); and
individuals who have recovered from infection and are immune, or removed from the population through death (R).

Fig. 2. Final size of an epidemic (red) and the herd immunity threshold (blue) as a function of the reproduction number. An R0 of 2.5 under homogeneous mixing assumptions
leads to a population attack rate of nearly 90%. However, an immunity rate of 60% is sufficient to prevent an epidemic. One strategy, called mitigation, is to reduce the
reproduction number sufficiently to achieve herd immunity. In the simplified illustration above, this would be achieved by reducing the effective reproduction number to
1.53 throughout the course of the epidemic’s first wave.
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for (1) any appreciable depletion of the susceptible population and
(2) behavioural changes or public health interventions that inhibit
person-to-person contact or individual infectivity (see Fig. 3).

The effective reproduction number (Rt) in Wuhan – estimated
using a stochastic (i.e., random) transmission model [21] – fell
from a median baseline value of 2.35 (1.15–4.77) one week before
travel restrictions were introduced on Jan 23, to 1.05 (0.41–2.39)
one week after, representing a 55% reduction in transmissibility.
Elsewhere, the initial reproduction numbers R0 across 11 European
countries were estimated at 3.87 (3.01–4.66) [13]. Following the
implementation of various interventions, the time-varying repro-
duction numbers fell by more than 60% to a mean value of
Rt = 1.43, ranging from 0.97 (0.14–2.14) for Norway to 2.64
(1.40–4.18) for Sweden [13].

The rapid implementation of public health responses obscured
the separate contributions of each intervention measure on overall
transmission levels. As a result, alternative data sources on human
movement and mixing have been useful for delineating prominent
sources of transmission in the community and ascertaining which
restrictions can be safely relaxed without compromising control.

One rational approach is to estimate different sources of com-
munity transmission from contact matrices [22,23]. Changes in
contact patterns (both number and intensity) are a fundamental
driver of changes in the reproduction number. Measuring
contact-induced changes in the reproduction number can be used
to predict changes in response to relaxing restrictions, which is
critical for determining policy on exiting lockdown. An early anal-
ysis of the Wuhan outbreak used synthetic contact matrices to
show that workplace closure is likely to have a much greater
impact on cases averted than school closures [24]. Davies et al.
showed that contact patterns were insufficient to account for
age-based case differences and inferred that a lower clinical frac-
tion or lower susceptibility or both are at play. Models examining
public health action in Australia also suggest that the majority of
transmission is occurring in the 30–50 year age groups [25].
MODELLING ESTIMATES OF INFECTION SEVERITY AND AGE
DEPENDENCY

Calculating mortality rates among reported cases (case fatality
ratio, CFR) is particularly difficult during the early stages of an epi-
demic, and these inaccuracies and biases flow through to estimates
of the impact of the public health measures to contain COVID-19
[26]. To-date, estimates of the burden of COVID-19 – infection
rates, case rates, hospitalisation and fatality rates – have primarily
used clinical and laboratory-confirmed case definitions in a variety
of surveillance settings (Fig. 4) [27]. Biases introduced by delayed
patient outcomes and case under-ascertainment can lead to
under- and over-estimates of these rates, respectively. For
instance, case fatality rates based on patient outcomes recorded
from the Wuhan epicentre in early January were as high as 15%,
owing to under-ascertainment of cases. Modelling strategies to
reduce bias have since been used – accounting for data censoring



Fig. 3. Estimates of Rt in Beijing, Hong Kong and Shanghai Provinces throughout
February 2020. The dark (light) blue shaded band corresponds to the 50 (95)%
credible interval covering the 25–75th (2.5–97.5th) percentiles of the posterior
estimates. Also shown in gold are the number of new daily cases as provided by the
Johns Hopkins University public database [3]. Note, these Rt estimates are based on
crude confirmed case counts and do not account for reporting delays, imported
cases or variations in case ascertainment.
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and estimating undetected cases – with recent CFR estimates con-
verging on much lower values around 1–2% [28,29].

Mortality as a fraction of all infected individuals (infection fatal-
ity ratio, IFR) is in many ways more important than the case fatality
ratio, as IFR provides accurate estimates of the expected total
attack rate/mortality rate/severe infection rate in the whole popu-
Fig. 4. Adapted from Verity et al. [27] CC BY 4.0, shows the pyramid of case severit
lation. IFR also provides estimates of the underlying cumulative
infected population (therefore immune fraction) over time (assum-
ing mortality is accurately reported – which is not always the case
[30]). IFR estimates are challenging as they need to incorporate
both unreported cases and asymptomatic infections in their
denominator. To achieve this, Verity et al. used international trav-
ellers tested for COVID-19 regardless of their symptom status, find-
ing an overall IFR of 0.66% [31]. Similarly, estimates from France
found an IFR of 0.7% [32].

A striking feature of these two studies [31,32] and indeed all
COVID-19 analyses is the very low number of children diagnosed
as cases [33]. IFR ranged from 0.00260% in 0–9 year olds to 13.4%
in those aged 80 years and over in Verity et al. [31] and from
0.001% in individuals less than 20 years of age to 10.1% in those
over the age of 80 in Salje et al. [32] – a 10,000-fold relative risk
ratio.

So for a given infection, children are much less likely to have
severe disease, but are they less infectious or less susceptible to
infection or both? Here studies differ. Population screening studies
in Iceland and Italy have found lower rates of infection in children,
including when asymptomatic populations were tested and likely
equivalent rates of exposure between adults and children [34,35].
By contrast, a study on household contacts suggested that child
contacts are as likely to become infected as adult contacts [36].
Similarly, there is a lack of consensus about the infectiousness of
children with disease relative to adults, although there have been
very few reported instances of children infecting others globally.

Despite the efforts of analyses to overcome biases in clinical
cohorts, the accuracy of estimates will be markedly improved
when sero-epidemiological data become available. Such studies
measure the presence/absence of SARS-CoV-2-specific antibodies
in random samples of the population, to infer the extent of cumu-
lative infection with the virus and (by extension) population
immunity against COVID-19. Because sero-epidemiological data
are broad-based, random and do not require current infection, they
provide critical insights into COVID-19 transmission – allowing
models to significantly reduce the uncertainty in the parameter
estimates of clinical severity, asymptomatic infection and infection
fatality risk [23]. For example, measuring sero-prevalence by age
will confirm whether children are less susceptible to infection, or
just less likely to get symptomatic disease.

Several serological tests for COVID-19 are currently available
with differing accuracy and a significant number of sero-
prevalence studies have been completed in several countries. In
y and the different surveillance activities that capture these levels of severity.
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Europe, estimated sero-prevalences have ranged from approxi-
mately 4 to 9% (including 4.4% in France [24] and 8.7% in Switzer-
land [25]) even in the hardest-hit countries [37]. Whilst these
estimates are high relative to reported case counts, they remain
very low compared with the goal of reaching ‘herd immunity’,
which would allow restrictions to be lifted and a return to normal
life. Hence all countries need to be alert to second waves of infec-
tion as soon as lockdown measures ease to the extent that the
reproduction number exceeds one.

Testing, both for active disease and past infection through
sero-surveys will continue to be crucial over the coming years.
There is a need to assess the proportion of recovered individuals
over time, the duration of the immunity and probability of rein-
fection. Long-term and large-scale longitudinal serological
follow-ups need to be conducted so that models can make infer-
ences about the burden of COVID-19 in different populations,
age groups and the potential risk of the different waves of this
pandemic.
ESTIMATING THE IMPACT ON LOW- AND MIDDLE-INCOME
COUNTRIES (LMIC) AND OTHER VULNERABLE GROUPS

Demographic, epidemiological, and socioeconomic factors will
likely result in differential impacts of COVID-19 on low- and
middle-income countries (LMIC) and other vulnerable groups
compared with high resource settings. Using standard compart-
mental models (e.g., Fig. 1), we can use population age struc-
tures, mixing matrices, and case fatality ratios to capture
dynamics in low resource settings. For example, transmission
models for LMIC typically employ younger age distributions than
high-income countries, which could mitigate disease burden if
children are less susceptible to COVID-19 disease and/or less
infectious [38].

In contrast, social mixing patterns and altered infection fatality
rates in LMIC and other vulnerable groups (e.g., prisoners, refugees,
migrant workers, and indigenous communities) may lead to
greater epidemic impact. In such settings, people often live in close
quarters and there may be high intergenerational mixing, while
inadequate sanitation may further intensify the likelihood of trans-
mission given contact. For low income settings, higher case fatality
ratios may better reflect the elevated risk of death among infected
individuals, due to limited availability of healthcare resources and
personal protective equipment, poverty and the high prevalence of
comorbidities. A further challenge for modellers arises from the
often poorer quality of input data supplied by weak surveillance
systems, which limit the ability to calibrate and validate models
in such settings.

Impacts of other infectious diseases historically and current
models of COVID-19 in LMIC suggest there will be a considerable
difference in mortality between high-income and low-income
countries. For instance, mortality rates from the 1918–1920 Span-
ish flu pandemic were significantly higher in Asia, Sub-Saharan
Africa, and Latin America compared with North America and Eur-
ope [39]. To date, there are no models for COVID-19 in Latin Amer-
ica despite the shift in the epicentre to South America [2].
However, there have been a limited number of modelling studies
for Africa that provide a framework for modelling COVID-19 more
broadly for LMIC. For example, one study used synthetic contact
matrices, shifted the age-specific probability of becoming severely
infected (compared with estimates from high-income countries),
and simulated community led interventions such as neighbour-
hood house swaps. The results indicated that an unmitigated epi-
demic would lead to millions of clinical cases (e.g., 4.1 million
during the first year of the epidemic in Niger) and that interven-
tions would only confer partial protection [40].
LIMITATIONS OF COVID-19 MODELLING

Whilst models can be very useful tools in the COVID-19
response, there are limitations to the information they can provide
and how they can be used. Early in the epidemic, many critical fea-
tures of the disease are highly uncertain, and this uncertainty may
propagate through important model results. Presently, we still lack
a complete understanding of the factors that influence transmissi-
bility and disease severity, how these features vary across popula-
tions and settings, and the prevalence and epidemiological
significance of asymptomatic infections.

Estimates of the incubation period are highly prioritized, as so
much of the public health response hinges on this characteristic.
Furthermore, inferred reproduction numbers are highly correlated
with the serial interval (which is dominated by the incubation per-
iod). As an illustration of the challenges in estimating fundamental
disease parameters, we reviewed the estimates for the incubation
period (Textbox 1) showing the range of results arising from differ-
ent settings and surveillance methods (see supplementary
material).
We conducted a systematic review of the incubation per-
iod of COVID-19, a key epidemiological parameter for under-
standing its transmission dynamics. Our findings were as
follows:

� 20 eligible studies were identified that reported the incu-

bation period of COVID-19.

� 17 of these 20 studies were based on data from China.

� 13 of these 20 studies reported on fewer than 100 patients.

o 12 of these 20 studies reported the mean incubation

period.

� These 12 studies estimated a mean incubation period of

3.6–7.4 days.

o 12 of these 20 studies reported the median incubation

period.

� These 12 studies estimated a median incubation period of

3–12 days.

These findings highlight that:

� There are considerable methodological issues in estimat-

ing even apparently simple epidemiological quantities.

� Estimates of key epidemiological parameters are often

derived from well-described groups of patients who are

very small in number compared to the total number of glo-

bal cases

� Epidemiological parameters of COVID-19 cannot be accu-

rately inferred from other related viruses (e.g., SARS-

CoV-1).
CONCLUSIONS

Epidemiologists and modellers around the world have worked
at an impressive pace and amid enormous uncertainty to provide
important insights into SARS-CoV-2 transmission to guide public
health action, although many important knowledge gaps remain.
The duration of infectiousness, the duration of protective immu-
nity after infection and/or disease, the effect of ‘‘superspreading”
in transmission and the true burden of COVID-19 in different pop-
ulations remains poorly quantified. Several epidemiological studies
collecting COVID-19 data are underway and will help to under-
stand these quantities better.
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Since the COVID-19 epidemic began nearly six months ago,
models have shaped our understanding of how the disease spreads,
who is most vulnerable and who presents the greatest risk, and the
impact of interventions on curtailing transmission. This informa-
tion has likely helped avert millions of cases and thousands of
deaths globally. Despite this enormous accomplishment, there
are still many issues that create uncertainty in model estimates
and projections. These issues do not discount the value of models,
but emphasise the importance of acknowledging the uncertainty of
modelling forecasts.

In epidemiological modelling, the ‘‘no model fits all” approach
needs to be taken into account. The majority of the current
COVID-19 models have been developed and fitted in high income
countries that were affected early in the course of the pandemic
and where there is infrastructure for modelling. Most of the unique
cultural and social conditions that exist in LMIC and other vulner-
able populations have not been taken into account, adding further
limitations to current model projections. The more we know about
the transmission dynamics of SARS-CoV-2 in different settings, the
better our models will be able to explore and estimate potential
long-term epidemiologic outcomes.

Whilst models will always be imperfect simulations of reality,
limited by our understanding of the disease and the unique factors
shaping transmission dynamics in different settings, they will con-
tinue to play an important role in guiding policies through this
pandemic.
DIRECTIONS FOR FUTURE RESEARCH

� Improving quality of parameter inputs for models.
� Adapting models to different contexts, particularly for low- and
middle- income countries.

� Incorporating a better understanding of the extent of asymp-
tomatic spread and the duration of protective immunity into
models.
APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.prrv.2020.06.014.
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