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Abstract
Fractional flow reserve is the current reference standard in the assessment of the functional impact of a stenosis in cor-
onary heart disease. In this study, three models of artificial intelligence of varying degrees of complexity were compared
to fractional flow reserve measurements. The three models are the multivariate polynomial regression, which is a statis-
tical method used primarily for correlation; the feed-forward neural network; and the long short-term memory, which is
a type of recurrent neural network that is suited to modelling sequences. The models were initially trained using a virtual
patient database that was generated from a validated one-dimensional physics-based model. The feed-forward neural
network performed the best for all test cases considered, which were a single vessel case from a virtual patient database,
a multi-vessel network from a virtual patient database, and 25 clinically invasive fractional flow reserve measurements
from real patients. The feed-forward neural network model achieved around 99% diagnostic accuracy in both tests
involving virtual patients, and a respectable 72% diagnostic accuracy when compared to the invasive fractional flow
reserve measurements. The multivariate polynomial regression model performed well in the single vessel case, but
struggled on network cases as the variation of input features was much larger. The long short-term memory performed
well for the single vessel cases, but tended to have a bias towards a positive fractional flow reserve prediction for the vir-
tual multi-vessel case, and for the patient cases. Overall, the feed-forward neural network shows promise in successfully
predicting fractional flow reserve in real patients, and could be a viable option if trained using a large enough data set of
real patients.
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Introduction

Cardiovascular diseases (CVDs) are the world’s major
cause of mortality, being responsible for approximately
31% of deaths worldwide.1 Coronary heart disease
(CHD) is the biggest sub-category of CVD,2 and is
most commonly caused by atherosclerosis build-up on
the inner layer of a coronary artery, which narrows the
vessel lumen area. The current gold standard diagnostic
tool for estimating CHD severity is the fractional flow
reserve (FFR),3 although other diagnosis measures
such as the instantaneous wave-free ratio (iFR) have
been proposed.4,5 FFR is performed invasively during
cardiac catheterisation. A pressure sensitive wire mea-
sures the pressure at the aorta and at a point distal to a

stenosis simultaneously. The pressure ratio of pressure
distal to stenosis divided by aortic pressure is used to
determine if the stenosis is flow limiting. If the pressure
decrease is greater than 20%, which corresponds with a
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FFR value below 0.8, the patient will normally be
required to undergo further surgical treatment such as
an angioplasty. As the FFR procedure is invasive and
expensive, there have recently been attempts at deter-
mining the FFR non-invasively through the use of cor-
onary computed tomography angiography (CCTA)
and physics-based computational fluid dynamics
(CFD) models.6–8 These models have been shown to
give respectable agreement with the invasive clinical
measures.

In recent years, there has been renewed interest in
artificial intelligence (AI) with many areas now focus-
ing on data science techniques to find correlations and
predictions using data. This is partly due to two main
developments: (1) the accessibility to much greater
computational resources, and (2) the wider availability
of large amounts of data that are required for training
AI models. Some of these techniques are making signif-
icant inroads into medical research. Examples include
AI algorithms being developed to detect cancer and
determine a prognosis,9 and to manage and support
treatment of diabetes.10 An AI model has even been
shown to be more reliable at detecting brain tumours
than the current techniques used in radiography.11

Now, AI models are being applied to FFR, which
ranges from replacing one-dimensional (1D) models
with machine learning (ML) models,12 to using the
CCTA images and deep learning models to estimate
the FFR directly from the CT images.13,14 While AI
offers an excellent opportunity to compute FFR faster
than the majority of physics-based models, assessing
the accuracy and robustness remains a real challenge.

In the present work, we compare three ML models
of varying degrees of complexity to further understand
the applicability of AI in the FFR calculations. They
are (1) multivariate polynomial regression (MPR), (2)
feed-forward neural network (FFNN), and (3) a long
short-term memory (LSTM) model. The ML models
are first trained using a virtual patient database created
using a validated 1D physics-based model,15 then the
ML models are compared with clinically invasive FFR
measurements on a small cohort of 25 patients.

ML and deep learning

The foundation of current ML and deep learning algo-
rithms originated from work in 1943 by McCulloch
and Pitts.16. They proposed the idea and theory of a
neuron, what it is and how it works, and created an
electrical circuit of the model, thus creating the first
neural network. In 1950, Turing17 published the semi-
nal paper ‘Computing Machinery and Intelligence’ that
discussed the theoretical and philosophical ideas of AI.
From this work, the Turing test was born. The normal
interpretation of the Turing test is to have an interroga-
tor attempting to distinguish between two ‘players’,
one of which is human and the other is a computer.
The development of ML and deep learning algorithms
merely use the human nervous system, and in particular

the brain, as a reference for inspiration in the develop-
ment of these algorithms.

There has been a recent resurgence in the use of
neural networks, primarily due to large amounts of
data, and easier access to powerful computational
resources. However, some of the fundamental mathe-
matics used in AI are well established. For example,
the gradient descent optimisation method, which forms
the foundation of the back propagation step while
training the model for many projects, was originally
proposed by Cauchy18 in 1847. Although at this stage
gradient descent was used for minimisation problems
on a system of simultaneous equations, it was not until
the 1960s that gradient descent was used in the context
of multi-stage, non-linear systems.19,20 In 1982, PJ
Werbos21 described the use of gradient descent in a
neural network. The original gradient descent method
is rarely used nowadays, but the improved optimisation
methods of momentum22 and ADAM,23 essentially
extend the gradient descent method and are widely
used.

Methodology

Virtual patient generation and feature extraction
from CT data

It is difficult to obtain a significant number of clinical
patient data for training an ML model and hence we
created virtual patients. There are two different types of
virtual patient generation. The first considers a patient
as a single vessel and randomises the vessel area profile,
length, and flow rate through the vessel. These single
vessel cases are used to train the ML models. The sec-
ond case involves creating a network of the left coron-
ary artery (LCA) branch that consists of nine main
vessels.

Single vessel patient generation. The single vessel cases are
generated by first randomising the proximal and distal
area of the vessel independently in the range 0:0059 to
0:8131 cm2. The vessel length is also chosen at random
with the range 0:0957 to 11:1475 cm. These ranges for
the vessel area and length were chosen as they represent
the spread of areas and lengths observed in the real
patient cohort. Initially the area profile is constructed
by linearly tapering between the proximal and distal
areas. A mesh is then created with an element size of
Dx=0:01 cm; however, this is adapted by adding more
randomisation into the area profile after the creation of
the stenosis. This forms the foundation of the vessel
geometry that is then adapted to include a stenosis.

The characteristics of the stenosis are also partially
randomised. The stenosis is assumed to be located in
the middle of the vessel. The severity of the stenosis is
randomised between a 0% decrease in diameter (no ste-
nosis), to a 80% decrease in vessel diameter. The largest
decrease in vessel radius is chosen as 80% as clinicians
generally do not perform the invasive FFR
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measurement for any blockage worse than this as the
risk of perforating an artery would increase. In the
clinic, it is assumed these patients would need surgical
intervention. The length of the stenosis is assumed to
vary as a ratio of between 0% (no stenosis) and 60% of
the total length of that vessel. This will cover the cases
where no stenosis is present through to more diffuse
stenosis.

The stenosis is the constructed using the following
equation

D=D0 +
(DA �D0)

2
1� cos

x

2pLa

� �� �
ð1Þ

where D0 is the reference diameter across the entire ste-
nosis, DA is the stenosed area, x is the axial coordinate
along the stenosis, and La is the length of the stenosis.
The stenosis is then inserted into the middle of the
vessel.

At this stage, the stenosed vessel undergoes an addi-
tional randomisation procedure to ensure that the ves-
sel geometry is not too smooth. Across the length of the
vessel, the first and last 10% will remain unchanged in
the randomisation procedure, only the internal 80% is
affected. This internal region is further split by choosing
specific nodes using the equation

Nc =max(5, floor(N=20)) ð2Þ

where N is the number of nodes in the stenosed region
and Nc is the number of nodes that are to be adapted.
The minimum number of area nodes chosen to perturb
is 5. At these chosen Nc nodes, the areas are then ran-
domly varied between a 20% decrease and a 40%
increase. Then, a shape-preserving piecewise cubic
Hermite interpolating polynomial is utilised to interpo-
late all areas at the nodal points located between the Nc

nodes. This generates an area profile across the vessel
with similar attributes to those seen in real patients as
shown in Figure 1. This procedure will influence the
severity of the stenosis and hence the stenosis area and
mean vessel area are extracted from the new area pro-
file. The final feature that is required for the ML mod-
els is the volumetric flow rate through the vessel. The
volumetric flow was randomised in the range 0:3896
and 11:1475 cm3=s. All randomisation procedures for
all parameters were performed using a uniform distri-
bution within their respective ranges.

Virtual patient network generation. The virtual patient net-
work uses the left coronary network branch consisting
of nine vessels, presented in Mynard and Smolich,24 as
the foundation for which vessel area and length adapta-
tions are performed. On top of this foundation, a simi-
lar randomisation procedure is performed to that of the
single vessel case. First, in the procedure is that the
length, and the area at the start and end of every vessel
are all randomly adapted by increasing or decreasing

around their reference state by up to 70%. In the net-
work, the vessel in which the stenosis is to be located is
also chosen at random. At this stage, the stenosed ves-
sel undergoes the same procedure as that described for
the single vessel case. The remaining vessels do not have
a stenosis added; however, the remaining parts of the
area randomisation procedure are still performed.

Feature extraction from CT images. In order to extract the
features from the patient CT images, the images first
need to be segmented. The segmentation and extraction
of centreline information is performed using the image
segmentation software VMTKLab (Orobix, Italy). The
area profile and vessel length information can then be
extracted and can be used to find the input features for
two of the ML models, which include the area at the
start and end of each vessel, the mean vessel area, and
the vessel length. The volumetric flow rate at the inlet
of the LCA is assumed to be 425 mL=min, and the flow
distribution in the network is calculated via a power
law which uses Murray’s law with an exponent of 2.78.8

ML

Many of the concepts and theory used in ML were pre-
viously developed in other areas of mathematical

(a)

(b)

Figure 1. Normalised area profile of a generated patient and a
normalised area profile of the left anterior descending artery
extracted from a patient CT scan: (a) virtual patient area profile;
(b) real patient area profile.
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sciences, such as using statistics to find the likelihood
of an event occurring or finding relationships and cor-
relations in various types of data. One such method is
MPR, which is a generalised form of linear regression.

MPR. MPR is the least complex model implemented in
this work and utilises linear regression with a high-
order polynomial feature space on multiple variables.
Although polynomial regression is quite simple, it can
still provide useful and powerful predictions. However,
one must be careful when creating the training and test
data for these models as polynomial regression tends to
perform reliably well when used to interpolate data,
but can produce erroneous predictions when attempt-
ing to extrapolate data. This issue is often exacerbated
when higher-order polynomials are used for the feature
space. In order to describe this method, it is advanta-
geous to first describe univariate polynomial regression,
and then discuss its extension to the multivariate case.

Univariate polynomial regression for a dependant
variable y and an independent variable x, the ith exam-
ple while using a nth� order polynomial feature space
can be written in the form

yi = b+w1xi +w2x
2
i +w3x

3
i + � � � +wnx

n
i ð3Þ

where b is referred to as the bias, and wj (for j=1 : n)
are referred to as the weights. Using enough training
cases of known outputs yi for some given input features
xi, the system of equations can be solved to find the
optimum values of the bias and weights to best fit the
data. These bias and weights can then be used for future
predictions. This forms the foundation of polynomial
regression, and its extension to the multivariate case is
relatively straightforward. The main change from the
univariate to multivariate case is that there are now
more possible combinations of polynomial terms for
the feature space, for example, in a case with two inde-
pendent variables (x1 and x2) up to a second� order
polynomial feature space, the general form will be

yi = b+w1x1, i +w2x
2
1, i +w3x2, i

+w4x
2
2, i +w5x1, i � x2, i

ð4Þ

which contains the multiplication of the two indepen-
dent variables to create the new feature x1, i � x2, i. The
general matrix form of MPR can be expressed as

Y=XW ð5Þ

where Y is the column vector

Y= Y1 Y2 � � � Ym½ �T ð6Þ

containing all outputs/predictions, where m is the num-
ber of examples, X is a matrix containing all input

features that includes different combinations of the
independent variables and has the form

X=

1 X1, 1 X1, 2 � � � X1, n

1 X2, 1 X2, 2 � � � X2, n

..

. ..
. ..

. ..
. ..

.

1 Xm, 1 Xm, 2 � � � Xm, n

2
6664

3
7775 ð7Þ

where n is the number of possible feature combinations,
and W is a vector that contains all of the bias and
weight terms

W= b W1 � � � Wn½ �T ð8Þ

In the present article, the least-squares method is used
to solve for the bias and weight terms for polynomial
regression. Six input features are used which includes
the area at the start and end of a vessel, the minimum
area in the vessel, the mean area of the vessel, the esti-
mated flow rate in the vessel, and the length of the
vessel.

Deep learning

In biomedical engineering, the more basic statistical
techniques such as polynomial regression have generally
fallen out of favour. These have largely been replaced
by artificial neural networks (ANNs), which are consid-
ered as more powerful alternatives when it comes to
finding correlations in complex real-world data. The
term ANN was used as they are inspired by, and try to
resemble the human nervous system, and particularly
the human brain. The human brain is composed of
many interconnected neurons which transmit informa-
tion in the form of electrical impulses. Analogously,
ANNs are composed of layers of interconnected ‘neu-
rons’ which pass information to and from other
neurons.

The ‘depth’ of a neural network generally refers to
the number of hidden layers that are present in an
ANN, and in general increasing the number layers in
an ANN allows a greater degree of non-linear features
to be captured. There are many types of deep learning
architectures, each with different strengths and weak-
nesses. In addition, there are three main paradigms of
deep learning which are supervised learning algorithms,
which seek to find a relationship between input features
of training data to their known outputs; unsupervised
deep learning algorithms, which seek to find patterns in
data without knowing any result or outputs; and rein-
forcement learning, which is a goal-oriented algorithm
that seeks to learn the best possible action to maximise
its ‘rewards’ for a particular situation, and thus learns
from its experience.

The two types of supervised deep learning models
utilised in the present article are an FFNN, and an
LSTM model which is a type of recurrent neural net-
work (RNN).
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Non-linear activation functions. The activation functions
utilised in this article (including those used in the
LSTM) are shown in Figure 2 and are the rectified lin-
ear unit (relu) function which is given by

A(z)=max(0, z) ð9Þ

and is most often used for regression problems, has an
output range of [0 ‘], and is shown in Figure 2(a); the
logistic (sigmoid) function has the output range of [0 1],
is shown in Figure 2(b) and can be expressed as

A(z)=
1

1+ exp (� z)
ð10Þ

The logistic function is more often used in classifica-
tion problems; the final activation function used in this
article is tanh which also tends to be used in classifica-
tion problems, has an output in the range [� 1 1], is
shown in Figure 2(c) and can be written as

A(z)=
exp (z)� exp (� z)

exp (z)+ exp (� z)
ð11Þ

FFNN. FFNNs consist of an input layer, and output
layer, and at least one hidden layer. FFNN is a super-
vised learning technique that utilises non-linear activa-
tion functions at each layer (with the exception of the
input layer), in order to capture non-linear relationships
in the data. FFNNs are referred to as vanilla neural net-
works when they have only one hidden layer. A dia-
gram of a FFNN network is shown in Figure 3, where
each arrow shown in the diagram represents a linear
mapping, followed by a non-linear activation function
as indicated in Figure 4. Training an FFNN typically
involves four main steps (steps are expanded upon in
the next three paragraphs): (1) forward propagation
which computes the predicted output value from an ini-
tial estimation of weights and biases. The direction of
computation is from the input layer through to the out-
put layer (hence it travels forward); (2) computing the
cost function (error) of the predicted output to the
expected output; (3) backward propagation which

computes the derivatives of the cost function
with respect to the weights and biases. The direction of
computation is from the output layer through towards
the input layer (hence it travels backward); (4) finally,
the derivatives that were calculated from backward
propagation are used to update the bias and weight
values.

(c)(a) (b)

Figure 2. Comparison of the most common non-linear activation functions for FFNN networks: (a) relu activation function; (b)
logistic (sigmoid) activation function; and (c) tanh activation function.

Figure 3. Example of a FFNN with an input layer of three
features, two hidden layers of five and four neurons,
respectively, and an output layer with a single neuron. Bias terms
are neglected in this diagram to reduce complexity.

Figure 4. Example of an input and output of a single neuron
during forward propagation, where Ai�1 is a matrix of all outputs
aj from the previous layer.

Carson et al. 1341



FFNN training. The FFNN training process begins with
the initialisation stage which includes randomising the
weights and biases, and giving the algorithm the train-
ing set of input features. The next step is forward pro-
pagation which involves a linear mapping for outputs
from neurons in the previous layer to neurons in the
next layer as

zi, j =wi, kAk, j + bi ð12Þ

where A is a matrix containing all values from the neu-
rons in the previous layer, i=1 : nl where nl is the
number of neurons in the next layer, j=1 : n where n
is the number of training examples, and k=1 : m
where m is the number of features in the previous layer.
The linear mapping is then followed by a non-linear
activation function A(z) as shown in Figure 4. In an
FFNN, the use of non-linear activation functions
allows the network to capture more complex relation-
ships in the data, in fact FFNNs are regarded as uni-
versal function approximators as, in theory, they can
represent every possible computable function, although
the number of neurons and layers required to do this
are generally not known. The output of these activation
functions is then used as the input for the next layer in
the neural network. This essentially means that every
additional hidden layer folds additional non-linearities
into the prediction.

The general initialisation and forward propagation
algorithm for the FFNN utilised in the present work is
as follows:

1. define input features and select the training set,
2. initialise weights and biases for each layer,
3. linear mapping from input features to hidden

layer 1,
4. non-linear activation function (relu),
5. linear mapping from hidden layer 1 to hidden

layer 2,
6. non-linear activation function (tanh),
7. linear mapping from hidden layer 2 to hidden

layer 3,
8. non-linear activation function (relu),
9. linear mapping from hidden layer 3 to the output

layer,
10. non-linear activation function (relu) for FFR

prediction.

After the forward propagation is complete, a cost
function is used to calculate the error in the prediction
compared to the actual values. The most common type
of cost function for regression problems is the mean
square error

Costmse =
1

n

Xn
j=1

f̂fr� ffr
� �2

ð13Þ

where f̂fr is the FFR predicted by the FFNN algorithm
and ffr is the real FFR value (physics-based model).

The next step is to perform backward propagation,
the first part requires the calculation of the derivative
of the cost function with respect to the predicted values
f̂fr. Differentiation and the chain rule is then used to
find the derivatives of the cost function with respect to
all weight and bias terms for each layer of the network.
For example, the derivative of the cost function with
respect to a weight in the last hidden layer can be calcu-
lated as

∂Cost

∂w
=

∂Cost

∂A

∂A

∂z

∂z

∂w
ð14Þ

The general implementation of the backward propaga-
tion algorithm for the FFNN is as follows:

1. calculate the derivatives of the cost function w.r.t.
the weights and biases for the output layer,

2. calculate the derivatives of the cost function w.r.t.
the weights and biases for hidden layer 3,

3. calculate the derivatives of the cost function w.r.t.
the weights and biases for hidden layer 2,

4. calculate the derivatives of the cost function w.r.t.
the weights and biases for hidden layer 1.

The weights and biases can then be updated for all
layers via an optimisation algorithm such as gradient
descent or ADAMs optimisation. For the FFNN
model, the ADAMs optimisation23 was used to find a
local minima.

In order to predict FFR values from new input fea-
tures, forward propagation can be performed with the
final converged weights and biases.

FFNN model description. The FFNN model implemented
in the present article uses an input layer of six features
that includes the area at the start and end of the vessel,
the minimum area in a vessel, the mean area of a vessel,
the estimated flow rate in the vessel, and the length of
the vessel. There are three hidden layers, the first hid-
den layer contains 64 neurons and uses the relu func-
tion, the second hidden layer contains 32 neurons and
uses the tanh function, and the third hidden layer also
uses 32 neurons but uses the relu function; the output
layer gives a single FFR output value for the end of the
vessel and uses the relu function. The architecture was
chosen from iteratively trialling different combinations
of the number of neurons in a layer, the number of
layers, and the type of activation function used, all
using grid searching. It is known that for many prob-
lems the relu function increases the speed of conver-
gence; however, it was observed that model training
performed better with at least one layer of the tanh
function. The model did not require any additional
techniques to prevent over-fitting to the data as the
training and test accuracy were both close to 99%. The
ADAMs optimisation algorithm is used to update the
model weights and biases. The learning rate used was
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a=1310�4 for the first 1000 iterations of ADAMs
optimiser, and then the learning rate was reduced to
a=1310�6. The parameters of the ADAMs optimiser
were the commonly used b1 =0:9, b2 =0:999, and
e=13108.

LSTM. In the medical arena, there are many diagnostic
and monitoring systems that take time dependant mea-
surements and can be viewed as sequence data. RNNs
are particularly convenient for these problems as they
can exhibit dynamic temporal behaviour and can have
sequence data as a model input and as an output. An
RNN cell contains a closed-loop which allows the out-
put of the current step to be influenced by the output of
the previous step. In theory, RNNs are able to use pre-
vious values in the sequence to aid in predicting a future
value (time dependencies) and they tend to perform
quite well when the distance between a point and a
dependent value is quite small; however, in practice,
they often struggle with longer-term dependencies.25,26

This shortcoming was resolved with the development of
the LSTM algorithm.27 LSTMs have a different struc-
ture for a module, which instead of having a single layer
that contains a loop, the module now contains four
structured layers with a loop, although several LSTM
variations exist. Fundamental to the structure of an
LSTM model is the idea of gates, which includes an
input gate, a forget gate, and an output gate. An impor-
tant characteristic of LSTM is in its ability to add or
remove information from the sequential inputs given to
it, which allows it to retain useful information and
remove inessential parts automatically. Each LSTM
‘cell’ contains two states in parallel, an internal cell state
Ci that is not seen, and an output cell state Outi which
is the output value seen. There are different types of
LSTM architectures, thus the one described here is the
version implemented in the present work. The general
forward pass of an LSTM module is shown in Figure 5
and is as follows:

1. initialise weights, biases, cell states, and output
states,

2. forget gate has inputs Outn�1 and Inn, and utilises a
hard sigmoid function (output of sigmoidh is either
0 or 1)

Fn =sigmoidh(Wf,O �Outn�1 +Wf, I � Inn�1 + bf) ð15Þ

3. input gate and cell state update

In =sigmoid(Wi,O �Outn�1 +Wi, I � Inn�1 + bi)

Ĉn =tanh(Wu,O �Outn�1 +Wu, I � Inn�1 + bu)

Cn =Fn � Cn�1 + In � Ĉn

ð16Þ

4. output gate and output vector

On =sigmoid(Wo,O �Outn�1 +Wo, I � Inn�1 + bo)

Tn =tanh(Cn)

Outn =On � Tn

ð17Þ

The output state and cell state at step n are then
inputs to step n� 1. For a more exhaustive explanation
of the LSTM, the reader is referred to Hochreiter and
Schmidhuber.27

In this article, the stacked LSTM model is made up
of five LSTM layers all with 32 modules, followed by
five fully connected (dense) layers with 32, 32, 16, 8,
and 1 neurons, respectively. The learning rate used was
a=1310�4 and ADAMs optimiser was used with
b1 =0:9, b2 =0:999, and e=13108. A dropout rate
of 0.4 was utilised in the dense layers to prevent the
model from over-fitting the data. As with the FFNN,
the LSTM model used grid searching when deciding
upon the type of architecture, and the hyper-parameters
used. The input features for the LSTM model is the
entire vessel area profile with a length step size of
0:01 cm between area positions. As coronary vessel
lengths will vary, the input vector that describes the ves-
sel area profile would also vary in size. Thus, in order
to train the LSTM, which requires the model input to
be of the same length, zero-padding was applied at the
end of the input vector for model training.

Computational mechanics

One of the main limitations that can hinder ML and
deep learning model development is the ability to col-
lect an adequate amount of real-world data for training
the model. This is particularly the case in biomedical
engineering where there are many issues that impact
the ability to collect real patient data, such as the num-
ber of patients that have a particular health problem,
the type of data that is collected in the medical clinic
may not be exactly what is needed to correctly model
the problem, some data may be missing (some patients
may not have pressures recorded while others do), andFigure 5. Overview of an LSTM module.
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the quality of the data itself is affected by the accuracy
of the measurement device or the quality of the imaging
data. Thus, in the present article, we utilise a 1D hae-
modynamic model that has been previously validated
against invasive FFR measurements8,15 in order to gen-
erate virtual FFR patients. These virtual patients are
then used to train the three AI models.

The 1D model of blood flow utilised in the present
article is described in Carson and colleagues15,28 and
contains two tiers: (1) the closed-loop model that is
described in Carson and colleagues28,29 is used to gen-
erate the flow rate waveforms for the inlet of the left
coronary and right coronary arteries; (2) an open-loop
coronary network (the coronary network in Mynard
and colleagues24,30) is then used, where the vessel length
and areas are adapted at random to produce similar
vessel area variations to what is seen in real patient
data, in addition a stenosis is added to one of the ves-
sels in the network using a random blockage percent-
age, stenosis length, and stenosis location.

The 1D model of blood flow in a compliant vessel is
governed by the continuity equation

C
∂P

∂t
+

∂Q

∂x
=0 ð18Þ

where C=(∂A=∂P) is the vessel compliance, P is the
hydrostatic pressure, t is the time, Q is the volumetric
flow rate, and x is the axial coordinate; and the conser-
vation of linear momentum

r

A

∂Q

∂t
+

r

A

∂
Q2

A

� �
∂t

+
∂P

∂x
+

jmpQ

A2
=0 ð19Þ

where A is the area, j = � 22 is a viscous friction coef-
ficient that corresponds to a relatively blunt velocity
profile, m=0:04P is the blood viscosity, and r = 1.06
g/cm is the blood density. A visco-elastic constitutive
law is chosen for the vessel lumen area to blood pres-
sure relationship and consists of a power law model for
the elastic term and a Voigt model for the viscous term8

and has the form

P� P0 =
2rc20
b

A

A0

� �b=2

� 1

 !
+

G

A0

ffiffiffiffiffiffi
A0

p ∂A

∂t
ð20Þ

b=
2rc20

P0 � Pcollapse

where P0 =80 mmHg is the reference pressure,
Pcollapse =10 mmHg is a collapsing pressure, A0 is the
cross-sectional area at the reference pressure, and c0 is
the reference wave speed that is determined to be

c0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3r
k1 exp (k2r0)+ k3ð Þ

s
ð21Þ

where k1 =2:003107 g2=cm=s, k2 = � 22:53 cm�1,
k3 =8:653105 g2=cm=s, and r0 is the radius of the ves-
sel. The viscous wall coefficient can be expressed as

G=
100

2r0
+100 ð22Þ

To be consistent with the ML models, conservation
of static pressure is assumed at the junction of vessels.
The system of non-linear equations is solved using an
implicit sub-domain collocation scheme.31

Constructing an ML model of FFR on a coronary
network

In the present work, two separate model constructions
are proposed, respectively, using the pressure drop and
the FFR value. The MPR and FFNN are trained using
a single vessel model for the pressure drop (rather than
FFR value), and the RNN (long-short term memory)
model is trained on a single vessel model for the FFR
value. This is performed for the following two reasons:

� There are large variations in patient coronary net-
work geometry that includes different vessel sizes
(lengths and areas), different vessel connectivities,
and the inclusion or exclusion of certain vessels.
The MPR and FFNNmodels only use six input fea-
tures; thus, all variations in patient geometry need
to be covered by these six features. Through tests
on the 1D model,15 the pressure drop across the ste-
nosis is invariant to the aortic pressure, while the
FFR value intimately depends on the aortic pres-
sure. This means that the pressure drop is more reli-
able and easier to utilise for training these models,
as the number of input features is low.

� the LSTM model is ideal for sequences and thus it
is a natural choice for a network in which the solu-
tion in the next vessel will depend on the solution of
the previous vessel. However, as all input sequences
(vectors) must have the same length, post sequence
zero-padding is performed for the area profile.

In order to describe the construction of the FFR
solution in a network for the MPR and FFNN models,
we first make the assumption (validated through
numerical tests) that the pressure drop in a vessel is not
influenced by the hydrostatic pressure at the start of
the vessel. Second, we assume continuity of static pres-
sure at vessel junctions (although an ML model could
also be used to estimate the change in pressure between
vessels). These two assumptions allow the use of a sim-
ple reconstruction technique to determine the FFR

1344 Proc IMechE Part H: J Engineering in Medicine 234(11)



value from the aorta to the location of FFR measure-
ments downstream of a stenosis. Thus, the MPR and
FFNN models estimate the pressure drop over each
vessel in a network which is reconstructed in the fol-
lowing way: consider a bifurcation of the LCA, left
anterior descending (LAD) artery, and left circumflex
(LCX) artery as shown in Figure 6.

There are six pressure ‘nodes’ representing the pres-
sure at the start and end of the three vessels. For conti-
nuity of static pressure at vessel junctions, the pressure
at the end of the LCA will be equal to the pressure at
the start of both the LAD and LCX vessels. Thus, the
FFR value at the end of the LAD and LCX can be
reconstructed from the pressure drops (DP) of each of
the three vessels (provided the mean aortic pressure is
known, which can be measured and estimated non-
invasively using the brachial artery cuff pressure) in the
following way

DPLCA =P1 � P2, DPLAD=P3 � P4

DPLCX =P5 � P6, P2 =P3 =P5

FFRLAD=
P1 � DPLCA � DPLAD

P1

FFRLCX =
P1 � DPLCA � DPLCX

P1

ð23Þ

This technique can be extended in a straightforward
way to any size of vessel network, provided a good esti-
mation of the mean aortic pressure is known. In the
present work, we estimate that the mean aortic pressure
is 93:333 mmHg, as we do not have pressure measure-
ments from any patients. This is also the mean pressure
of the computational model.

Results

In order to test and compare the proposed methodolo-
gies, three test cases are constructed. The first test case

uses a virtual patient database of single vessels. In real-
ity, the FFR measurement does not take place at points
just either side of the stenosis, but instead the proximal
pressure measurement occurs in the aorta near where
the coronary arteries branch out from, while the mea-
surement point distal occurs after a stenosis; thus, the
full FFR ratio is affected by what happens over a vessel
network and not over a single vessel. Thus, we test our
reconstruction methodology on the second test case,
which consists of a network of virtual patients where
the FFR solution is determined by the 1D CFD model,
and in the third test we evaluate the methodology on a
small cohort of real patients where the FFR has been
measured invasively during coronary catheterisation.
In our results, the mean absolute error (MAE) that is
calculated as

MAE=

Pn
i=1

FFRpred, i � FFRtrue, i

�� ��
n

ð24Þ

where n is the number of cases, i is the current sample
item, FFRpred is the model predictions, and FFRtrue are
the true values that are either computational model, or
invasive FFR value, respectively. The standard devia-
tion is calculated as

STD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i=1

(FFRi � F�FR)
2

s
ð25Þ

where FFR is either from the ML predicted models,
CFD model, or invasive FFR measurements, respec-
tively, and F�FR is the mean of these samples. The bias
is calculated as

Bias=

Pn
i=1

FFRtrue, i � FFRpred, i

n
ð26Þ

Results from single vessel

The first test case uses a virtual patient database of sin-
gle vessels using the 1D blood flow model where the
virtual patients were created by randomising the vessel
area profile, stenosis location, stenosis length, stenosis
severity, and the mean inflow rate. A total of 10,000
single vessel ‘virtual patients’ were generated with 70%
used for model training and 30% used for testing.
Figure 7 shows the results of the test set for all pro-
posed methodologies, and Table 1 shows the overall
performance of each methodology. The diagnostic
accuracy is consistent between all of the models where
they all achieve just under 99% accuracy. The sensitiv-
ity and specificity are closer in value for the MPR. For
the FFNN model, the specificity is higher than the sen-
sitivity, while for the LSTM model this is exacerbated
further with the sensitivity 95.76% while the specificity

Figure 6. Three-vessel configuration consisting of an LCA,
LAD, and LCX. For the MPR and FFNN models, the pressure
drop is calculated across each vessel separately and then the
FFR values are reconstructed afterwards.
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is 100%. All methodologies show a very high linear
correlation value and p-value of 0. Although the results
are very consistent between the three models, the
FFNN performs the best on this test case as it has the
equal highest diagnostic accuracy with the lowest MAE
when compared to the 1D physics-based model. The
standard deviation of the test set used in this example
was 0:1365, which is quite consistent with the standard
deviations observed of the predictive models from
Table 1.

Multi-vessel FFR

The second test case utilises a virtual patient database
of LCA vessel networks. The left side of the coronary
network proposed by Mynard and Smolich24 is used as
a basis, while the area profiles, vessel lengths, stenosis
location, length, and severity, and flow rate distribution
are varied randomly. A cohort of 10,000 virtual patient

coronary artery networks were generated, each network
contained nine vessels, with 70% used for model train-
ing and 30% used for testing for all ML models. As
shown in Table 2 and Figure 8, the FFNN model per-
forms the best with a diagnostic accuracy of over 99%
and also had the lowest mean absolute difference and
highest linear correlation value. The LSTM, which is
the most complex model implemented in this work, had
the lowest diagnostic accuracy; however, it still had a
lower mean absolute difference from the 1D physics-
based model than the MPR model. The standard devia-
tion of the underlying data in synthetic multi-vessel case
was 0:1408, which is consistent with the values seen for
the FFNN and LSTM in Table 2.

Comparison with invasive FFR

The final test case compares the proposed methodolo-
gies and the 1D physics-based model to clinical invasive

Table 1. Overview of the test set for each machine learning model compared to the 1D physics-based model on a single vessel
model.

Method Diagnostic accuracy (%) Sensitivity (%) Specificity (%) p-value r MAE STD Bias

MPR 98.71 98.06 98.95 0 0.9984 0.0048 0.1360 0.0001
FFNN 98.88 97.57 99.36 0 0.9986 0.0042 0.1361 0.0000
LSTM 98.88 95.76 100.00 0 0.9993 0.0055 0.1330 20.0038

MPR: multivariate polynomial regression; FFNN: feed-forward neural network; LSTM: long short-term memory.

Diagnostic measures include the percentages of the diagnostic accuracy, sensitivity, and specificity; and the linear correlation r, p-value, the mean

absolute error (MAE), standard deviation (STD), and the bias (4 dp).

(a) (b) (c)

Figure 7. Comparison of machine learning/deep learning methods against the CFD model results on a single vessel: (a) MPR results
on test set; (b) FFNN results on test set; and (c) LSTM results on test set.

Table 2. Comparison of the MPR, FFNN, LSTM models with the 1D physics-based model on a nine-vessel network.

Method Diagnostic accuracy (%) Sensitivity (%) Specificity (%) p-value r MAE STD Bias

MPR 97.57 96.86 97.76 0 0.2430 0.0312 0.5406 0.0057
FFNN 99.08 97.92 99.39 0 0.9959 0.0050 0.1402 0.0000
LSTM 96.48 92.61 97.52 0 0.9793 0.0213 0.1456 0.0072

MPR: multivariate polynomial regression; FFNN: feed-forward neural network; LSTM: long short-term memory.

Diagnostic measures include the percentages of the diagnostic accuracy, sensitivity, and specificity; and the linear correlation r, p-value, the mean

absolute error (MAE), standard deviation (STD), and bias (4 dp).
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FFR measurements that were performed under coron-
ary angiography for a cohort of 25 patients.15 The
results are shown in Figure 9. It is important to high-
light that although 25 FFR values are compared, only
23 cases had the exact FFR value from the clinic. For
two of the cases, the FFR was only recorded as positive
(FFR \ 0.8) or negative (FFR ø 0.8), respectively.
These two cases are shown in Figure 9 as FFR=0 for
the positive case, and FFR=1 for the negative case to
distinguish these two cases from those that have the
FFR values recorded. The MPR, FFNN, and 1D
physics-based methods have the same diagnostic perfor-
mance, sensitivity, and specificity as shown in Table 3.
All 25 cases were used to determine the diagnostic accu-
racy, sensitivity, and specificity, but only the 23 cases
that had the exact clinical FFR recorded were used in

the calculation of the remaining performance indices.
However, the 1D physics-based model has the lowest
MAE, while the MPR which is the least complex model
implemented in this work has the largest MAE. The
most complex AI model implemented, the LSTM,
shows the lowest diagnostic accuracy as it has the low-
est sensitivity and tends to overestimate the pressure
drop, thus leading to predict a positive FFR value

(a) (b) (c)

Figure 8. Comparison of machine learning/deep learning methods against the CFD model results on coronary artery vessel
networks: (a). MPR results on test set; (b) FFNN results on test set; and (c) LSTM results on test set.

Table 3. Comparison of the MPR, FFNN, LSTM, and 1D physics-based model with invasive clinical measurements in the patient-
specific networks.

Method Diagnostic accuracy (%) Sensitivity (%) Specificity (%) p-value r MAE STD Bias

MPR 72.00 90.00 60.00 5:4310�3 0.5605 0.1363 0.1836 0.1026
FFNN 72.00 90.00 60.00 3:7310�6 0.8048 0.0855 0.1165 0.0623
LSTM 64.00 100.00 40.00 3:8310�2 0.4349 0.1132 0.1212 0.1020
CFD 72.00 90.00 60.00 2:5310�4 0.6929 0.0677 0.1079 0.0559

MPR: multivariate polynomial regression; FFNN: feed-forward neural network; LSTM: long short-term memory; CFD: computational fluid dynamics.

Diagnostic measures include the percentages of the diagnostic accuracy, sensitivity, and specificity; and the linear correlation r, p-value, the mean

absolute error (MAE), standard deviation (STD), and bias.

Table 4. Comparison of the MPR, FFNN, LSTM, with the 1D
physics-based model.

Method MAE STD Bias

MPR 0.0863 0.0974 0.466
FFNN 0.0341 0.0484 0.0063
LSTM 0.0596 0.0640 0.4600

MPR: multivariate polynomial regression; FFNN: feed-forward neural

network; LSTM: long short-term memory.

The measures investigated are the mean absolute error (MAE), standard

deviation (STD), and bias.

Figure 9. Comparison of the 1D physics-based model and the
three machine learning/deep learning methods against the
invasive clinical measurements on the coronary artery vessel
network of 25 patients.
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(FFR \ 0.8) for cases where the invasive FFR is just
above 0.8. Table 4 compares the MAE, standard devia-
tion, and bias of the three ML models with that of the
1D physics-based model. The FFNN model consis-
tently gave solutions closer to the physics-based model
and had a smaller bias than the other two models. The
LSTM performed significantly better than the MPR;
however, the bias values were similar. The standard
deviation of the invasive FFR measurements was
0:0940.

Discussion

For the single vessel case in Figure 7, the LSTM showed
the least spread of FFR prediction and highest linear
correlation, although there is no significant difference
between the diagnostic performance of the methods
employed. Generally, the LSTM model showed bias
towards the specificity implying that it is biased towards
a positive FFR prediction (FFR . 0.8). Interestingly,
the LSTM method gave the largest MAE which is
mainly due to the bias as discussed above. All three of
the ML-based methods were shown to give respectable
FFR predictions when compared to the 1D physics-
based model on single vessels, although the FFNN was
shown to have the lowest MAE. However, in the clinic,
the FFR measurement takes place between the aortic
pressure to a point distal to a stenosis, and therefore it
is very rare for only a single vessel to be considered.

In the multi-vessel case in Figure 8, there is a more
noticeable difference in the quality of the results
between the methods. This case is more challenging
than the single vessel case as there is significantly more
variation in the flow rates, vessel lengths, and area
profiles. The MPR struggles to account for this varia-
tion. The training set and test set come from the same
distribution of input features as required to create a
well-defined ML model. However, some of the test set
contained input feature variations that were not
observed in the training set and thus the models needed
to extrapolate the data to give predictions. As a result,
the MPR model has the largest MAE and by far the
lowest linear correlation value. MPR gives several erro-
neous predictions (not seen in Figure 9 as these values
are extreme), for example, the maximum FFR pre-
dicted by the MPR is FFR=1500, and the lowest
value is FFR= � 500, which are both physiologically
impossible. This issue is a well-known problem in poly-
nomial fitting32; however, other deep learning models
can also give erroneous solutions, but in this case the
FFNN and LSTM generally handle these extrapolated
cases without difficulty. The use of regularisation for
the MPR case was attempted, but this did not lead to
an increase in performance on these extrapolated val-
ues. This is potentially an issue for AI models, as they
can give non-physical predictions. However, there has
been work to address such issues by adding constraints
to the AI model,33 which could be used to impose

conservation of mass and/or momentum. The FFNN
model achieves a very high level of diagnostic accuracy
and by far the lowest MAE. It is not too surprising that
the FFNN works well as it is a universal approximator,
so it can be used to model any continuous function.34

When comparing the ML models and the 1D
physics-based model from which they were originally
trained with the invasive clinical measurements, the
FFNN again shows the best predictive power of the AI
models. Again, the MPR has the highest MAE; how-
ever, the diagnostic accuracy, sensitivity, and specificity
are the same for the FFNN, MPR, and 1D model. The
LSTM performs worse than the other methods in terms
of diagnostic accuracy, and is generally biased to pre-
dict a positive FFR. This may be due to the LSTM
using zero-padding, which although required, can influ-
ence the accuracy of the model,35 and there is more net-
work variation in the patient data compared with the
training cases (patient cases range from 3 vessel net-
works to 12 vessels in the network). The LSTM model
is the most complex of the two deep learning
approaches and may have been expected to outperform
the FFNN model. However, the input for the LSTM
model is the entire area profile of each vessel in the cor-
onary network, while the FFNN only considers six
input features as it is not considered effective at han-
dling sequence data. This essentially means that the
LSTM had to learn more complex relationships. In
addition, gives a more informative output prediction
for other regions in the coronary vessel as the output of
the LSTM is the FFR values across the entire length of
the network, while the FFNN model only gives a single
FFR value at the end of a vessel.

It is observed that the standard deviation of the syn-
thetic data is significantly higher than that in the real
patient data. Due to the small patient cohort in this
work, and that the majority of the cohort had an FFR
measurement in the range 0.75–0.9, the standard devia-
tion of the real patient cohort was relatively small. In
order to successfully train an ML model that can gener-
alise to predict FFR, it was deemed necessary to have a
greater spread, and thus larger standard deviation, in
the synthetic patient cases. This lowers the likelihood
of over-fitting the ML models, and can help generalise
it for any future patient cases tested that are outside
the range observed in the current real patient cohort
utilised in this study.

Although ML models can effectively be used to
replace aspects of physics-based models, there are sev-
eral aspects that need to be addressed before AI can be
used in medicine for direct diagnostic and treatment
decision-making. There have been several AI-based
models for FFR that have been proposed, ranging
from replacing the physics-based models,12 predicting
FFR from the segmented vessels,36 to making the pre-
diction directly via the CT scans.13,14 However, utilisa-
tion of these AI predictions in the clinic raises ethical
and validity issues, which still need to be appropriately
addressed.37 Another issue involved in non-invasive
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FFR is the extraction of the coronary geometry from
the CT data. This is a particular stumbling block for
both physics-based models and ML techniques.
However, deep learning techniques and computer
vision can be effective at identifying objects in images.
It is not beyond the power of a deep learning algorithm
to be used to extract the required coronary vessel fea-
tures directly from the CT images. Although this would
also require a significant number of CT images to train
any model.

Although AI models could be utilised to replace the
well-established physics-based models in areas such as
medical research, there is an argument that AI could
supplement existing physics-based modelling, and
rather be focused on replacing or improving the bottle-
necks in this area of medical research, which is segmen-
tation of the CT scans. This is in part due to the fact
that that the well-established reduced-order models are
already very fast, and have been shown to give good
accuracy; while segmentation is the slowest part of the
non-invasive FFR prediction process,15 and is often the
most variable aspect of the prediction process with sig-
nificant differences in segmented geometry observed
between experienced users,38 and even between differ-
ent CT scanners.39 AI could be used to reduce the
amount of segmentation required, or even replace it
entirely, which has been achieved for good quality CT
images.40

Limitations

In this work, only a small cohort of real patient mea-
surements was suitable for FFR prediction using ML.
This needs to be increased significantly in order to train
the ML models using real patient data, rather than on
a validated 1D physics-based model that is used as a
surrogate.

Conclusion

In this study, three AI models of varying degrees of
complexity were compared to invasive FFR measure-
ments. The AI models were initially trained using a 1D
physics-based model on a virtual patient database. The
AI models, in order of least complex to most complex,
are the MPR, the FFNN, and the LSTM model. The
models were compared to single vessel, and multi-vessel
network cases from the virtual patient database, and
also on clinically invasive FFR measurements. The least
complex model, the MPR, struggled with the significant
variation of area profiles, lengths, and flow rate estima-
tions in the data, and produced some erroneous predic-
tions. The most complex model, the LSTM performed
well for the single vessel cases, but did not perform as
well for the multi-vessel network and patient cases. The
FFNN performed well for all cases.

Acknowledgements

The authors gratefully acknowledge the contribution of
Prof. Carl Roobottom and Dr Robin Alcock in supply-
ing the anonymised patient data from Derriford
Hospital and Peninsula Medical School, Plymouth
Hospitals NHS Trust, used in this work.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publi-
cation of this article.

Funding

The author(s) disclosed receipt of the following finan-
cial support for the research, authorship, and/or publi-
cation of this article: This work was supported by
Health Data Research UK (MR/S004076/1), which is
funded by the UK Medical Research Council,
Engineering and Physical Sciences Research Council,
Economic and Social Research Council, Department of
Health and Social Care (England), Chief Scientist
Office of the Scottish Government Health and Social
Care Directorates, Health and Social Care Research
and Development Division (Welsh Government),
Public Health Agency (Northern Ireland), British
Heart Foundation and the Wellcome Trust.

ORCID iD

Jason M Carson https://orcid.org/0000-0001-6634-
9123

References

1. World Health Organization. Cardiovascular diseases

(CVDs), 2017, https://www.who.int/en/news-room/fact-

sheets/detail/cardiovascular-diseases-(cvds)
2. Roth GA, Johnson C, Abajobir A, et al. Global,

regional, and national burden of cardiovascular diseases

for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017;

70(1): 1–25.
3. Pijls N, De Bruyne B, Peels K, et al. Measurement of

fractional flow reserve to assess the functional severity of

coronary-artery stenoses. N Engl J Med 1996; 334: 1703–

1708.
4. Sen S, Escaned J, Malik I, et al. Development and vali-

dation of a new Adenosine-Independent Index of stenosis

severity from coronary wave-intensity analysis: results of

the ADVISE (ADenosine Vasodilator Independent Ste-

nosis Evaluation) Study. J Am Coll Cardiol 2012; 59:

1392–1402.
5. Sen S, Asrress KN, Nijjer S, et al. Diagnostic classifica-

tion of the instantaneous wave-free ratio is equivalent to

fractional flow reserve and is not improved with adeno-

sine administration. J Am Coll Cardiol 2013; 61(13):

1409–1420.
6. Koo B, Erglis A, Doh J, et al. Diagnosis of ischemia-

causing coronary stenoses by noninvasive fractional flow

Carson et al. 1349

https://orcid.org/0000-0001-6634-9123
https://orcid.org/0000-0001-6634-9123
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)


reserve computed from coronary computed tomographic
angiograms: results from the prospective multicenter
DISCOVER-FLOW (Diagnosis of Ischemia-Causing
Stenoses Obtained Via Noninvasive Fractional Flow
Reserve) Study. J Am Coll Cardiol 2011; 58: 1989–1997.

7. Boileau E, Pant S, Roobottom C, et al. Estimating the
accuracy of a reduced-order model for the calculation of
fractional flow reserve (FFR). Int J Numer Method

Biomed Eng 2017; 34(1): e2908.
8. Carson JM, Pant S, Roobottom C, et al. Non-invasive

coronary CT angiography-derived fractional flow reserve:
a benchmark study comparing the diagnostic perfor-
mance of four different computational methodologies. Int
J Numer Method Biomed Eng 2019; 35(10): e3235.

9. Kourou K, Exarchos TP, Exarchos KP, et al. Machine
learning applications in cancer prognosis and prediction.
Comput Struct Biotechnol J 2015; 13: 8–17.

10. Contreras I and Vehi J. Artificial intelligence for diabetes
management and decision support: literature review. J

Med Internet Res 2018; 20(5): e10775.
11. Kickingereder P, Isensee F, Tursunova I, et al. Automated

quantitative tumour response assessment of MRI in neuro-
oncology with artificial neural networks: a multicentre, ret-
rospective study. Lancet Oncol 2019; 20(5): 728–740.

12. Itu L, Rapaka S, Passerini T, et al. A machine-learning
approach for computation of fractional flow reserve from
coronary computed tomography. J Appl Physiol 2016;
121: 42–52.

13. Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy
of a deep learning approach to calculate FFR from cor-
onary CT angiography. J Geriatr Cardiol 2019; 16: 42–48.

14. Kumamaru KK, Fujimoto S, Otsuka Y, et al. Diagnostic
accuracy of 3D deep-learning-based fully automated esti-
mation of patient-level minimum fractional flow reserve
from coronary computed tomography angiography. Eur
Heart J Cardiovasc Imaging 2019; 21: 437–445.

15. Carson J, Roobottom C, Alcock R, et al. Computational
instantaneous wave-free ratio (IFR) for patient-specific
coronary artery stenoses using 1D network models. Int J
Numer Method Biomed Eng 2019; 35: e3255.

16. McCulloch WS and Pitts W. A logical calculus of the
ideas immanent in nervous activity. Bull Math Biophys

1943; 5(4): 115–133.
17. Turing AM. Computing machinery and intelligence.

Mind 1950; LIX(236): 433–460.
18. Cauchy A. mthode gnrale pour la rsolution des systmes

d’quations simultanes. C R Hebd Seance Acad Sci 1847;
25: 536–538.

19. Kelley HJ. Gradient theory of optimal flight paths. ARS
J 1960; 30(10): 947–954.

20. Kelley HJ. Method of gradients. Math Sci Eng 1962; 5:

205–254.
21. Werbos PJ. Applications of advances in nonlinear sensi-

tivity analysis. In: Drenick RF and Kozin F (eds) System
modeling and optimization. Berlin: Springer, 1982,
pp.762–770.

22. Rumelhart DE, Hinton GE and Williams RJ. Learning
representations by back-propagating errors. Nature 1986;
323(6088): 533–536.

23. Kingma DP and Ba J. Adam: a method for stochastic
optimization. In: International conference on learning

representations (ICLR), San Diego, CA, 7–9 May 2015.
Ithaca, NY: arXiv.org.

24. Mynard JP and Smolich JJ. One-dimensional haemody-
namic modeling and wave dynamics in the entire adult
circulation. Ann Biomed Eng 2015; 43(6): 1443–1460.

25. Hochreiter S. Untersuchungen zu dynamischen neuronalen

Netzen. Master’s Thesis, Institut fur Informatik, Tech-
nische Universitat, Munchen, 1991.

26. Bengio Y, Simard P and Frasconi P. Learning long-term
dependencies with gradient descent is difficult. IEEE

Trans Neural Netw 1994; 5(2): 157–166.
27. Hochreiter S and Schmidhuber J. Long short-term mem-

ory. Neural Comput 1997; 9(8): 1735–1780.
28. Carson J. Development of a cardiovascular and lymphatic

network model during human pregnancy. PhD Thesis,
Swansea University, Swansea, 2018.

29. Carson J, Lewis M, Rassi D, et al. A data-driven model

to study utero-ovarian blood flow physiology during
pregnancy. Biomech Model Mechanobiol 2019; 18: 1155–
1176.

30. Mynard J, Penny D and Smolich J. Scalability and in vivo
validation of a multiscale numerical model of the left cor-
onary circulation. Am J Physiol Heart Circ Physiol 2014;
306: H517–H528.

31. Carson J and Loon RV. An implicit solver for 1D arterial
network models. Int J Numer Method Biomed Eng 2016;
33(7): e2837.

32. Royston P. Model selection for univariable fractional
polynomials. Stata J 2017; 17: 619–629.

33. Zhu Y, Zabaras N, Koutsourelakis PS, et al. Physics-con-
strained deep learning for high-dimensional surrogate
modeling and uncertainty quantification without labeled
data. J Comput Phys 2019; 394: 56–81.

34. Leshno M, Lin VY, Pinkus A, et al. Multilayer feedfor-
ward networks with a nonpolynomial activation function
can approximate any function. Neural Netw 1993; 6(6):
861–867.

35. Dwarampudi M and Reddy NVS. Effects of padding on
LSTMs and CNNs, 2019, https://arxiv.org/abs/
1903.07288

36. Cho H, Lee JG, Kang SJ, et al. Angiography-based
machine learning for predicting fractional flow reserve in
intermediate coronary artery lesions. J Am Heart Assoc

2019; 8(4): e011685.
37. Vayena E, Blasimme A and Cohen IG. Machine learning

in medicine: addressing ethical challenges. PLoS Med

2018; 15(11): e1002689.
38. De Knegt MC, Haugen M, Linde JJ, et al. Reproducibil-

ity of quantitative coronary computed tomography
angiography in asymptomatic individuals and patients
with acute chest pain. PLoS ONE 2018; 13(12): e0207980.

39. Symons R, Morris JZ, Wu CO, et al. Coronary CT angio-
graphy: variability of CT scanners and readers in mea-
surement of plaque volume. Radiology 2016; 281(3): 737–
748.

40. Huang W, Huang L, Lin Z, et al. Coronary artery seg-
mentation by deep learning neural networks on com-
puted tomographic coronary angiographic images. In:
2018 40th Annual international conference of the IEEE

engineering in medicine and biology society (EMBC),
Honolulu, HI, 18–21 July 2018. New York: IEEE.

1350 Proc IMechE Part H: J Engineering in Medicine 234(11)

https://arxiv.org/abs/1903.07288
https://arxiv.org/abs/1903.07288

