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Parkinson’s progression prediction using machine learning and

serum cytokines

Diba Ahmadi Rastegar’, Nicholas Ho', Glenda M. Halliday®' and Nicolas Dzamko ('

The heterogeneous nature of Parkinson’s disease (PD) symptoms and variability in their progression complicates patient treatment
and interpretation of clinical trials. Consequently, there is much interest in developing models that can predict PD progression. In
this study we have used serum samples from a clinically well characterized longitudinally followed Michael J Fox Foundation cohort
of PD patients with and without the common leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. We have measured 27
inflammatory cytokines and chemokines in serum at baseline and after 1 year to investigate cytokine stability. We then used the
baseline measurements in conjunction with machine learning models to predict longitudinal clinical outcomes after 2 years follow
up. Using the normalized root mean square error (NRMSE) as a measure of performance, the best prediction models were for the
motor symptom severity scales, with NRMSE of 0.1123 for the Hoehn and Yahr scale and 0.1193 for the unified Parkinson’s disease
rating scale part three (UPDRS lIl). For each model, the top variables contributing to prediction were identified, with the chemokines
macrophage inflammatory protein one alpha (MIP1a), and monocyte chemoattractant protein one (MCP1) making the biggest
peripheral contribution to prediction of Hoehn and Yahr and UPDRS I, respectively. These results provide information on the
longitudinal assessment of peripheral inflammatory cytokines in PD and give evidence that peripheral cytokines may have utility for

aiding prediction of PD progression using machine learning models.
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INTRODUCTION
Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that causes both motor and non-motor symptoms. The
motor symptoms of PD, which include tremor, rigidity, postural
instability, and bradykinesia, are a direct result of insufficient
dopamine signaling due to the selective degeneration of
dopamine producing neurons in the substantia nigra region of
the midbrain. In addition, the more diverse and heterogeneous
non-motor symptoms, which include autonomic dysfunction,
hyposmia, cognitive decline, depression, and sleep dysfunction,
appear to also be linked to the pathological accumulation of the
a-synuclein protein."? The exact causes of PD remain unclear but
are thought to involve a complex interplay between genetics,
biology, and the environment, which contributes to the under-
lying heterogeneity of not only PD symptoms, but also their rates
of progression over time.? This provides uncertainty to patients in
regards to future quality of life, and also presents challenges for
therapeutic trials in terms of defining successful endpoints.*
Altered peripheral immune system function is increasingly
being reported for patients with PD. Indeed, evidence implicating
a-synuclein pathology, the enteric nervous system, and the
gut-brain axis in the etiology of PD suggests that PD may even
commence in the periphery.>™ This is intriguing and may provide
an opportunity to identify peripheral markers that contribute to
the prediction of PD progression. Inoculation of a-synuclein into
the periphery can induce neuropathology in rodents,’® and
notwithstanding the challenges of its detection, pathological a-
synuclein has been identified in both intestinal and skin biopsies

from prodromal PD cohorts.”"'? Pathological forms of a-synuclein
have also been shown to directly modulate inflammatory path-
ways,">7'® and a number of studies have demonstrated a chronic
low grade inflammatory phenotype in PD patients (for reviews see
refs. '772%. The exact mechanism by which this phenotype
manifests remains to be determined, but as well as activation of
inflammatory pathways, PD patients have also been reported to
have altered populations of peripheral immune cells,>’>* and
altered immune cell responses to activating stimuli,”> which
collectively implicate immune dysfunction in PD.

In addition, many of the genes implicated in PD risk are also
highly expressed in immune cells, with many being directly
implicated in modulation of inflammatory signaling pathways.?°
One such example is leucine-rich repeat kinase 2 (LRRK2), which is
highly expressed in monocytes,?*?” and has been implicated in
monocyte maturation and innate immune inflammatory path-
ways. 28732 At least six confirmed pathogenic missense mutations
occur in LRRK2 and all serve to increase the enzyme's catalytic
kinase activity.>>** The most common LRRK2 mutation is G2019S,
which is the biggest cause of dominantly inherited PD and
accounts for ~1-5% of all PD.>> We have previously shown that
certain peripheral inflammatory cytokines are increased in a
subset of asymptomatic mutation carriers with the LRRK2 G2019S
mutations.®® Any extent to which peripheral inflammatory
cytokines contribute to PD causality remains unclear, however,
importantly, LRRK2 kinase inhibitors are in advanced stages of
development®” and there is much interest in how clinical trials can
be taken forward.
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The heterogeneity of PD progression combined with a lack of
objective biomarkers® has however complicated both clinical trial
design and outcomes in PD, and thus the need for better models
of PD progression and/or better strategies for selection of
participants into specific clinical trials is evident. The emergence
of large datasets containing multimodal data from longitudinally
followed cohorts such as the Michael J Fox Foundation Parkinson’s
Progression Markers Initiative has facilitated novel machine
learning approaches to develop predication models of PD
progression.®>*° In the current study, we have employed machine
learning algorithms to further explore the association between
peripheral inflammatory cytokines and clinical PD symptomology
using longitudinally collected serum samples from PD patients
with and without the LRRK2 G2019S mutation. We provide initial
evidence that peripheral inflammatory cytokines measured at
baseline contribute to the prediction of longitudinal clinical
outcomes. Our results provide new information on the long-
itudinal assessment of peripheral inflammatory cytokines and act
as a starting point to develop more refined prediction models that
may have utility in improving patient stratification and/or
endpoint readouts for PD clinical trials.

RESULTS

Evaluation of baseline clinical and cytokine data

Our study utilized the Michael J Fox Foundation LRRK2 clinical
consortium longitudinal sample collection. From this collection,
we obtained serum samples and clinical data from 160 patients for
a baseline comparison of LRRK2-PD and idiopathic PD (Fig. 1a).
Age and gender were taken into consideration during sample
selection and were thus well matched between the idiopathic and
LRRK2-PD groups (Table 1). Age at diagnosis and the majority of
clinical scores were also similar between the two groups. LRRK2-
PD only significantly differed from the idiopathic group in regard
to motor scores evaluated with the unified PD rating scale part 3
(UPDRSIIN), and the University of Pennsylvania smell identification
test (UPSIT) (Table 1). The lower UPDRSIII score for LRRK2-PD
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indicates milder motor disease, whilst the higher UPSIT score
indicates less severe hyposmia in the LRRK2-PD group. As for the
clinical scores, the majority of the assayed serum cytokines were
similar between the two PD groups (Supplementary Table 1). Two
exceptions were platelet-derived growth factor (PDGF) and
monocyte chemoattractant protein one (MCP1), which were
increased by 23% (p=0.003) (Fig. 1b) and 27% (p =0.01) (Fig.
1c), respectively, in the LRRK2-PD group. Of these two cytokines,
PDGF remained significantly elevated in the LRRK2-PD group
following univariate analysis covarying for age and gender (26%
increase,

Table 1. Baseline demographic data
Idiopathic PD LRRK2 PD  Range at BL
n 80 80 -
Age (years) 68+ 1 69+ 1 -
Age at diagnosis 58+1 57 £1 -
Gender (M/F) 54/26 40/40 -
Epworth sleep scale 8.0+0.7 8.2+0.6 2-21
Geriatric depression scale  3.9+0.5 43+05 0-14
Hoehn and Yahr 25+0.1 23+£0.1 1-4
Schwab and England ADL  76.3+3.0 778+26  20-100
SCOPA-AUT 212+1.7 213+1.8 2-62
REM-sleep dysfunction 4105 3.1+04 0-12
MoCA 25.0+06 252+05 10-30
UPSIT 11.5+£13 19.7+1.5% 0-39
UPDRS I 248+1.8 193+ 1.6% 2-46
Baseline demographic for selected serum samples. Data are mean + SEM.
MoCA Montreal cognitive assessment, UPSIT University of Pennsylvania
smell identification test, ADL activities of daily living, UPDRS Il unified
Parkinson’s disease rating scale part 3
*p < 0.05
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Fig. 1 Increased levels of platelet-derived growth factor in LRRK2-PD serum. a Overview of patient sample numbers and data collection.
Baseline platelet-derived growth factor b and monocyte chemoattractant protein 1 c levels in Parkinson’s disease patients with (red squares)
and without (blue circles) the LRRK2 G2019S mutation. Data were compared using Student’s t test. Graphs show mean = SEM, n =80 per
group. d Log2 changes over 1 year for all 27 cytokine measurements in all patients. N= 160
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p=0.001), and after employing a Bonferroni correction for
multiple comparisons. Levels of PDGF did not significantly
correlate with any of the baseline clinical symptomology rating
scales (Supplementary Table 2).

Evaluation of longitudinal data

In order to evaluate changes over a 1-year time period, cytokines
were also measured for 126 of the PD patients for which
longitudinal serum samples were available. Plots of log2 ratios
of the change in cytokine measurements between the time points
for each patient were generated. When all cytokines for both
groups were considered together, ~90% of the measures changed
either up or down by onefold or less over the 1-year period (Fig.
1d). Temporal changes for individual cytokines for the separate
idiopathic and LRRK2-PD groups are shown in Supplementary Fig.
1, with the largest variation seen for granulocyte colony
stimulating factor (GCSF) and interleukin (IL) five (IL-5). With the
single exception of IL one receptor antagonist (IL-1RA) (p = 0.04),
Kolmogorov-Smirnov tests showed no significant differences
between the log2 distributions of the individual cytokines for
the idiopathic and LRRK2-PD groups. We also determined the
extent to which the different clinical variables changed over time,
again with both the idiopathic and LRRK2-PD groups combined
together. Longitudinal assessment of clinical data from the same
individuals at baseline and with 1- and 2-year follow ups showed a
significant increase in scores for the geriatric depression, Hoehn
and Yahr and UPDRS Il scales (Table 2). Increases in depression
and motor symptom severity were associated with a significant
decrease in the Schwab and England activities of daily living scale
(Table 2). Symptoms predominantly associated with early PD
including, olfaction, autonomic function, and sleep dysfunction
were not significantly changed over the 3-year time course.

Correlations between baseline cytokines and disease progression

We next determined if baseline cytokine levels were associated
with changes in motor severity, depression, or the activities of
daily living scale over time. Correlation analysis identified 14
cytokines that positively correlated significantly with the fold

Table 2. Longitudinal progression of Parkinson'’s disease
symptomology

Clinical variables Visit 1 Visit 2+ 1 year Visit 3+ p-value
baseline 2 years

Epworth 8.789+0.53 8.447 +0.57 8.75+0.57 0.7848

sleep scale

Geriatric 3.167£0.44 4.183+0.46 4.167 £0.48 0.0025*

depression scale

Hoehn and Yahr  231+0.07 255+0.10 262+0.11 0.0005*

Schwab and 824+1.84 78+2.28 75.2+252 0.0010*

England ADL

SCOPA-AUT 22.12+1.40 21.57+1.55 2236+ 151 0.8528

REM SLEEP 4.026 £0.37 3.671+0.40 3.526+£0.37 0.2843

dysfunction

MoCA 2646+0.37 26.02+042 25.7+0.45 0.0903

UPSIT 16.89+1.25 1538+1.23 15.88+1.18 0.3351

UPDRS 1lI 2093+1.26 22.05+145 2391+£1.59 0.0178*

Longitudinal Parkinson’s disease symptomology data from clinical rating
scales with both LRRK2-PD and iPD combined. Data are mean + SEM.
*indicates p < 0.05 using repeated measures one-way analysis of variance,
or in the case of the categorical Hoehn and Yahr scale, Kruskal-Wallis
MoCA Montreal cognitive assessment, UPSIT University of Pennsylvania
smell identification test, ADL activities of daily living, UPDRS Il unified
Parkinson’s disease rating scale part 3
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Table 3. Correlations between baseline cytokines and Parkinson’s
disease symptomology

Cytokines Geriatric depression scale Cytokines UPDRS Il
IL5 0.609%** IL5 0.358**
IL8 0.415%** IL8 0.241*
GCSF 0.438%* GCSF 0.283*
MIP1B 0.294* MCP1 0.237*
IL10 0.435%** IL10 0.315**
MIP1p 0.294* IFNy 0.401%*
IL6 0.320*% IL15 0.247%
ILTRA 0.546%**

TNFa 0.436**

CCL5 0.337*

bFGF 0.301*

VEGF 0.640%*

MIP1a 0.435%**

IL7 0.350*

IL15 0.643**

Correlation analysis was performed to identify any significant correlations
between the log change in clinical scales over 3 years and baseline
cytokine levels. The table shows the Pearson correlation coefficient with *p
<0.05 and **p <0.01. n =65

UPDRS Il unified Parkinson’s disease rating scale part 3

change in geriatric depression scale over the 2-year time period
(Table 3). Seven cytokines also positively correlated significantly
with the fold change in UPDRS IlI (Table 3), whilst no significant
correlations were observed for the other two clinical scales
assessed.

Machine learning predicting of longitudinal clinical outcomes

To more formally quantify the extent that baseline peripheral
cytokines contribute to the prediction of longitudinal clinical
outcomes we employed machine learning. For the four clinical
variables that showed significant changes over time, 80% of the
samples for which longitudinal data were available were used to
train elastic-net and random forest algorithms. Any individuals for
which cytokine changes over 1 year were >2SD from baseline
were excluded, as such a dramatic change in cytokines likely
indicates an underlying inflammatory condition. The final
hyperparameters used and the performance of each model on
training data are shown in Supplementary Table 3. Using
normalized route mean square error (NRMSE) as a comparative
measure of performance, the random forest model was better
than elastic net for predicting all measured clinical outcomes
(Supplementary Table 3). The optimized random forest models
were therefore tested for their ability to predict the 2-year follow
up measures for geriatric depression scale (Fig. 2a), Hoehn and
Yahr (Fig. 2b), Schwab and England activities of daily living (Fig.
2¢), and UPDRS Il (Fig. 2d) using the withheld test dataset. NRMSE
was used as a comparative measure of predictive performance,
with the lower the value the more accurate the predictive ability
of the model. NRMSE was best for predicting motor symptomol-
ogy using either the Hoehn and Yahr scale, with NRMSE of 0.1123,
or UPDRS lIl, with NRMSE of 0.1193 (Fig. 2). The use of random
forest to predict longitudinal outcomes with the available baseline
clinical variables, gave worse performance than using baseline
cytokines (average 16% decrease in test NRMSE) (Supplementary
Table 4). When clinical data and cytokines were combined for
analysis, the performance of the random forest model was again
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Fig. 2 Random forest prediction of longitudinal clinical outcomes. Random forest machine learning algorithms using baseline cytokine
measures were used to predict the 2-year outcomes for the geriatric depression scale a, Hoehn and Yahr b, Schwab and England activities of
daily living ¢, and UPDRS llI d. The root mean square error (RMSE) and normalized RMSE (NRMSE) are shown as an indication of performance
for each predictive algorithm. For each algorithm the variables that contributed the most to the predictive performance are listed. Data points
indicate the machine learning prediction for each individual in the test dataset. The lower the NRMSE value and the more the test data points

lie along the prediction line, the better the prediction accuracy

reduced compared to using baseline cytokines alone (average
11% decrease in test NRMSE) (Supplementary Table 4).

Relative contribution of peripheral cytokines to prediction models

The top ten variables contributing to each predictive algorithm are
also shown (Fig. 2). In all cases, the baseline value for each
particular clinical measure was the main contributor to the

npj Parkinson’s Disease (2019) 14

predictive models. This likely reflects the subtle symptomology
progression over 2 years in a cohort with PD already established
for ~10 years. The main contributing cytokines for Hoehn and Yahr
and UPDRS Il were macrophage inflammatory protein one alpha
(MIP1a) and MCP1, respectively. The cytokines GCSF, IL8, IL17A,
and IL10 were amongst the top ten variables for both motor
severity scale prediction models. IL-6 and IL-4 were the main
contributing cytokines for prediction of the geriatric depression
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scale, and all the top cytokine variables also contributed to the
prediction of the Schwab and England ADL scale. The demo-
graphic variables age and gender were among the top 10
contributors to the prediction of activities of daily living and
UPDRS Il scales, respectively (Fig. 2). LRRK2 mutation status was
also included in the variables used for prediction but did not rank
amongst the top variables for any prediction model.

DISCUSSION

In the current study we have longitudinally assessed peripheral
inflammatory cytokines and employed machine learning algo-
rithms to determine the relative extent to which the cytokines
contribute to the longitudinal prediction of PD symptomology. We
employed samples from the Michael J Fox Foundation LRRK2
clinical cohort consortium. This consortium has two sample
collections, a multiethnic cross-sectional cohort that we have
previously used to demonstrate increased peripheral inflamma-
tion in asymptomatic LRRK2 G2019S mutation carriers,>® and the
longitudinally followed Ashkenazi Jewish cohort that we have
used this time. Consistent with our previous results, we found that
levels of inflammatory cytokines were largely similar between PD
patients with and without the LRRK2 G2019S mutation. The
exception was PDGF, which was increased in LRRK2 G2019S
patients compared to idiopathic PD, again replicating our previous
findings.>® That PDGF is elevated in LRRK2 G2019S patients
compared to idiopathic PD in two independent cohorts suggests a
role for the LRRK2 enzyme in regulating this cytokine.

One important aim of the current study was to evaluate the
variability of peripheral inflammatory cytokine levels in individuals
over a 1-year time frame. A number of factors may contribute to
the regulation of peripheral cytokine levels,*' and whilst long-
itudinal studies have been conducted for some neurodegenera-
tive diseases, such as Alzheimer's disease,** longitudinal
assessment of peripheral inflammatory cytokines in PD is lacking.
At a group level we found variability for the majority of cytokine
measures at both time points. However, on an individual level,
cytokine levels were similar at the two time points for individuals
in both the LRRK2 and idiopathic PD groups. That instances of
higher inflammation were largely stable over the 1-year time
frame adds to the utility of peripheral cytokines as PD biomarkers,
however it would be important in future studies to further control
for variables that can impact on inflammation including diet,
recent illness, and/or other potential underlying inflammatory
conditions.

Another major aim of the current study was to evaluate
machine learning approaches for the prediction of clinical
outcomes in PD using demographic and peripheral cytokine
measures. Machine learning approaches may complement other
statistical approaches used to model PD progression*® and can
leverage extensive datasets whilst providing an unbiased quanti-
tative measure of predictive performance. Previous studies have
employed such approaches and used clinical, genetic, imaging,
and cerebrospinal fluid markers to predict the initiation of
symptomatic therapy®® and motor progression based on
UPDRSIIL3 In the current study, we used peripheral cytokine
measurements in combination with elastic net and random forest
models to predict longitudinal clinical outcomes of depression,
motor severity, and the activities of daily living scale. Of these
clinical symptoms, random forest models of motor severity
showed the best predictive performance using the baseline
cytokine measurements. The use of cytokines provided an average
20% improvement in predictive ability over using clinical data
alone. The cytokines that contributed the most to the predictive
models of motor severity were MIP1a and MCP1 for the Hoehn
and Yahr and UPDRS Il scales, respectively. Both basal and
lipopolysaccharide stimulated levels of MIP1a and MCP1 have
previously been reported to be higher in PD patient peripheral
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mononuclear cells compared to controls.** In our study, baseline
levels of MCP1 were also positively correlated with longitudinal
changes in UPDRS lll, suggesting that higher levels of MCP1 are
associated with faster motor progression. IL-8, IL-10, and GCSF
were other cytokines that positively correlated with changes in
UPDRS lll and contributed to the longitudinal prediction model. IL-
8, IL-10, and GCSF, along with IL-17A, also contributed to the
random forest prediction model of Hoehn and Yahr staging. That
there is not a perfect overlap between the cytokines contributing
to the prediction models of UPDRS Ill and Hoehn and Yahr may
reflect the intricacies of the models themselves, or that as a result
of being regulated by similar transcription factors, a number of
cytokines are highly correlated with each other and can readily
substitute in different models. It should also be noted that only
the top ten variables are listed for the prediction models and other
cytokines may well have made a lesser but the nonetheless
important contribution to model performance.

Over the time frame studied we also observed significant
progression in scores on the geriatric depression scale. As many as
14 of the 27 cytokines assayed positively correlated with
longitudinal changes in the depression scale. This included IL-6,
which was the main contributing cytokine to performance of the
random forest prediction model. Serum and CSF levels of IL-6 have
previously been linked to depression and mortality in PD,**~* and
our results further suggest that underlying inflammatory pheno-
types may contribute to a greater risk of progression to depression
in PD patients.

Models that allow for better clinical trial design and/or patient
stratification would be advantageous; however, further refine-
ments of the prediction models from the current study are likely
required before they achieve clinical utility. For all prediction
models the main contributing variable was the baseline value for
the specific clinical scale being predicted. This is likely due to the
limited progression and/or limited sensitivity of the measurement
scales of the clinical symptoms that occurred over 2 years.
Although progression on the motor severity scales was modest
and unlikely to be personally meaningful to patients, predicting
longitudinal outcomes over short duration time frames in
established PD populations may have utility in clinical trials. For
example the recent exenatide trial for PD used a similar cohort of
patients (~8 years duration), a similar short time frame (60 weeks)
and showed a similar rate of progression over time (2.1 point
change in UPDRS).*® Thus, prediction models of progression may
allow for better clinical trial outcomes by either enriching for
subjects most likely to progress the most over a trial time frame,
and/or allowing responses to medications to be evaluated on a
personal level by comparing individual outcomes to what was
predicted for that patient. Replication of our results with a larger
sample size and across more diverse ethnic cohorts will be
important. It will also be important in subsequent studies to
address caveats in our current study that include a lack of
information on potential medication use and its influence on
clinical scale outcomes or cytokine measures. Cohorts of
Ashkenazi Jewish descent are also likely to be enriched in
glucocerebrosidase mutations,* which may also influence PD
progression, particularly in regard to early motor progression®°
and later cognitive decline.®' Indeed, a similar machine learning
approach to that used in our study has demonstrated that diverse
genetic polymorphisms can also predict longitudinal clinical
outcomes.®® Moreover, other factors outside of peripheral
inflammation and genetics very likely contribute to PD progres-
sion. Indeed, Mollenhauer et al. have demonstrated that diverse
factors such as glucose levels, hypertension, uric acid, and
cholesterol also contributed to the longitudinal prediction of PD
progression.> Thus, our results suggest that peripheral cytokines
may contribute to predictive models of PD progression and serve
as such a starting point for further measures to be added and
evaluated for their performance to predict PD progression in a
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quantitative manner. The development of better prediction
models may contribute to substantially improved clinical trial
outcomes, potentially including new therapies such as LRRK2
inhibitors. Future studies could also include prodromal or at risk
carrier groups to determine if peripheral cytokines also have utility
in predicting symptomology more associated with PD risk, and
that did not significantly progress in our established PD cohort,
such as olfaction and sleep dysfunction.

METHODS
Patient samples and clinical data

Serum samples and corresponding clinical data were obtained from the
Michael J Fox Foundation LRRK2 cohort consortium (LCC). For further and
up-to-date information on the study visit https://www.michaeljfox.org/
page.html?Irrk2-cohort-consortium. The LRRK2 clinical cohort consortium
collection comprises two studies, a LRRK2 cross-sectional study with
samples contributed from 17 countries, and a longitudinal study of an
Ashkenazi Jewish population. We have previously analyzed inflammatory
cytokine profiles in the cross-sectional study serum samples and this data
has been published3® In the current study we have obtained serum
samples from an additional 160 Parkinson’s patients from the longitudinal
study. Of these patients, 80 have the LRRK2 G2019S mutation. We also
obtained an additional 126 serum samples from the same patients that
were collected at a 1-year longitudinal follow up, and additional clinical
data from 76 of the same patients at a 2-year longitudinal follow up (Fig.
1a). The study was approved by the University of Sydney Human Research
Ethics Committee (2017/076). All cohort consortium samples were
obtained with informed consent. Inflammatory cytokines were assayed
in the serum samples as outlined below. Detailed information on serum
sample and patient data collection is available from the LRRK2 clinical
cohort consortium website. The following exclusion criteria were applied
during sample selection: history of repeated head injury, encephalitis,
cerebral tumor, MPTP exposure, stroke, epilepsy, inflammatory diseases of
the brain, and skull fractures. Serum samples were shipped to Australia on
dry ice and stored at —80 °C until analysis. All inflammatory cytokine assays
were performed blinded. The following matching clinical data were also
obtained from the LCC where available: age, gender, date of diagnosis,
disease duration, UPDRSIII, Montreal cognitive assessment, Epworth sleep
scale, Geriatric depression scale, Hoehn and Yahr, UPSIT, REM-sleep
disorder scale, the SCOPA-AUT autonomic dysfunction scale, and the
modified Schwab and England activities of daily living scale. Baseline
demographic and clinical data are shown in Table 1.

Inflammatory cytokine assays

A magnetic human cytokine multiplex assay (Biorad) was used to
simultaneously measure 27 cytokines (MIP1(3, IL-6, IFNy, IL-1RA, IL-5, GM-
CSF, TNFa, CCL5, IL-2, IL-1B, CCL11, bFGF, VEGF, PDGF, CXCL10, IL-13, IL-4,
MCP-1, IL-8, MIP1q, IL-10, GCSF, IL-15, IL-7, IL-12(p70), IL-17A, and IL-9) in the
serum samples. The bioplex assay was performed exactly as per the
manufacturers’ instructions, using the recommended one in four dilution of
serum, and plates analyzed using a Magpix plate reader (Luminex). Enclosed
standards were used to generate an eight-point standard curve to which a
five-parameter logistic curve was fitted and used to quantify unknown
cytokine concentrations using the Xponent software package (Luminex).
Reference pool standards were included in every plate. The coefficient of
variance between duplicates was generally <10%. The coefficient of variance
between reference pool standards run on separate plates was ~10-40%,
depending on the cytokine of interest. Once the ELISA assays were
completed, the raw data were uploaded to the Michael J Fox Foundation
LCC website and the investigators were then unblinded to facilitate analysis.

Statistics and data analysis

Statistics and data analysis were performed using SPSS or R with significance
set at p < 0.05. Missing cases were excluded for all analyses. Student's t test or
univariate analysis covarying for age and gender were used to compare
between two groups where indicated. Repeated measures analysis of
variance was used to analyze longitudinal clinical data. The Shapiro-Wilk
test was used to assess normal distribution. The Kolmogorov-Smirnov test
was used to compare the distribution of longitudinal changes in variables
between the two groups. Pearson and Spearman’s rank correlations were
performed to assess relationships between cytokine and clinical variables. For
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predictive modeling with machine learning, the elastic-net®® and random
forest®™® algorithms were trained on combinations of clinical variables,
inflammatory cytokine measurements, and demographic variables (age and
gender) to predict 2-year longitudinal clinical outcomes. Elastic net is a linear
regression technique that applies both L1 and L2 regularizations in order to
minimize overfitting. In L1-regularization, the absolute values of the
coefficients were used as the penalty term in the loss function, whereas in
L2-regularization, the squared values of the coefficients were used. The
hyperparameters A and a control the strength of the regularization and the
ratio between L1 and L2, respectively. Random forest is an ensemble learning
algorithm based on multiple decision trees and bootstrap aggregation. For
each tree, a bootstrap of samples was used and, at each node of each tree,
the best variable out of a random subset of mtry variables was selected to be
used as the node. Random forest analysis can capture nonlinear relationships
and variable importance can be ascertained by the increase in mean squared
error after a variable is permuted, with large error increases expected for
important variables. For both algorithms the dataset was randomly split such
that 80% of the samples were used for training and 20% were withheld for
final validation. For each cytokine variable, samples where the log2 ratio
between baseline and 1-year follow up were more than two standard
deviations away from the cohort mean were removed, as these likely reflect
extraneous underlying inflammatory conditions. For log2 ratio calculation, a
pseudocount of one was added to the clinical markers for the log2 ratio
calculation to avoid log(0) scenarios. Tenfold cross-validation was performed
on the training set to identify the A and a values for elastic net, and mtry
values for random forest, that best minimized the root mean squared error
(RMSE). Elastic-net and random forest (500 trees) models were then
constructed on the whole training set with these optimal hyperparameter
values. Generalizability was tested on the withheld validation set and
assessed with performance metrics RMSE and NRMSE, which was determined
by dividing the RMSE by the range of possible values for that clinical specific
marker. An NRMSE score of zero is equivalent to a prediction model that
operates with 100% accuracy.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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