
biosensors

Communication

Smartphone and Paper-Based Fluorescence Reader:
A Do It Yourself Approach

Laura Alejandra Ireta-Muñoz and Eden Morales-Narváez *

Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica A. C., León 37150, Mexico;
laura.iret@gmail.com
* Correspondence: eden@cio.mx

Received: 18 May 2020; Accepted: 29 May 2020; Published: 2 June 2020
����������
�������

Abstract: Given their photoluminescent character, portable quantum dot readers are often
sophisticated and relatively expensive. In response, we engineered a “do it yourself” fluorescence
reader employing paper materials and a mid-range smartphone camera. Black paperboard facilitated
a versatile, lightweight and foldable case; whereas cellophane paper was observed to behave as a
simple, yet effective, optical bandpass filter leading to an advantageous device for the quantitative
interrogation of quantum dot nanocrystals concentrations (from 2.5 to 20 nM), which are suitable for
optical point-of-care biosensing. The streptavidin-coated nanocrystals employed are commercially
available and the developed reader was benchmarked with a standard portable quantum dot reader,
thereby demonstrating advantages in terms of cost and linear analytical range.
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1. Introduction

Paper is a versatile material to work with; it is relatively cheap and easy to handle given its
lightweight and flexible character. In this regard, paper-based analytical devices are amenable to
simple and effective on-site testing in different applications, including diagnostics, environmental
monitoring and food analysis [1–5]. Moreover, paper-based analytical devices are also amenable to the
integration with portable technologies such as smartphones and drones [4,6].

Highly sensitive point-of-care biosensing can be critical to enable timely healthcare decisions [7–10].
Quantum dot (QD) nanocrystals have been proven advantageous in these approaches due to
their highly efficient fluorescence, size-tunable Gaussian emission spectrum, excellent stability
against photobleaching, large Stokes shift and low background signal [11–13]. However, given their
photoluminescent character, portable QD readers are often sophisticated and relatively expensive;
for example, they may require filters and/or lenses [14,15], or involve high-range mobile phones
obviating the need for external optical filters [16]. Hence, generally, QD readers are not particularly
accessible in relatively low-resource settings. In response, employing paper materials and a mid-range
smartphone camera, we engineered a “do it yourself” QD reader.

2. Materials and Methods

Black matboard, cellophane paper, and electronic components were purchased in the local
market (León, Guanajuato, Mexico). The laminated cards, nitrocellulose membrane, sample and
absorbent pads for the production of the lateral flow strips (LFS) were purchased from Millipore
(Billerica, MA, USA, https://www.merckmillipore.com). Streptavidin−quantum dot 655 (CdSe@ZnS)
was from Life Technologies (Carlsbad, CA, USA, https://www.thermofisher.com). LFS were spotted
with 2 µL of QDs at different concentrations, from 2.5 nM to 20 nM. After the spotting process, the LFS
were dried at room temperature overnight to be then analyzed. A USB4000 UV–Vis (ultraviolet–visible)
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spectrometer (Ocean Optics, Inc., Largo, FL, USA, https://www.oceaninsight.com) was utilized to
acquire the light-emitting diode (LED) emission spectrum. A Cytation 5 multimodal spectrometer
(BioTek Instruments, Inc., Winooski, VT, USA, https://www.biotek.com) was employed to record the
emission spectra of the QDs and nitrocellulose autofluorescence, as well as the absorbance spectra of
the paper-based filters. Limit of detection (LOD) was estimated by interpolating the average of the
intensity value of the blank sample plus 3 times its standard deviation within the respective calibration
plot. Limit of quantification (LOQ) was estimated by interpolating the average of the intensity value of
the blank sample plus 10 times its standard deviation within the respective calibration plot.

Safety. In order to avoid damage of the reader in long-term use due to possible LED overheating,
it is recommended to use the reader less than 20 min per analysis. If the analysis requires more
time, the device is recommended to be turned off for 5 min and the reader can be then utilized
again. No heating effect was spotted on the analyzed sample during fluorescence interrogation.
Moreover, all the internal edges of the case should be cautiously sealed (for instance, using a black tape)
in order to avoid possible UV radiation exposure.

3. Results and Discussion

3.1. Design of the Paper-Based Quantum Dot (QD) Reader

Firstly, considering the dimensions, camera and universal serial bus (USB) specifications of the
employed smartphone [Moto G5, see Table S1 in the Supplementary Materials, (SM)], we designed a
foldable paper model of the reader case. Figures S1 and S2 (detailed in SI) detail the characteristics
of such a papercraft, which was implemented using black matboard. The color of this type of paper
was chosen to exhibit a low background when exposed to the excitation source, that is, a violet LED;
thus potentially minimizing undesired noise during the imaging process. The papercraft includes paper
based filters, an external filter holder, a tray to introduce the sample into the reader, an illumination
angle control, as well as a USB connector to take advantage of the smartphone battery to power the
excitation source via the on-the-go configuration, see Figure 1 and Figure S2 (detailed in SM).
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With this hardware in hand, we proceeded to study the performance of the proposed QD reader. 
The optical path and the involved components are illustrated in Figure 2A. Two 5 mm round LEDs 
with emission wavelength centered at 400 nm, full width-half maximum (FWHM) around 14 nm, 
were employed to excite the QDs emitting around 655 nm. Figure S3A (depicted in SM) details the 
electronic circuit employed to power these light sources. The employed streptavidin-coated QDs are 
commercially available (Life Technologies, Carlsbad, CA, USA) and exhibit a rice-like shape with an 
average size around 14 nm [17], Figure 2B displays the respective emission spectrum. As model 
samples, LFS were manufactured following previous procedures [18]. To endow the imaging 

Figure 1. Pictures of the paper-based quantum dot (QD) reader. (a) External filter holder. (b) Tray to
introduce the sample into the reader. (c) Illumination angle control. (d) Universal serial bus (USB)
connector to power the excitation source. (e) Moto G5. (f) Paper-based filters.

With this hardware in hand, we proceeded to study the performance of the proposed QD reader.
The optical path and the involved components are illustrated in Figure 2A. Two 5 mm round LEDs
with emission wavelength centered at 400 nm, full width-half maximum (FWHM) around 14 nm,
were employed to excite the QDs emitting around 655 nm. Figure S3A (depicted in SM) details the
electronic circuit employed to power these light sources. The employed streptavidin-coated QDs are
commercially available (Life Technologies, Carlsbad, CA, USA) and exhibit a rice-like shape with an
average size around 14 nm [17], Figure 2B displays the respective emission spectrum. As model samples,
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LFS were manufactured following previous procedures [18]. To endow the imaging acquisition process
with a relatively even illumination, we studied 3 illumination angles (180, 45 and 90◦) and measured
the coefficient of variation (CV) of the pixel intensities centered in the detection pads of the LFS,
see Figure S3B,C (detailed in SM). Figure S3C (included in SM) demonstrates that the illumination angle
at 45◦ resulted to show the lower CV, which accounted for 11.55%. Consequently, this illumination
angle was chosen as optimal among the available illumination angles.
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Figure 2. Optical components of the paper-based QD reader and their characterization via
ultraviolet–visible (UV–Vis) spectroscopy. (A) Schematic representation of the optical path. (B) UV-Vis
behavior of the optical components. (C) Images recorded with different filter configurations. The images
were acquired through the smartphone camera.

3.2. Ultraviolet–Visible (UV–Vis) Characterization of the Paper-Based Filters

We also characterized the absorbance of the proposed paper-based filters using UV–Vis
spectroscopy. Conveniently, the studied yellow cellophane exhibited an optical bandpass filter-like
behavior with a central wavelength at c.a. 435 nm and a FWHM around 103 nm [19], see Figure 2B.
Hence, this material was proposed as a paper-based excitation filter. The detection pad of the LFS is
made of nitrocellulose. Using the proposed yellow filter during the imaging process, these detection
pads were observed to display a strong green autofluorescence when excited with the employed
light source emitting at 400 nm; see the corresponding emission spectrum in Figure 2B and a picture
recorded under these conditions in Figure 2C. Hence, following color theory [19], we envisaged that
a paper-based emission filter might be convenient to remove such a green noise. In this context,
we explored the UV–Vis absorbance of a piece of red cellophane. This material also exhibited an optical
bandpass filter-like behavior with a central wavelength at c.a. 510 nm and a FWHM around 110
nm, see Figure 2B. Eventually, using the proposed filters, we managed to acquire an image of the
respective red emission of QDs spotted onto nitrocellulose at a relatively low concentration (2.5 nM),
see Figure 2C.

3.3. Analytical Behavior of the Resulting QD Reader

Upon the aforementioned optical characterization, LFS were drop-casted with 2 µL of several QD
concentrations (2.5, 5, 7.5, 10 and 20 nM) and we recorded the respective images using the paper-based
QD reader under different filter configurations (red filter, yellow filter, yellow + red filter), see Figure 3.
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It is worth mentioning that hydrophobic walls created within paper via wax printing can enhance the
variability of spots when drop-casted within wax-printed wells [20]. Although the pixel intensity of
the acquired images can be directly analyzed in the smartphone using IJ_Mobile [21], we preferred
to extract and handle these data by using MATLAB aiming at performing a controlled statistical
analysis. Briefly, to extract pixel intensities, an image binarization process was performed using Otsu’s
method [22], 0 values were considered background and 1 values were considered the QDs’ signal
to build a binary mask. This binary mask was used to define regions of interests and extract the
studied pixel intensities, Figure S4 (included in SM) shows an example of this process. By means of the
resulting pixel intensities, we performed the respective calibration plots, see Figure 3. The value of the
inverse of the slope of the resulting curves sheds light on the sensitivity of the respective configuration,
whereas the resulting Y-intercept value offers information on the baseline. Generally, images recorded
with the red filer configuration show a strong violet background, triggering a baseline accounting
for c.a. 186 pixel intensity units at the blank signal. The sensitivity of this configuration accounts
for 0.5 nM of QDs per pixel intensity units. As mentioned before, images captured with the yellow
filter configuration show a green background. However, the corresponding baseline accounts for c.a.
79 pixel intensity units and the respective sensitivity is around 0.19 nM of QDs per pixel intensity units.
As depicted in Figure 3C, the yellow + red filter configuration showed a relatively cleaner imaging
process. The resultant baseline was around 69 pixel intensity units and the corresponding sensitivity
accounted for 0.17 nM of QDs per pixel intensity units. Table 1 summarizes these analytical details.
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the standard deviation of two QD spots drop-casted onto lateral flow strips (LFS). The size of the spots
is c.a. 3 mm.

Prompted by these results, we performed a comparative study by analyzing the same
LFS using a commercially available equipment specially designed to measure QDs emitting at
655 nm onto LFS (ESEQuant LR3, QIAGEN, Hilden, Germany). Figure S5 (included in SM)
displays the profiles resulting from the photoluminescent intensity of the QD spots onto the LFS
analyzed by ESEQuant LR3. The average value of the profile corresponding to the analyzed
QD spot was chosen as the analytical parameter to build the corresponding calibration plot
(arbitrary units). However, the analyzed concentration range (2.5–20 nM) did not fit a linear response
with an acceptable coefficient of determination (R2), which accounted for c.a. 0.9127, see Figure S6A
(detailed in SM). Eventually, we sought a linear response within a QD concentration range from 2.5
to 10 nM, which offered an improved R2 (0.9772) and a sensitivity of 0.06 nM of QD per arbitrary
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unit, see Figure S6B (displayed in SI) and Table 1. Hence, in terms of the 1/slope value, ESEQuant
LR3 was observed to be 2.75 times more sensitive than the paper-based reader incorporating the
red + yellow filter configuration. In contrast, the paper-based reader offered a broader linear range in
the explored concentrations as detailed in Table 1. LODs and LOQs were also estimated. As observed
in Table 1, in terms of the LOD, ESEQuant LR3 was observed to be 3.02 times more sensitive than the
paper-based reader incorporating the yellow filter configuration. ESEQuant LR3 was also observed
to offer a LOQ 15 times lower than that of the paper-based reader incorporating the yellow filter
configuration. Table 1 also highlights that the reader resulted to be more sensitive with the red + yellow
filter configuration in terms of the 1/slope value, whereas the lowest LOD offered by the paper-based
reader was achieved with the yellow filter configuration. Hence, the resulting paper-based bandpass
filters were proven to be technically sound by evaluating these analytical parameters.

Table 1. Analytical performance of the studied QD readers.

Configuration Linear Model R2 1/slope LOD 1 (nM) LOQ 2 (nM) Linear Range (nM)

Red filter Y = 1.994*X + 185.6 0.9455 0.5014 11.856 42.201 2.5–20
Yellow filter Y = 5.206*X + 79.12 0.9834 0.1921 0.918 4.744 2.5–20

Red + yellow filter Y = 5.81*X + 69.06 0.9892 0.1721 2.773 7.778 2.5–20
ESEQuant Y = 15.98*X − 3.454 0.9772 0.06256 0.303 0.314 2.5–10

1 Limit of detection. 2 Limit of quantification.

Importantly, the proposed paper-based QD reader can be considered a low-cost device, it is
approximately 1877-fold cheaper than ESEQuant LR3 and does not require a high-range smartphone
camera. Furthermore, this paper-based device obviates the usage of expensive filters or lenses.
Table 2 highlights these competitive advantages.

Table 2. Photoluminescence readers for point-of-care applications.

Reported Price (USD) Filters/Lens Smartphone Reference

8450 Not specified – ESEQuant LR3
10 1 No High-range (iPhone SE or Nexus 5) [16]
5 2 Yes/Yes High-range (iPhone 5s) [23]

4.5 3 Yes/No Mid-range (Moto G5) This work
1 Smartphone not included. 2 Filters, lens and smartphone not included. 3 Paper-based filters included, smartphone
not included.

4. Conclusions

A cost-effective paper-based photoluminescent QD reader is reported. Black paperboard facilitated
a lightweight and foldable case. Given the versatility offered by this material, the case can be redesigned
easily to be compatible with other mobile phones. Moreover, cellophane paper was observed to behave
as a simple optical bandpass filter leading to an advantageous device for quantitative interrogation of
QD concentrations that are suitable for optical point-of-care biosensing [18]. Although the fabrication
of this device may require previous skills in electronics and engineering, other types of readings such
as optical density or chemiluminescence can be performed by properly adapting the design of the
proposed reader. This reader is also amenable to the analysis of different disposable sensors based on
fluorescence, including LFS, vertical flow, dip-stick and microfluidic paper-based analytical devices.

5. Patents

Patent application under preparation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6374/10/6/60/s1:
Figure S1. Foldable papercraft of the proposed QDs reader; Figure S2. A. Lateral view of the reader case. B. Top view
of the reader case; Figure S3. A. Scheme of the employed electronic circuit; Figure S4. Image processing and pixel
intensity estimation; Figure S5. Experimental evidence. Lateral flow strips with different QDs concentrations
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analyzed using ESEQuant LR3 (QIAGEN, Hilden, Germany); Figure S6. Calibration plots resulting from the
calculation of the area below the curves representing the QDs intensities measured by ESEQuant LR3 and Table S1.
Smartphone (Moto G5) specifications.
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