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Long non-coding RNAs (lncRNAs) constitute a large class of transcribed RNAmolecules.

They have a characteristic length of more than 200 nucleotides which do not encode

proteins. They play an important role in regulating gene expression by interacting

with the homologous RNA-binding proteins. Due to the laborious and time-consuming

nature of wet experimental methods, more researchers should pay great attention to

computational approaches for the prediction of lncRNA-protein interaction (LPI). An

in-depth literature review in the state-of-the-art in silico investigations, leads to the

conclusion that there is still room for improving the accuracy and velocity. This paper

propose a novel method for identifying LPI by employing Kernel Ridge Regression,

based on Fast Kernel Learning (LPI-FKLKRR). This approach, uses four distinct similarity

measures for lncRNA and protein space, respectively. It is remarkable, that we extract

Gene Ontology (GO) with proteins, in order to improve the quality of information in

protein space. The process of heterogeneous kernels integration, applies Fast Kernel

Learning (FastKL) to deal with weight optimization. The extrapolation model is obtained

by gaining the ultimate prediction associations, after using Kernel Ridge Regression

(KRR). Experimental outcomes show that the ability of modeling with LPI-FKLKRR

has extraordinary performance compared with LPI prediction schemes. On benchmark

dataset, it has been observed that the best Area Under Precision Recall Curve (AUPR)

of 0.6950 is obtained by our proposed model LPI-FKLKRR, which outperforms the

integrated LPLNP (AUPR: 0.4584), RWR (AUPR: 0.2827), CF (AUPR: 0.2357), LPIHN

(AUPR: 0.2299), and LPBNI (AUPR: 0.3302). Also, combined with the experimental

results of a case study on a novel dataset, it is anticipated that LPI-FKLKRR will be a

useful tool for LPI prediction.

Keywords: lncRNA-protein interactions, multiple kernel learning, fast kernel learning, kernel ridge regression,

gene ontology
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1. INTRODUCTION

Long non-coding RNAs (lncRNAs) constitute a large class of
transcribed molecules. They have a characteristic length of more
than 200 nucleotides which do not encode proteins (St Laurent
et al., 2015). Existing research has proven that lncRNAs
can control gene expression during the transcriptional, post-
transcriptional, and epigenetic procedures through interacting
with the homologous RNA-binding proteins (Guttman and Rinn,
2012; Quan et al., 2015; Tee et al., 2015). A most recent research
found that, a kind of lncRNA named lnc-Lsm3b can refrain the
activity of the receptor RIG-I, by the induction of viruses during
the regulation of immune response (Jiang et al., 2018). This is
consistent with previous studies which have proven that lncRNAs
are playing potential roles in complex human diseases (Li et al.,
2013). Due to the laborious and time-consuming nature of wet
experimental methods in molecular biology, many state-of-the-
art computational researches have been carried out dealing with
the conundrum, in an effort to enhance accuracy and time
efficiency (Zou et al., 2012; Jalali et al., 2015; Han et al., 2018).

Since it is very difficult to extract any actual details on
the 3D structures of lncRNAs and relative proteins, many
sequence-based and secondary structure-based approaches
for the prediction of lncRNA-protein interaction (LPI)
have been published in the literature. Bellucci et al. have
established the well-known catRAPID (Bellucci et al., 2011)
by leveraging both physicochemical properties and secondary
structure information, which could be employed as compound
information to handle the problem of predicting LPI. Meanwhile,
the hybrid schema RPISeq has been introduced by Muppirala
et al. (2011), which employs both Support Vector Machines
(SVM) and Random Forest (RF). Wang et al. have proposed a
classifier combining Naive Bayes (NB) and Extended NB (ENB)
classifier to extrapolate LPI (Wang et al., 2012). Lu et al. have
established lncPro, which translates each LPI into numerical
form, and applies matrix multiplication (Lu et al., 2013). Suresh
et al. developed RPI-Pred based on SVM, by using the structure
and sequence information of lncRNAs and proteins (Suresh
et al., 2015).

In contrast to the aforementioned works, Li et al. have
introduced the LPIHN by employing an heterogeneous network,
assembled with a kind of random walk on lncRNA-protein
association profile, with a restart mechanism (RWR) (Li et al.,
2015). Ge et al. have used resource allocation mode on a
dichotomous network, and they have published the algorithm as
LPBNI (Ge et al., 2016). Lately, Hu et al. have proposed a kind of
semi-supervised link prediction scheme, entitled LPI-ETSLP (Hu
et al., 2017), which was soon upgraded to the IRWNRLPI. This
method actually integrates RWR and matrix factorization (Zhao
et al., 2018).

Zhang et al. have suggested two classes of state-of-the-art
computational intelligence approaches (Zhang et al., 2017).
The first includes supervised LPI binary classifiers, which
do not require prior knowledge of interactions as negative
instances (Bellucci et al., 2011; Muppirala et al., 2011;Wang et al.,
2012; Lu et al., 2013; Suresh et al., 2015). second category includes
semi-supervised approaches which combine known interactions

to suggest unknown LPI. The following are characteristic cases
of this class: LPIHN (Li et al., 2015), LPBNI (Ge et al., 2016),
LPI-ETSLP (Hu et al., 2017), and IRWNRLPI (Zhao et al., 2018).

Transfer learning (Jonathan et al., 1995), which can recognize
and leverage skills or knowledge learned in previous tasks to
novel tasks, is viewed as a kind of burgeoning machine learning
branch. Whereas, zero-shot learning in pairwise learning with
two-step Kernel Ridge Regression (KRR) (Stock et al., 2016), is
a special type of transfer learning, constructing predictors from
a dataset which contains both labeled and unlabeled samples.
Hence, it is a kind of effective mechanism which can reduce the
need of labeled data. In order to detect the pairwises of lncRNAs
and proteins that can interact with each other, the state-of-the-art
statistical methods have been exploited, such as Recursive Least
Squares (RLS), Kronecker RLS, Sparse Representation based
Classifier (SRC), and Multiple Kernel Learning (MKL). All these
techniques have already been applied in predicting Protein-
Protein Interactions (PPIs) (Ding et al., 2016; Liu X. et al., 2016),
Drug-Target Interactions (DTIs) (Xia Z. et al., 2010; Laarhoven
et al., 2011; Twan and Elena, 2013; Nascimento et al., 2016; Shen
et al., 2017b), binding sites of biomolecules (Ding et al., 2017;
Shen et al., 2017a) identification of disease-resistant genes (Xia J.
et al., 2010), andmicroRNA-disease associations (Zou et al., 2015;
Peng et al., 2017) with comparative consequences.

With reference to the above researches, we have enriched the
categories of similarity measures adopted during LPI prediction.
Integration of the heterogeneous kinds of similarity information
is achieved by applying Fast Kernel Learning (FastKL) which
deals with kernel weight optimization. This is done through
the integration of the prediction architectures for weighting
heterogeneous kernels. This research proposes a kind of two-
step Kernel Ridge Regression (KRR) applied in the field of
LPI prediction. LPI-FKLKRR has proven to be a more reliable
and effective approach for LPI prediction, compared with other
competitive methods. The core of the algorithm proposed herein
has been evaluated on the benchmark dataset of LPIs. What
is especially encouraging, is that many of the LPI predictions
made by our method have been confirmed, with a high degree
of correlation. Also, we have conducted a comparative testing
on a novel dataset to illustrate the stable performance of the
LPI-FKLKRR.

2. METHODS

In this section, we focus on the elaboration of architecture
for our model. Its basic structural components-entities are
the following: The known interactions matrix of LPI and the
multivariate information that consists of lncRNA expressions,
the local network, the sequence information and moreover
the Gene Ontology (GO). It is imperative to combine
all the similarity information together with the respective
combination weights. Finally, we have developed and employed
the LPI with Fast Kernel Learning based on Kernel Ridge
Regression Prediction (LPI-FKLKRR) identification strategy,
which utilizes a kind of two-stage Kernel Ridge Regression in LPI
prediction.
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2.1. Problem Specification
Suppose there are m lncRNAs and n proteins involved in LPI.
We formally define two kinds of molecules as L = {li | i =

1, 2, · · · ,m} and P = {pj | j = 1, 2, · · · , n}, respectively. Hence,
the interactions between lncRNAs and proteins can be intuitively
and succinctly expressed as an adjacency matrix F with m × n,
which can be formulated as Equation (1)

F =





















f1,1 f1,2 · · · f1,j · · · f1,n
f2,1 f2,2 · · · f2,j · · · f2,n
...

...
. . .

...
. . .

...
fi,1 fi,2 · · · fi,j · · · fi,n
...

...
. . .

...
. . .

...
fm,1 fm,2 · · · fm,j · · · fm,n





















m×n

(1)

where fi,j in matrix F corresponds to the prediction value of
pairwise 〈li, pj〉, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and m, n ∈ N

∗. If
lncRNA li can interact with protein pj, the value of fi,j is marked
as 1, otherwise it is marked as 0.

Obviously, the identification of new interactions between
lncRNAs and proteins can be viewed as a task suitable for a
recommender system (Koren et al., 2009) of a bipartite network,
which can mine and detect the potential associated individuals.
To this end, we use Multiple Kernel Learning (MKL) to design
the optimization with respect to the prediction of LPI. In
the following chapter, we will support the argument that the
similarity matrix is equivalent to a kernel.

2.2. lncRNA Kernels and Protein Kernels
In order to conduct MKL, it is inevitable to construct
similarity matrices of molecules in lncRNA and protein kernel
spaces, respectively. Specifically, lncRNA expression, protein GO,
lncRNA sequence, protein sequence, and known interactions
between one lncRNA and all proteins are considered in our
framework. In addition, the training adjacency matrix Ftrain is
obtained bymasking the known pairwise 〈li, pj〉, where the partial
known elements in the matrix are set to 0 for the validation set,
which are represented in Figure 1.

2.2.1. Gaussian Interaction Profile Kernel
Interactions can be reflected in the connectivity behavior in the
subjacent network (Laarhoven et al., 2011; Twan and Elena,
2013). For the lncRNAs, we extract information of lncRNA
interactions corresponding to each row of the training adjacency
matrix Ftrain. Then we use a broadly applicable Gaussian
Interaction Profile (GIP) kernel to device interaction kernel
defined for lncRNA li and lk (i, k = 1, 2, · · · ,m). GIP about
protein pj and ps (j, s = 1, 2, · · · , n) can be generated in a similar
way. As a summary, each element value in GIP can be represented
as follows:

Klnc
GIP(li, lk) = exp(−σlnc‖Fli − Flk‖

2) (2a)

K
pro
GIP(pj, ps) = exp(−σpro‖Fpj − Fps‖

2) (2b)

where Fli , Flk and Fpj , Fps are the matrices of interactions for
lncRNA li, lk and protein pj, ps, respectively. The Gaussian kernel

bandwidths σlnc and σpro are initialized to the value of 1 in
the experiments. Practically, when employing 5-fold CV and
LOOCV, the GIP kernel similarity should be recalculated each
time based on the training samples.

2.2.2. Sequence Similarity Kernel
A sequence S with length d is an ordered list of characters,
which can be written as S = c1c2 · · · ch · · · cd (1 ≤ h ≤

d). Enlightened by state-of-the-art methods (Yamanishi et al.,
2008; Nascimento et al., 2016), we use normalized Smith-
Waterman (SW) score (Smith and Waterman, 1981) to measure
the sequence similarity. The formulations are represented as
follows:

Klnc
SW(li, lk) = SW(Sli , Slk )/

√

SW(Sli , Sli )SW(Slk , Slk ) (3a)

K
pro
SW(pj, ps) = SW(Spj , Sps )/

√

SW(Spj , Spj )SW(Sps , Sps ) (3b)

where SW(·, ·) stands for Smith-Waterman score; Sli and Slk
are the sequences for lncRNA li and lk; Spj and Sps denote the
sequences for protein pj and ps.

2.2.3. Sequence Feature Kernel
We obtain the sequence feature kernel by extracting the feature of
the sequences about lncRNAs and proteins. In practice, Conjoint
Triad (CT) (Shen et al., 2007) and Pseudo Position-Specific
Score Matrix (Pse-PSSM) (Chou and Shen, 2007) are adopted
to describe lncRNA and protein sequences, respectively. Both
Sequence Feature kernels (SF) Klnc

SF and K
pro
SF are constructed

based on a Radial Basis Function kernel (RBF) with bandwidth
equals to 1.

2.2.4. lncRNA Expression Kernel
It is interesting to identify genes with concordant behaviors
because different genes always show different behaviors (Lai et al.,
2017). Expression profiles of lncRNAs refers to 24 cell types
which come from NONCODE database (Xie et al., 2014). After
expressing each lncRNA as a 24-dimensional expression profile
vector, the kernel of lncRNAs expression Klnc

EXP can be generated
according to the RBF, and kernel bandwidth is also set to 1.

2.2.5. GO Kernel
Inspired by a former research (Zheng et al., 2012), similar Gene
Ontology (GO) with proteins are expected to act in similar
biological processes, or to reside in similar cell compartments, or
to have similar molecular functions. Therefore, GO annotations
are employed in this paper to generate a similarity matrix in
protein space. The files of Gene Ontology (GO) terms have been
downloaded from the GOA database (Wan et al., 2013).

Semantic similarity is always based on the overlap of the terms
associated with two proteins (Wu et al., 2013). Jaccard value
which we exploited in measuring the semantic similarity of two
GO terms tj and ts related to proteins pj and ps is defined as
follows:

Jaccard(tj, ts) =
|tj ∩ ts|

|tj ∪ ts|
(4)
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FIGURE 1 | Technical flow chart of our LPI prediction model. (A) LncRNAs and proteins belong to two separated and independent spaces, respectively; (B) Fast

kernel learning is applied to estimate the weight of each kernel in the corresponding space; (C) Kronecker Product is adopted in generating the final kernel matrix;

(D) Kernel Ridge Regression (KRR) is applied in LPI prediction.

where tj ∩ ts denotes the common terms between pj and ps, and
tj ∪ ts refers to total number of terms of pj and ps. However, there
has not been any formal definition with GO common terms tj∩ ts
given before.

We denote that, if the two sequences are completely
consistent, two sequences S1 and S2 have common terms of GO.
For example, given three sequences S1 = 〈3, 1, 5〉, S2 = 〈3, 2, 5〉,
and S3 = 〈3, 2, 5〉, if we only follow that all the corresponding
locations of three sequences have non-zero values, then all three
sequences have common terms. Nevertheless, for sequence S2,
it can be said that S2 has common terms with S3, but does not
have common terms with S1, because the second characters of S1
and S2 are different. Thus, we obtain a more sparse GO similarity
matrix K

pro
GO which can facilitate the computation.

2.3. Fast Kernel Learning
In MKL, we need to find an optimal mapping vector w, i.e.,
we require to choose a kind of optimal weighting strategy so
that object similarity matrices can be appropriately constructed.
Concretely, the vector of parameter weight values for lncRNA
kernels and protein kernels are represented as wlnc and wpro,
respectively. We have already described that there are four
kernels in lncRNA space including Klnc

GIP, K
lnc
SW , Klnc

SF , and Klnc
EXP,

and four kernels in protein space including K
pro
GIP, K

pro
SW , K

pro
SF , and

K
pro
GO, respectively. The optimal lncRNA and protein kernels are

given as follows:

Klnc =

4
∑

a=1

wlnc
a Klnc

a , Klnc
a ∈ R

m×m (5a)

Kpro =

4
∑

a=1

w
pro
a K

pro
a , K

pro
a ∈ R

n×n (5b)

where wlnc
a and w

pro
a denote each element in wlnc and wpro;

Klnc
a and K

pro
a correspond each kind of normalized similarity

matrix among the heterogenous similarity kernels in lncRNA and
protein spaces.

According to the description of Fast Kernel Learning
(FastKL) (He et al., 2008),w is used as a substitute for the required
optimal solution wlnc or wpro, and K denotes kernel matrix Klnc

or Kpro. FastKL is not only minimizing the distance between K

and Y, where Y = yyT, y is a matrix corresponds to all training
set labels. It considers the regularization term ‖w‖2 that is used
to prevent overfitting. To this end, w can be drawn from the
Formula 6 as follows:

min
w,K

‖K− Y‖2F + λ‖w‖2

s.t.

J
∑

a

wa = 1
(6)

where F represents Frobenius norm and λ is the tradeoff
parameter. In practice, we set λ 10000 when selecting the optimal
parameter value.

As a step forward to deduct Equation (6), since the Frobenius
norm of a matrix equals to the trace about the product between
the matrix itself and matrix of its transformation, i.e., ‖X‖2F =

tr(XXT), the object function with respect to the optimal solution
w can be simplified as follows:

min
w

wT(A+ λI)w− 2bTw

s.t.

J
∑

a

wa = 1 (7)

Au,v = tr(KT
uKv)

bv = tr(YTKv)

where tr(·) is the symbol of the trace operator; Au,v represents
each element in matrix A; Ku and Kv denote two different kernel
matrices.

Recapitulating the above statement, through gaining the final
wlnc and wpro, we have achieved the goal of MKL for fusing all
kinds of similarity matrices so that the input matrix of KRR can
be generated.
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FIGURE 2 | Schematic diagram of two-step Kernel Ridge Regression. (A) An

intermediate prediction of LPI is conducted using an lncRNA KRR model. (B)

Protein KRR is trained using the last step information for predicting new

proteins.

2.4. Kernel Ridge Regression
Stock et al. developed a scenario of pairwise learning, called
Kernel Ridge Regression (KRR) (Stock et al., 2016), which can
be applied in binary classification. The basic idea of KRR is to
minimize a suitable objective function with an L2-complexity
penalty so that it can fit the labeled dyads as much as possible.
Specifically, the KRR prediction for the LPI pairwise 〈li, pj〉 has
two steps which are shown in Figure 2.

In the first step, a prediction with respect to the new protein
for all intermediate LPI pairwise is obtained as an 1×n vector fi,·,
which can be computed as follows:

fi,· = kTlnc(Klnc + λlI)
−1F (8)

where klnc denotes the vector of lncRNA kernel evaluation
between lncRNAs in the training set and a protein in the test set,
and λl is the regularization parameter.

In the second step, we can obtain each element f ∗i,j in the

prediction matrix F∗ by using another regularization parameter
λp as following Equation (9):

f ∗i,j = kTpro(Kpro + λpI)
−1fTi,· (9)

Considering the optimal lncRNAs and proteins kernels Klnc and
Kpro, the general objective function of the two-step KRR is
defined as follows:

min
F∗

∑

(i,j,f )∈F

(fi,j − f ∗i,j)
2 + vec(F∗)T4−1vec(F∗) (10)

where vec(·) is a vectorization operator that can rearrange the
matrix elements in one row; F∗ denotes the prediction of the
original matrix F which can be estimated with the application
of the LPI-KRR. Objective function in Equation (10) need to be
minimized by iterations, and the iterations usually gets converged
in about 5–10 iterations.

The kernel matrix 4 that is used in Equation (10) is defined as
Equation (11):

4 = Kpro ⊗ Klnc(λlλpI⊗ I+ λpI⊗ Klnc + λlKpro ⊗ I)−1 (11)

By using the lncRNAs, the proteins’ kernels and the two
regularization parameters λl and λp, each element in matrix F∗

can be represented as Equation (12):

F∗ = Klnc(Klnc + λlI)
−1F(Kpro + λpI)

−1Kpro (12)

The LPI-FKLKRR calculation framework is illustrated in the
following Algorithm 1.

Algorithm 1 Fast Kernel Learning based on Kernel Ridge
Regression (LPI-FKLKRR).

Input: Klnc
GIP, K

lnc
SW , Klnc

SF , K
lnc
EXP ∈ R

m×m and K
pro
GIP, K

pro
SW , K

pro
SF ,

K
pro
GO ∈ R

n×n; F ∈ R
m×n.

Output: F∗.
1: Calculate wlnc and wpro and adjust the parameter λ by Eq.7;
2: Calculate Klnc and Kpro by using Eq.5a and Eq.5b;
3: Calculate the prediction value in matrix F∗ by Eq.12;
4: Adjust the parameters λl and λp by using Eq.10 and Eq.11,

and produce the optimal F∗.

3. RESULTS

This section provides a quantitative evaluation that employ
benchmark dataset to assess our approach. We first show a result
of 5-fold cross validation, then conduct an independent analyzing
about performance of single kernel. Moreover, LPI-FKLKRR
is not only compared with mean weighted model but also be
assessed in parallel comparison including other outstanding
methods. Furthermore, we utilize the case study to evaluate our
method in predicting unknown lncRNA-protein interactions.
What’s more, there is also a comparison between LPI-FKLKRR
and state-of-the-art work on a novel dataset.

3.1. Benchmark Dataset
Although there exists a high volume of web-based
resources (Park et al., 2014), available datasets should be carefully
selected. We have acquired the benchmark dataset according
to the state-of-the-art work by Zhang et al. (2017). They
have experimentally determined lncRNA-protein interactions
with 1114 lncRNAs and 96 proteins from NPInter V2.0 (Yuan
et al., 2014). Non-coding RNAs and sequence information of
proteins were gleaned from NONCODE (Xie et al., 2014) and
SUPERFAMILY database (Gough et al., 2001), respectively.
Zhang et al. also removed lncRNAs and proteins whose
expression or sequence information were unavailable in order
to reduce the pressure of computation. Those lncRNAs and
proteins with only one interaction were removed for the same
reason. A dataset with 4158 lncRNA-protein interactions which
contains 990 lncRNAs and 27 proteins were finally collected.
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3.2. Evaluation Measurements
To gauge the stability of our model, 5-fold Cross Validation (5-
fold CV) has been employed. The Area Under ROC curve (AUC)
and Area Under the Precision-Recall curve (AUPR) measures
have been utilized to evaluate our approach. We would like to
emphasize that AUPR is more significant than AUC as a quality
measurement because of the sparsity of the true lncRNA-protein
interactions.

3.3. Experimental Environment
The proposed LPI-FKLKRR algorithm, has been implemented by
using MATLAB as the development and compilation platform.
All programs have been validated on a computer with 3.7 GHz
4-core CPU, 20 GB of memory, and 64-bit Windows Operating
Systems.

3.4. Parameter Optimization
Grid search schema has been adopted to get the optimized values
of the parameters λl and λp. The range of λl is from 20 to 980
while λp parameter ranges from 2 to 27. The criteria used to select
the optimal values of λl and λp were the highest AUPR value and
the lowest values of λl and λp, due to the fact that the smaller
values of λl and λp, the less is the running time of the algorithm.

TABLE 1 | The AUPR and AUC of different kernels on benchmark dataset.

Kernel type AUPR AUC

GIP kernel 0.6429 0.8671

Sequence feature kernel 0.4885 0.8250

Sequence similarity kernel 0.5024 0.8342

Gene expression & protein GO 0.2663 0.6626

Multiple kernels with mean weighted 0.6433 0.8840

Multiple kernels with FastKL weighted 0.6950 0.9063

Bold values represent the best value in columns.

We have found that λl = 20.89 and λp = 0.02 are the best values
for the two parameters (AUPR: 0.6950).

3.5. Performance Analysis
After testing different kinds of kernels on the benchmark dataset,
we obtain that the AUPRs of GIP kernel, sequence feature kernel,
sequence similarity kernel and gene expression & protein GO
kernel are 0.6429, 0.4885, 0.5024, and 0.2663, respectively. The
detailed results are listed in Table 1. It is obvious that GIP kernel
has the highest AUPR value (among the single Kernels). Multiple
kernels with the FastKL weighted model achieves AUPR equal to
0.6950, which is an outstanding performance. In Figure 3, we can
see that the FastKL performs better than the other models. It is

FIGURE 4 | The kernel weights in the experiment of LPI-FKLKRR on

benchmark dataset.

FIGURE 3 | The ROC and PR curve of different models.
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clear that the FastKL is effective in improving the performance of
LPIs prediction.

In addition, Figure 4 shows the weight of each kernel,
including lncRNA space and protein space in a 5-fold
CV experiment. Conspicuously, weights of GIP kernel
obtain the largest values on the lncRNA space. However,
four kinds of protein similarity matrices equally divide the
weights in protein space. This occasion should be explained
that four kinds of protein similarity have low degree of
overlapping in the representation space, i.e., each kind
of protein similarity presents a specific aspect of protein
feature.

3.6. Comparing to Existing Predictors
The comparison between our approach and other existing
methods are showed in Table 2. It should be mentioned that
the highest AUPR 0.6950 is achieved by our proposed approach,
which is superior to all others. The AUPR values for the
other established methods are the following: integrated LPLNP
(AUPR: 0.4584) (Zhang et al., 2017), RWR (AUPR: 0.2827) (Gan,
2014), CF (AUPR: 0.2357) (Sarwar et al., 2001), LPIHN (AUPR:
0.2299) (Li et al., 2015), and LPBNI (AUPR: 0.3302) (Ge et al.,

TABLE 2 | Comparison to existing methods via 5-fold CV on benchmark dataset.

Method AUPR AUC

LPI-FKLKRR 0.6950 0.9063

Integrated LPLNP* 0.4584 0.9104

RWR* 0.2827 0.8134

CF* 0.2357 0.7686

LPIHN* 0.2299 0.8451

LPBNI* 0.3302 0.8569

*Results are derived from Zhang et al. (2017). Bold values represent the best value in

columns.

2016). There are two well-founded reasons for the successful
improved performance of our method. Firstly, FastKL effectively
combines multivariate information by employing multiple kernel
learning. Simultaneously, LPI-KRR is an effective prediction
algorithm employing two-step KRR to fuse lncRNA and protein
feature spaces. Due to the fact that there are extrapolation
difficulties for the imbalanced datasets, PRC is more effective
than ROC on highly imbalanced datasets. Therefore, we have
obtained acquire competitive AUC value, compared to the state-
of-the-art algorithms. From all the above we conclude that our
approach can be a useful tool in the prediction of LPI.

3.7. Case Study
We have also used Local Leave-One-Out Cross-Validation
(LOOCV) to evaluate the predictive performance. Local LOOCV
masks the relationship between one protein and all lncRNAs.
Our model is trained by the rest of the known information
no matter if they are interacting or not and it is tested on a
masked relationship. For a protein not appearing in the trial,
our approach can predict the strength of interactions between
this protein and gross 990 lncRNAs in the experiment. We
have ranked these values of interactions in descending order,

TABLE 3 | The AUPR and AUC of different kernels by local LOOCV on benchmark

dataset.

Kernel AUPR AUC

GIP kernel 0.1690 0.5189

Sequence feature kernel 0.2814 0.6800

Sequence similarity kernel 0.3546 0.7333

Gene expression & protein GO 0.3101 0.7301

Multiple kernels with mean weighted 0.4956 0.7898

Multiple kernels with FastKL weighted 0.5506 0.7937

Bold values represent the best value in columns.

FIGURE 5 | The ROC and PR curve by local LOOCV on benchmark dataset.
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since high ranking is connected to high interaction possibility.
In Figure 5, we can see that the performance of single kernel,
average weighted kernels and weighted kernels with FastKL have
failed. The FastKL weighted model using Multiple kernels, gains
the best performance with values 0.5506 and 0.7937 for the
AUPR and the AUC respectively. The detailed results are listed
in Table 3.

As shown in Table 4, two cases of the top 20 interactions
(including proteins ENSP00000309558 and ENSP00000401371),
have been extrapolated by LPI-FKLKRR. Also, two cases
in Table 5 including lncRNAs, NONHSAT145960 and
NONHSAT031708 of the top 10 interactions have been
extrapolated by the LPI-FKLKRR. We check them up in the
masked relationship between one protein and all lncRNAs,
or one lncRNA and all proteins. Our approach achieves
successful identification proportion equal to 11/20 and 12/20

on the proteins ENSP00000309558 and ENSP00000401371,
respectively, and it achieves identification proportion equal
to 6/10 and 6/10 on lncRNAs NONHSAT145960 and
NONHSAT031708.

3.8. Speed Comparison on Benchmark
Dataset
Practically, running speed is also play an important role in
predicting LPI. The state-of-the-art methods of peer groups, such
as LPLNP, can produce high-accuracy performances. Hence, the
overall evaluation of the success of each approach, should also
consider the Running Time (RT). Thus, a comparison between
the RT of LPLNP and LPI-FKLKRR, has been performed. The
comparative RT analysis between LPLNP and LPI-FKLKRR after
running the available source code of LPLNP from the network, is
illustrated in Table 6.

TABLE 4 | Top 20 interactions rank on protein ENSP00000309558 and ENSP00000401371.

lncRNA ID Protein ID Rank Confirm? lncRNA ID Protein ID Rank Confirm?

NONHSAT011652 ENSP00000309558 1 Confirmed NONHSAT002344 ENSP00000401371 1 Confirmed

NONHSAT027070 ENSP00000309558 2 Confirmed NONHSAT104639 ENSP00000401371 2 –

NONHSAT104991 ENSP00000309558 3 Confirmed NONHSAT027070 ENSP00000401371 3 Confirmed

NONHSAT001511 ENSP00000309558 4 Confirmed NONHSAT104991 ENSP00000401371 4 Confirmed

NONHSAT079374 ENSP00000309558 5 – NONHSAT101154 ENSP00000401371 5 –

NONHSAT009703 ENSP00000309558 6 Confirmed NONHSAT041921 ENSP00000401371 6 Confirmed

NONHSAT138142 ENSP00000309558 7 Confirmed NONHSAT042032 ENSP00000401371 7 –

NONHSAT104639 ENSP00000309558 8 Confirmed NONHSAT131038 ENSP00000401371 8 Confirmed

NONHSAT135796 ENSP00000309558 9 Confirmed NONHSAT084827 ENSP00000401371 9 –

NONHSAT077129 ENSP00000309558 10 – NONHSAT021830 ENSP00000401371 10 Confirmed

NONHSAT023404 ENSP00000309558 11 – NONHSAT001953 ENSP00000401371 11 Confirmed

NONHSAT063901 ENSP00000309558 12 Confirmed NONHSAT145923 ENSP00000401371 12 Confirmed

NONHSAT099046 ENSP00000309558 13 – NONHSAT039675 ENSP00000401371 13 –

NONHSAT031489 ENSP00000309558 14 – NONHSAT135796 ENSP00000401371 14 Confirmed

NONHSAT041921 ENSP00000309558 15 Confirmed NONHSAT011652 ENSP00000401371 15 Confirmed

NONHSAT013639 ENSP00000309558 16 – NONHSAT044002 ENSP00000401371 16 –

NONHSAT027206 ENSP00000309558 17 – NONHSAT112849 ENSP00000401371 17 –

NONHSAT134595 ENSP00000309558 18 – NONHSAT114444 ENSP00000401371 18 Confirmed

NONHSAT054716 ENSP00000309558 19 – NONHSAT007429 ENSP00000401371 19 Confirmed

NONHSAT122291 ENSP00000309558 20 Confirmed NONHSAT123220 ENSP00000401371 20 –

TABLE 5 | Top 10 interactions rank on lncRNA NONHSAT145960 and NONHSAT031708.

lncRNA ID Protein ID Rank Confirm? lncRNA ID Protein ID Rank Confirm?

NONHSAT145960 ENSP00000258962 1 – NONHSAT031708 ENSP00000385269 1 Confirmed

NONHSAT145960 ENSP00000240185 2 Confirmed NONHSAT031708 ENSP00000258962 2 –

NONHSAT145960 ENSP00000385269 3 – NONHSAT031708 ENSP00000240185 3 Confirmed

NONHSAT145960 ENSP00000349428 4 Confirmed NONHSAT031708 ENSP00000349428 4 –

NONHSAT145960 ENSP00000379144 5 Confirmed NONHSAT031708 ENSP00000258729 5 Confirmed

NONHSAT145960 ENSP00000338371 6 Confirmed NONHSAT031708 ENSP00000338371 6 –

NONHSAT145960 ENSP00000401371 7 Confirmed NONHSAT031708 ENSP00000379144 7 –

NONHSAT145960 ENSP00000254108 8 – NONHSAT031708 ENSP00000254108 8 Confirmed

NONHSAT145960 ENSP00000258729 9 Confirmed NONHSAT031708 ENSP00000401371 9 Confirmed

NONHSAT145960 ENSP00000413035 10 – NONHSAT031708 ENSP00000371634 10 Confirmed
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Although LPLNP and LPI-FKLKRR have competitive AUC
(according to results shown in Table 2) it is clear that the LPI-
FKLKRR achieves better average running performance using
only 11.48 s to accomplish the prediction task of LPI. This
is much faster than the 352.93 s of the LPLNP (as shown in
Table 6. Moreover, the standard deviation also manifest that LPI-
FKLKRR is both fast and stable. Furthermore, considering the
higher AUPR value of LPI-FKLKRR, we can strongly suggest that
LPI-FKLKRR can be both a time-saving and useful tool for LPI
prediction.

3.9. Evaluation on Novel Dataset
To support the results of the benchmark experiments, we have
employed another dataset which is published by Zheng et al. The
size of the novel dataset is larger than the benchmark dataset,
which is shown in Table 7.

Originated from the same databases as the benchmark dataset,
the novel dataset consists of 4467 LPIs, including 1050 unique
lncRNAs and 84 unique proteins. We have conducted the
comparison of LPI-FKLKRR and PPSNs (Zheng et al., 2017)
by applying 5-fold CV on novel dataset, and list the results in
Table 8. The AUC value for the LPI-FKLKRR algorithm is equal
to 0.9669, which is higher than the one of PPSNs. What’s more,
the AUPR value which is equal to 0.7062 for the novel dataset
proves the robustness performance of the LPI-FKLKRR on an
imbalanced dataset.

Apart from the baseline methods that we have done test
in Figure 2, we make a new comparison on the dataset that
proposed by Zheng et al. with methods including NRLMF
and CF. NRLMF, which is also capable of integrating various
data sources, achieved good performance for both MDA
prediction (Yan et al., 2017; He et al., 2018) and DTI
prediction (Liu Y. et al., 2016). And CFmethod that has proposed
by Sarwar et al., is another state-of-the-art work. From Table 8,
we notice that no matter from the aspect of AUPR or AUC, the
value of LPI-FKLKRR are higher than NRLMF (AUPR:0.4010,
AUC:0.8287) and CF (AUPR:0.4267, AUC:0.8103).

Both the 5-fold CV and local LOOCV are also done in
the novel dataset experiment. After testing different kinds of
kernels on the novel dataset, we obtain that in the 5-fold CV,
the AUPRs of GIP kernel, sequence feature kernel, sequence
similarity kernel and gene expression & protein GO kernel are
0.6812, 0.4819, 0.4846, and 0.2379, respectively. Multiple kernels
with the FastKL weighted model achieves AUPR equal to 0.7076,
which is an outstanding performance. In Figures 6, 7, we can
see that the FastKL performs better than the other models.

TABLE 6 | Comparison of running time between LPI-FKLKRR and LPLNP in 10

times.

Method Average running time(s) Standard deviation(s)

LPI-FKLKRR 11.48 0.2126

LPLNPa 352.93 2.6656

aThe address of LPLNP is given by Zhang et al. (2017). Bold values represent the best

value in columns.

This result is consistent with the consequence on benchmark
dataset.

CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a novel prediction method
for the prediction of lncRNAs-protein interactions by using
Kernel Ridge Regression, combined with a multiple kernel
learning approach (LPI-FKLKRR). LPI-FKLKRR employs fast
kernel learning to fuse lncRNA and protein similarity matrices,
respectively. A two-step Kernel Ridge Regression is adopted to
forecast the interactions between lncRNAs and proteins. The
5-fold cross validation (5-fold CV) testing of the proposed
LPI-FKLKRR algorithm, achieved very reliable and promising
results when applied on the benchmark dataset (AUPR: 0.6950).
Furthermore, LPI-FKLKRR achieves satisfactory prediction
performances compared with the state-of-the-art approaches.
A comparison on a novel dataset illustrates the stability
performance of our model.

From the view point of the classification method about the
prediction, the problem setting of lncRNA-protein interaction
prediction can be the same with miRNA-disease interaction
prediction and drug-target interaction prediction (Ezzat et al.,
2018). For instance, CF method, which has proposed by
Sarwar et al, has a recent work named MSCMF, which
projects drugs and targets into a common low-rank feature
space Zheng et al. (2013). This method can be transfered to
the area of LPI prediction. Ezzat et al. have supposed that
chemogenomic methods can be categorized into five types,
including neighborhood models, bipartite local models, network
diffusion models, matrix factorization models, and feature-based
classificationmodels. Consequently, in the future wewill improve
the predicting performance by adding information such as
available 3D structure data, by constructing more heterogeneous
similarity matrices, by changing weighting strategy or by drawing
other effective regression models.

TABLE 7 | The information of two datasets in the experiment.

Dataset Number of lncRNAs Number of proteins LPIs

benchmark dataset* 990 27 4,158

novel dataset* 1,050 84 4,467

*The benchmark dataset and the novel dataset come from the paper of Zhang et al. (2017)

and Zheng et al. (2017), respectively.

TABLE 8 | The AUPR and AUC of different methods on novel dataset.

Method AUPR AUC

LPI-FKLKRR 0.7062 0.9669

PPSNs –a 0.9098

NRLMF 0.4010 0.8287

CF 0.4267 0.8103

aAUPR is not exploited by Zheng et al. (2017). Bold values represent the best value in

columns.
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FIGURE 6 | The ROC and PR curve of different models with novel dataset by 5-fold CV.

FIGURE 7 | The ROC and PR curve by local LOOCV on novel dataset.
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