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Abstract
Purpose of Review  Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity 
and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug develop-
ment pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges 
remaining in their widespread adoption.
Recent Findings  Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of 
constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these 
constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic 
responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity.
Summary  Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug 
responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance 
the utility of such models for in vitro drug development.

Keywords  Cardiac tissue engineering · Pluripotent stem cells · Drug screening · Cardiotoxicity

Introduction

The current drug development pathway is exorbitantly 
expensive and time-consuming. It is estimated that between 
2009 and 2018, the median cost to bring a new drug to mar-
ket was $985.3 million, including capitalized research and 
development investment costs [1]. This figure includes the 
cost of failed trials, as it has been reported that the approval 
rate for drugs entering phase I trials is only 13.8% [2]. Even 
having reached later phases of clinical trials, it is unfor-
tunately common for drugs to fail due to lack of efficacy 
or unanticipated adverse effects, regardless of the promise 
shown in preclinical studies [3]. In a large part, this is due to 
limitations of animal models and in vitro preclinical models 
that limit our ability to accurately predict drug performance 
in human patients [4, 5]. Additionally, many pharmaceuti-
cal companies opt to embrace a fail early, fail fast strategy 
where the vast majority of drug candidates are eliminated 
early in the process to avoid costly late-stage failures, thus 
possibly missing potentially life-saving drugs [6]. In light of 
this, it is necessary that we re-evaluate the preclinical drug 
discovery and testing paradigm to make drug development 
more efficient and cost effective.
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The shortcomings of the canonical drug development 
process are perhaps most evident when considering car-
diac effects, as side effects such as cardiac toxicity and 
arrhythmogenicity are the most common reasons for late-
stage drug failure or drug withdrawal [7, 8]. To address this, 
regulatory agencies require specific cardiotoxicity screening; 
however, the methods employed lack the relevance to the 
human cardiovascular system needed to accurately predict 
cardiac effects. The more simple in vitro models rely on 
non-cardiac cell lines that express a recombinant human 
ether-á-go-go related gene (hERG) potassium channel, as 
this channel plays a major role in cardiac repolarization and 
hERG-blocking compounds frequently cause ventricular 
arrhythmias [9, 10]. While useful in some cases, these sim-
ple, in vitro models are unable to model the interactions of 
multiple ion channels and the compensatory mechanisms 
present in the native myocardium. Increasing in complexity, 
rodent models are frequently used due to their relative low 
costs and short experimental timelines. However, these mod-
els often produce irrelevant results due to distinct physiolog-
ical differences between human and rodent cardiovascular 
biology [5, 11]. While larger animal models can yield more 
relevant results, the costs and resources required for colony 
maintenance and ethical concerns are often prohibitive [12]. 
Thus, there exists a need to develop improved human in vitro 
cardiac models for drug screening and development.

The human heart is the ideal platform for drug testing; 
however, the limited availability and inadequate ex vivo 
viability of primary samples prevents their widespread 
use. Consequently, the development of human pluripotent 
stem cells (hPSCs, either embryonic stem cells, hESCs, or 
induced pluripotent stem cells, hiPSCs) and hPSC-derived 
cardiomyocytes (hPSC-CMs) holds great promise for 
advancing drug development platforms [13–16]. To date, 
hPSC-CMs have been shown to express key cardiomyocyte 
structural and signaling elements and faithfully recapitulate 
human cardiac biology, leading to their widespread use in 
studies demonstrating typical responses to drug compounds. 
However, hPSC-CMs are limited in their relative immatu-
rity as compared to adult cardiomyocytes, as hPSC-CMs 
have been shown to more closely resemble fetal cardiomyo-
cytes with regard to transcriptional activity, ultrastructure, 
and function, limiting their utility as a preclinical drug 
screening model [17–19]. Thus, several approaches have 
been employed to improve hPSC-CM maturity, including 
increased time in culture, topographical cues, biochemical 
stimuli, and the development of three-dimensional engi-
neered models [20].

Human engineered cardiac tissues can be broadly 
defined as multicellular aggregates made from hPSC-
CMs, often accompanied by other cell types, with or with-
out the presence of extracellular matrix protein scaffolds. 
Such engineered constructs more closely mimic the native 

myocardium by recapitulating key cell–cell and cell–matrix 
biology that has been shown to further advance hPSC-CM 
maturation and facilitate key measures of cardiac function 
such as force production and voltage propagation [21–25]. 
These tissue constructs come in many shapes and sizes rang-
ing from scaffold-free spheroids amenable to high-through-
put screening to larger engineered chambers capable of gen-
erating pressure–volume loops. In recognition of the promise 
of these cardiac constructs to improve our ability to model 
cardiomyopathy and drug responses in vitro, research groups 
have developed various platforms, and many have moved 
toward commercialization. This review describes the newest 
advances made in the development of engineered cardiac 
constructs as valid platforms for preclinical drug screening 
and the remaining challenges preventing widespread adop-
tion of these platforms.

Engineered Cardiac Platforms for Drug 
Screening

As a category, engineered cardiac tissues have come to 
include any cell culture platform facilitating multicellular, 
three-dimensional culture of synchronously contracting 
hPSC-CMs. As such, these platforms take many forms that 
vary widely in geometry and scale, the inclusion of non-
myocytes, and the presence of scaffold proteins. Broadly, 
those on the smaller scale such as spheroids and microtis-
sues more easily facilitate high-throughput cardiotoxicity 
screening while retaining some aspects of cardiac function, 
whereas larger platforms including cardiac sheets, strips, 
rings, and chambers are more suited to lower-throughput 
assessment of drug effect on cardiac function, as they more 
closely resemble native cardiac tissue and enable measure-
ment of voltage propagation and force generation (Fig. 1). In 
the following sections, we have categorized these platforms 
broadly by geometry as a means to discuss their advantages 
and limitations as platforms for drug testing and progress 
made toward drug screening applications. Details describing 
the various platforms and findings from recent drug screen-
ing studies are summarized in Table 1.

a.	 Spheroids
	   At the smallest end of the scale are cardiac sphe-

roids, also often referred to as cardiac organoids. Car-
diac spheroids are small hPSC-CM aggregates that are  
formed by hanging-drop [26] or self-assembly on low-
attachment substrates [27]. These platforms are gener-
ally scaffold-free, which allows for a dense network of 
cell–cell connections and removes any concern of drug 
absorption by scaffolding hydrogels or silicone support 
structures often used for larger platforms [28]. Spheroid  
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systems often include non-myocyte cell types such as 
endothelial, fibroblast, and mesenchymal cells, which 
has repeatedly been shown to enhance spheroid func-
tion [29–31]. Perhaps most attractively, the small  
scale of cardiac spheroids requires significantly lower 
resources in terms of cell number and culture space and 
is most easily amenable to automated generation and 
high-throughput analysis.

	   Cardiac spheroids have been used extensively to 
develop drug testing platforms. In an earlier study, it 
was shown that cardiac spheroids generated from hiPSC-
CMs were similarly able to model doxorubicin-mediated 
cardiotoxicity as compared to spheroids made from 
primary human cardiomyocytes [32]. Demonstrating 
their high-throughput capabilities, a study used cardiac 
spheroids to screen a panel of 29 compounds approved 
by regulatory agencies with or without known struc-
tural cardiotoxicity [33•]. It was demonstrated that this 
platform was able to detect changes in cellular viabil-
ity, endoplasmic reticulum integrity, and mitochondrial 
membrane potential. Beyond structural effects, cardiac 
spheroids have been used to stratify pro-arrhythmic 
toxicity of hERG channel blockers and environmental 
toxins [34].

	   Using cardiac spheroids, it is also possible to model 
disease states. To model cardiac fibrosis, spheroids gen-
erated from hESC-CMs and hESC-derived mesenchy-
mal stem cells were treated with transforming growth 
factor beta (TGF-β) [31]. It was shown that TGF-β 

triggered fibrotic features in the cardiac spheroids and 
that this response was worsened with the administra-
tion of known cardiotoxins. In a separate study, cardiac 
spheroids were used to model myocardial infarction 
by culturing in hypoxic conditions and treating with 
noradrenaline [35]. It was shown that hypoxic conditions 
worsened doxorubicin-mediated cardiotoxicity, while an 
antifibrotic compound could reduce ischemic spheroid 
stiffness and asynchronicity.

	   While the use of cardiac spheroids for drug screen-
ing is advantageous given their relative accessibility and 
high-throughput nature, these culture systems do not 
promote uniaxially aligned contractile machinery, and 
functional outputs are often limited to cell viability with 
some insight into contractility and arrhythmogenicity by 
measurement of spheroid deflection. However, it is pos-
sible for spheroids to serve as building blocks for higher 
order tissues, as was demonstrated with bioprinting of 
spheroids into larger cardiac rings [36]. Ultimately, 
higher-throughput spheroid systems may be best suited 
for earlier stages of drug compound testing.

b.	 Microtissues

	   To increase functional readout capacity while retain-
ing the high-throughput benefits of spheroid culture sys-
tems, many have developed what we here call microtis-
sues, where a similarly small number of cells, sometimes 
in a hydrogel scaffold, are self-assembled onto manufac-

Fig. 1   Different engineered cardiac tissue platforms organized by relative throughput and biological relevance with a description of their advan-
tages and limitations
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tured posts, such that they form geometries similar to 
the cardiac strips and rings presented in the following 
sections [37–41]. It was demonstrated that microtissues 
outperform age-matched two-dimensional hiPSC-CMs 
in terms of predictive accuracy in drug response [38]. 
Building on the high-throughput advantages of spheroid 
culture systems, these microtissue platforms provide 
uniaxial mechanical cues, generating improved cellular 
alignment and facilitate more rigorous measurement of 
contractile function by tracking the deflection of canti-
lever posts.

	   Possibly the most useful application of microtissues 
or other smaller cardiac platforms is as an intermediate 
screen between high-throughput two-dimensional in vitro 
experiments and animal studies. This paradigm was dem-
onstrated in a study screening for pro-proliferative com-
pounds using 96-well microtissues, where an initial pool 
of approximately 5,000 compounds were screened in two-
dimensional hiPSC-CMs for their ability to induce cellu-
lar proliferation [42•]. Of this initial pool, 105 compounds 
were identified and screened further for pro-proliferative 
effects using microtissues, which also allowed for the 
elimination of compounds causing negative functional 
effects. A smaller pool of the leading compounds were 
then further evaluated in microtissues that were further 
matured with fatty acid supplementation [40, 42•]. This 
study uniquely demonstrates a pathway by which to pur-
sue drug development with varying hierarchies of in vitro 
hPSC-CM models.

c.	 Sheets

	   Cardiac sheets consist of one or multiple layers of 
hPSC-CMs and are particularly useful for detecting 
arrhythmogenicity. Using fluorescent voltage or calcium- 
sensitive dyes or genetically encoded sensors, it is pos-
sible to model arrhythmic risk of drug compounds by  
visualizing conduction speeds and re-entry waves as was 
done in two-dimensional cell sheets [43]. This platform 
has the additional benefit of microgrooves providing ani-
sotropic cell patterning that more closely represents native  
myocardium. Other groups have developed methods of 
coating hPSC-CMs and other cell types with ECM and 
seeding them into cell sheets that are multiple layers thick 
[44, 45]. Using motion tracking, it was possible to meas-
ure the effects of several drug compounds on magnitude 
of contraction, contraction kinetics, and abnormal beat 
intervals [44]. However, shortcomings of cardiac sheets 
include the difficulty in obtaining direct measurement of 
force output and the need for additional interventions to 
facilitate sheet patterning and cellular alignment.

d.	 Tissue Strips

	   Cardiac strips are perhaps the most commonly thought 
of hEHT platform along with spheroids and are made 
from hPSC-CMs embedded in a hydrogel that is cast 
into a mold where it solidifies and subsequently com-
pacts and begins beating spontaneously [46]. Cardiac 
strips are cast uniaxially between two elastomeric posts 
[47] or wires (Biowire) [48, 49]. This platform enables 
higher-throughput measurement of contractile forces via 
tracking the deflection of elastomeric supports. As such, 
these models are particularly suited to drug screening, 
where easily measured force production and kinetics can 
provide insights into the inotropic and arrhythmogenic 
effects of test compounds.

	   To date, cardiac strips have been used to test a wide 
panel of compounds with and without known cardiac 
effects. A panel of eleven compounds was tested on car-
diac strips, demonstrating that these tissues were able 
to faithfully reproduce positive and negative inotropic 
effects when compared to human atrial trabeculae, but 
the relative immaturity of the hiPSC-CMs was evident 
due to limited observed beta-adrenergic effects [50]. 
The benefits of three-dimensional culture were further 
demonstrated in another study where an impressive 
panel of 28 drugs was tested on cardiac strips as well as 
2D hiPSC-CM monolayers, where it was demonstrated 
that the tissues yielded more accurate drug responses 
in terms of contractility and calcium transient response 
(85% accuracy for hiPSC-CM monolayers vs. 93% accu-
racy for tissue strips) [51]. Additionally, both of these 
studies demonstrate the potential for increased through-
put with tissue strip platforms despite their larger size, 
as not only were multiple drugs tested, but at multiple 
doses, enabling the derivation of EC50 values.

	   Chronic electrical stimulation of cardiac strips has 
been demonstrated to improve tissue maturity and 
promote positive force-frequency relationships, thus 
improving the accuracy of drug responses and the abil-
ity to model positive inotropy [52•]. Similar stimulation 
protocols have been used on the Biowire II platform, 
which was used to derive EC50 values and demonstrate 
canonical responses for several drug compounds [49]. 
This platform and others have been further developed to 
model specific atrial and ventricular responses to drugs 
in chamber-specific tissues [53, 54] and to explore anti-
fibrotic drugs in angiotensin II-mediated non-genetic 
cardiomyopathy [55]. Despite their increased size and 
required resources as compared to spheroids or microtis-
sues, strip hEHTs have been used to generate impressive 
datasets demonstrating relevant responses to many com-
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pounds at various doses in a single study. Paired with 
efforts to improve hEHT maturity, efforts to increase 
analysis throughput through optical [56, 57] or mag-
netic detection of post movement [58], will only further 
increase the utility of cardiac strip platforms.

e.	 Tissue Rings

	   Cardiac rings are similar to cardiac strips save for their 
shape, where cardiac rings are cast in circular molds 
before being transferred to isometric or elastomeric sup-
ports [59]. Given their larger surface area, cardiac rings 
are particularly suited to modeling voltage propagation 
as an indicator of arrhythmogenicity. Using genetically 
encoded voltage and calcium sensors, tissue rings have 
been shown to properly model drug-induced changes in 
contraction rate and conduction properties [60]. Addi-
tionally, by using patient-derived hiPSCs, authors were 
able to reproduce long QT syndrome and demonstrate 
drug-induced reentrant arrhythmias. This platform was 
further developed to model chamber-specific responses 
to a panel of drugs by using atrial or ventricular hiPSC-
CMs [61]. While tissue ring platforms are useful for 
modeling drug-induced changes in conduction proper-
ties and arrhythmogenicity, it would appear that they 
may be less popular than other platforms of similar size. 
This may be due to the requirement for more individual 
tissue handling, as measurement of contractile forces 
often requires the use of a force transducer, which ham-
pers throughput.

f.	 Chambers

	   At the opposite end of the spectrum from cardiac 
spheroids are cardiac chambers, which resemble a min-
iaturized ventricle [62, 63]. The geometry of this plat-
form most closely resembles a native ventricle, and engi-
neered cardiac chambers are the only platform capable 
of generating pressure, enabling measurement of clini-
cally relevant outputs including ejection fraction, cardiac 
output, and pressure–volume loops. Cardiac chambers 
have been shown to surpass lower-order 2D and 3D 
hPSC-CM culture systems in transcriptional maturity 
[63]. Given their advanced maturation and attainable 
performance metrics, chamber constructs are an appeal-
ing platform for drug screening and characterization.

	   One such platform (human ventricle-like cardiac orga-
noid chamber, hvCOC) is generated by casting hESC-
CMs in a hydrogel around a balloon catheter, which is 
removed after tissue compaction [63]. This initial study 
demonstrated altered pressure–volume loops and elec-
trophysiological performance after treatment with six 
compounds. In a follow-up study, hvCOCs and human 

ventricular-like cardiac tissue strips (hvCTS) were 
treated with a panel of 25 cardioactive compounds, 
where it was demonstrated that hvCOCs displayed 
enhanced positive inotropy as compared to hvCTSs 
[64•]. A similar platform has been developed using pull-
spun nanofibers that recapitulate the concentric, aniso-
tropic orientation of native myocardium [62]. While it 
was possible to measure pressure–volume loops, this 
model failed to replicate a positive inotropic response 
with isoproterenol treatment, indicating relative imma-
turity.

	   Compared to other cardiac tissue platforms, cardiac 
chambers are limited in terms of the increased resources 
and technical expertise required, ultimately resulting in a 
lower-throughput platform. However, with the addition 
of additional maturation techniques such as electrical 
stimulation and anisotropic cell sheet patterning [65], 
such models could effectively serve as in vitro replace-
ments for Langendorff whole-heart preparations.

Challenges Remaining

Despite wide-spread excitement surrounding engineered 
cardiac platforms for drug development and several com-
mercialization efforts underway, several hurdles remain. 
Compared to adult myocardium, or even neonatal myocar-
dium, engineered cardiac constructs present a very immature 
phenotype, potentially limiting their physiological relevance. 
In early stages after differentiation with no intervention, 
hPSC-CMs display only fetal transcriptomes [66], ion chan-
nel expression [67], metabolic function [68], and contractil-
ity [69]. While three-dimensional culture has been shown 
to promote advanced hPSC-CM maturation [21–25], it is 
evidently insufficient to routinely produce a robust cardiac 
phenotype that includes positive force-frequency responses 
and positive inotropic responses, thus potentially limiting 
their use as drug screening platforms. Several methods 
shown to advance hPSC-CM maturity in two-dimensional 
culture could potentially have the same effect in tissues, 
including fatty acid [70] or thyroid hormone supplementa-
tion [71] or microRNA treatment [72, 73]. Advanced engi-
neering approaches have been employed to further increase 
the maturity achieved in cardiac tissues, including electrical 
stimulation [52•], increasing afterload [74], and the addition 
of preload or passive stretch [75, 76], which, if successful, 
will greatly improve the predictive capacity of these engi-
neered models.

A significant difficulty that has become apparent when 
working with engineered tissues is controlling variability 
and demonstrating reproducibility. This variability arises, in 
part, from hPSC-CM batch-to-batch variability and the dif-
ferent protocols used by different institutions for hPSC-CM 
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differentiation and tissue generation, both of which are 
inherently human processes where results may vary simply 
by the hands performing the experiment. To remove human 
sources of variability, many are turning toward automation 
of tissue generation and analysis, which will also increase 
platform throughput [37, 57, 77]. Additional variation arises 
from the different genetic backgrounds of the various hPSC 
lines used. Highlighting this challenge, a study compared 
the performance of ten different hPSC lines in cardiac tissue 
strips [78]. It was found that spontaneous and electrically 
paced tissue contractile performance and kinetics varied 
widely between the different lines, emphasizing the need 
for isogenic controls in disease modeling and advocating 
for the use of multiple hPSC lines during platform valida-
tion. Interestingly, it was found that despite the variability 
in baseline performance, the different hPSC lines behaved 
more consistently with regard to drug response, although 
with varying EC50 values [78]. To address this concern, it 
is likely that robust cardiac tissue platforms will continue to 
rely on multiple biological replicates and turn toward auto-
mation and the use of multiple genetic backgrounds.

Conversely, this variability can be seen as a facet of 
hPSC and tissue engineering that has not yet been fully 
taken advantage of. There are numerous studies describing 
the development of hPSC lines harboring cardiomyopathy-
associated mutations that could be further used to screen 
disease-specific drug candidates in engineered cardiac con-
structs [79]. Additionally, such engineered tissue models can 
be used to examine biological sex-related differences in car-
diac biology and disease, as these differences are known, but 
often overlooked in in vitro disease modeling and preclinical 
screening [80]. By including multiple cell lines from differ-
ent genetic backgrounds and with different disease-causing 
genetic variants, we can begin to approximate not only per-
sonalized and patient-specific medicine, but also population-
wide responses to different pharmacological agents in the 
dish.

A significant limitation to translatability is that most 
platforms lack the biological complexity needed to fully 
reproduce native myocardium, necessitating the contin-
ued reliance on animal models for preclinical testing. At 
their simplest, cardiac constructs contain only hPSC-CMs, 
while others have included additional cell types including 
fibroblasts, endothelial cells, and mesenchymal cells, which 
have been shown to improve tissue quality and maturity. 
A biological element often missing from engineered car-
diac constructs is vasculature, a key component needed to 
accurately model drug delivery. Strategies to vascularize 
constructs consist of co-culturing with endothelial cells and 
addition of angiogenic factors, three-dimensional bioprint-
ing, or microfluidic systems [81, 82]. The development of 
in vitro models that better recapitulate the complexity of 
drug delivery and toxicity will also require the inclusion 

of additional organ systems involved in drug metabolism 
and clearance, e.g., hepatic and renal systems. To achieve 
this, several groups are developing complex, modular organ-
on-a-chip systems [83, 84]. If successful, such vascularized 
multi-organ systems would be the pinnacle of in vitro drug 
testing platforms.

Lastly, it is worth noting that the vast majority of studies 
described in this review evaluated only compounds with 
known effects in human patients. As such, further studies 
are needed to demonstrate the true predictive capabilities 
of engineered cardiac tissues for clinical trial success. 
However, some pioneering studies have used engineered 
constructs to explore novel antifibrotic agents [55], per-
form screening experiments to identify pro-proliferative 
compounds for heart regeneration [42•], evaluate a novel 
myotrope [85], and even evaluate the effect of COVID-19 
treatments on cardiac function [86]. Thus, it is evident that 
the stage is now set to explore the potential effects of novel 
therapeutics in engineered cardiac platforms.

Conclusion

In order to increase the efficiency with which new drugs are 
discovered and brought to clinical trials, it is necessary to 
improve the human in vitro models used, to increase their 
biological relevance and enable the field to move away from 
a reliance on animal models as the gold standard. To address 
concerns of cardiac toxicity, great efforts have been put 
toward the development of engineered cardiac tissues from 
hPSC-CMs. These platforms range in shape and scale from 
cardiac spheroids and microtissues, to sheets, strips, and 
rings, to chambers emulating an entire ventricle, all of which 
present their own advantages and limitations. This review 
has highlighted recent advances made in the development 
of cardiac tissue engineering for drug screening platforms. 
While lacking functional maturity and structural complexity 
in some regards, these constructs hold merit as drug screen-
ing platforms with powerful predictive capabilities that, as 
they stand, can provide value to early stages of the drug 
screening pipeline. With continued advancements in tissue 
maturity, automation, and throughput, it is our prediction 
that cardiac tissue engineering will continue to gain favor in 
the pharmaceutical industry.
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