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Abstract

Relaxed clock models enable estimation of molecular substitution rates across lineages and

are widely used in phylogenetics for dating evolutionary divergence times. Under the (uncor-

related) relaxed clock model, tree branches are associated with molecular substitution rates

which are independently and identically distributed. In this article we delved into the internal

complexities of the relaxed clock model in order to develop efficient MCMC operators for

Bayesian phylogenetic inference. We compared three substitution rate parameterisations,

introduced an adaptive operator which learns the weights of other operators during MCMC,

and we explored how relaxed clock model estimation can benefit from two cutting-edge pro-

posal kernels: the AVMVN and Bactrian kernels. This work has produced an operator

scheme that is up to 65 times more efficient at exploring continuous relaxed clock parame-

ters compared with previous setups, depending on the dataset. Finally, we explored variants

of the standard narrow exchange operator which are specifically designed for the relaxed

clock model. In the most extreme case, this new operator traversed tree space 40% more

efficiently than narrow exchange. The methodologies introduced are adaptive and highly

effective on short as well as long alignments. The results are available via the open source

optimised relaxed clock (ORC) package for BEAST 2 under a GNU licence (https://github.

com/jordandouglas/ORC).

Author summary

Biological sequences, such as DNA, accumulate mutations over generations. By compar-

ing such sequences in a phylogenetic framework, the evolutionary tree of lifeforms can be

inferred and historic divergence dates can be estimated. With the overwhelming availabil-

ity of biological sequence data, and the increasing affordability of collecting new data, the

development of fast and efficient phylogenetic algorithms is more important than ever. In

this article we focus on the relaxed clock model, which is very popular in phylogenetics.

We explored how a range of optimisations can improve the statistical inference of the

relaxed clock. This work has produced a phylogenetic setup which can infer parameters

related to the relaxed clock up to 65 times faster than previous setups, depending on the
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dataset. The methods introduced adapt to the dataset during computation and are highly

efficient when processing long biological sequences.

Introduction

The molecular clock hypothesis states that the evolutionary rates of biological sequences are

approximately constant through time [1]. This assumption forms the basis of clock-model-

based phylogenetics, under which the evolutionary trees and divergence dates of life forms are

inferred from biological sequences, such as nucleic and amino acids [2, 3]. In Bayesian phylo-

genetics, these trees and their associated parameters are estimated as probability distributions

[4–6]. Statistical inference can be performed by the Markov chain Monte Carlo (MCMC) algo-

rithm [7, 8] using platforms such as BEAST [9], BEAST 2 [10], MrBayes [11], and RevBayes

[12].

The simplest phylogenetic clock model—the strict clock—makes the mathematically conve-

nient assumption that the evolutionary rate is constant across all lineages [4, 5, 13]. However,

molecular substitution rates are known to vary over time, over population sizes, over evolu-

tionary pressures, and over nucleic acid replicative machineries [14–16]. Moreover, any given

dataset could be clock-like (where substitution rates have a small variance across lineages) or

non clock-like (a large variance). In the latter case, a strict clock is probably not suitable.

This led to the development of relaxed (uncorrelated) clock models, under which each

branch in the phylogenetic tree has its own molecular substitution rate [3]. Branch rates can be

drawn from a range of probability distributions including log-normal, exponential, gamma,

and inverse-gamma distributions [3, 17, 18]. This class of models is widely used, and has aided

insight into many recent biological problems, including the 2016 Zika virus outbreak [19] and

the COVID-19 pandemic [20].

Finally, although not the focus of this article, the class of correlated clock models assumes

some form of auto-correlation between rates over time. The correlation itself can invoke a

range of stochastic models, including compound Poisson [21] and CIR processes [17], Bayes-

ian parametric models [22], or it can exist as a series of local clocks [23, 24]. While these mod-

els may be more biologically realistic than uncorrelated models [17], due to their correlated

and discrete natures the time required for MCMC to achieve convergence can be cumbersome,

particularly for larger datasets [24]. In the remainder of this paper we only consider uncorre-

lated relaxed clock models.

With the overwhelming availability of biological sequence data, the development of efficient

Bayesian phylogenetic methods is more important than ever. The performance of MCMC is

dependent not only on computational performance but also the efficacy of an MCMC setup to

achieve convergence. A critical task therein lies the further advancement of MCMC operators.

Recent developments in this area include the advancement of guided tree proposals [25–27],

coupled MCMC [28, 29], adaptive multivariate transition kernels [30], and other explorative

proposal kernels such as the Bactrian and mirror kernels [31, 32]. In the case of relaxed clocks,

informed tree proposals can account for correlations between substitution rates and diver-

gence times [33]. The rate parameterisation itself can also affect the ability to “mix” during

MCMC [3, 18, 33].

While a range of advanced operators and other MCMC optimisation methods have arisen

over the years, there has yet to be a large scale performance benchmarking of such methods as

applied to the relaxed clock model. In this article, we systematically evaluate how the relaxed

clock model can benefit from i) adaptive operator weighting, ii) substitution rate
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parameterisation, iii) Bactrian proposal kernels [31], iv) tree operators which account for cor-

relations between substitution rates and times, and v) adaptive multivariate operators [30].

The discussed methods are implemented in the ORC package and compared using BEAST 2

[10].

Models and methods

Preliminaries

Let T be a binary rooted time tree with N taxa, and data D associated with the tips, such as a

multiple sequence alignment with L sites, morphological data, or geographic locations. The

posterior density of a phylogenetic model is described by

pðT ; ~R ; s; mC; yjDÞ / pðDjT ; rð~R Þ; mC; yÞ pðT jyÞ pð~R jsÞ pðsÞ pðmCÞ pðyÞ ð1Þ

where σ and μC represent clock model related parameters, and pðT jyÞ is the tree prior where θ
describes parameters related to the tree branching or coalescent process. The tree likelihood

pðDjT ; rð~R Þ; mC; yÞ has μC as the overall clock rate and ~R is an abstracted vector of branch

rates which is transformed into real rates by function rð~R Þ. Branch rates have a mean of 1

under the prior to avoid non-identifiability with the clock rate μC. Three methods of represent-

ing rates as ~R are presented in Branch rate parameterisations.

Let ti be the height (time) of node i. Each node i in T , except for the root, is associated with

a parental branch length τi (the height difference between i and its parent) and a parental

branch substitution rate ri ¼ rðRiÞ. In an uncorrelated relaxed clock model, each of the 2N − 2

elements in ~R are independently distributed under the prior pð~R jsÞ.
The posterior distribution is sampled by the Metropolis-Hastings-Green MCMC algorithm

[7, 8, 34], under which the probability of accepting proposed state x0 from state x is equal to:

aðx0jxÞ ¼ min 1;
pðx0jDÞ
pðxjDÞ

qðxjx0Þ
qðx0jxÞ

jJj
� �

ð2Þ

where q(x0|x) is the transition kernel: the probability of proposing state x0 from state x. The

ratio between the two
qðxjx0Þ
qðx0 jxÞ is known as the Hastings ratio [8]. The determinant of the Jacobian

matrix |J|, known as the Green ratio, solves the dimension-matching problem for proposals

which operate on multiple terms across one or more spaces [34, 35].

Branch rate parameterisations

In Bayesian inference, the way parameters are represented in the model can affect the mixing

ability of the model and the meaning of the model itself [36]. Three methods for parameteris-

ing substitution rates are described below. Each parameterisation is associated with i) an

abstraction of the branch rate vector ~R , ii) some function for transforming this parameter

into unabstracted branch rates rð~R Þ, and iii) a prior density function of the abstraction

pð~R jsÞ. The three methods are summarised in Fig 1.

1. Real rates. The natural (and unabstracted) parameterisation of a substitution rate is a

real number Ri 2 R;Ri > 0 which is equal to the rate itself. Under the real parameterisation:

rð~R Þ ¼ ~R : ð3Þ
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Under a log-normal clock prior pð~R jsÞ, rates are distributed with a mean of 1:

pðRijsÞ ¼
1

Ris
ffiffiffiffiffiffi
2p
p exp �

ðlnRi � mÞ
2

2s2

� �

ð4Þ

where μ = −0.5σ2 is set such that the expected value is 1. In this article we only consider log-

normal clock priors, however the methods discussed are general.

Zhang and Drummond 2020 introduced a series of tree operators which propose node

heights and branch rates, such that the resulting genetic distances (ri × τi) remain constant

[33]. These operators account for correlations between branch rates and branch times. By

keeping the genetic distance of each branch constant, the likelihood is unaltered by the

proposal.

2. Categories. The category parameterisation cat is an abstraction of the real parameteri-

sation. Each of the 2N − 2 branches are assigned an integer from 0 to n − 1:

~R 2 f0; 1; . . . ; n � 1g
2N� 2

: ð5Þ

These integers correspond to n rate categories (Fig 1). Let f(x|σ) be the probability density

function (PDF) and let FðxjsÞ ¼
Rx

0

f ðtjsÞ dt be the cumulative distribution function (CDF) of

Fig 1. Branch rate parameterisations. Top left: the prior density of a branch rate r under a Log-normal(−0.5σ2, σ) distribution (with its mean fixed at

1). The function for transforming R into branch rates rðRÞ is depicted for real (top right), cat (bottom left), and quant (bottom right). For visualisation

purposes, there are only 10 bins/pieces displayed, however in practice we use 2N − 2 bins for cat and 100 pieces for quant. The first and final quant
pieces are equal to the underlying function (solid lines) however the pieces in between use linear approximations of this function (dashed lines).

https://doi.org/10.1371/journal.pcbi.1008322.g001
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the prior distribution used by the underlying real clock model (a log-normal distribution for

the purposes of this article). In the cat parameterisation, f(x|σ) is discretised into n bins and

each element within ~R points to one such bin. The rate of each bin is equal to its median

value:

rðRiÞ ¼ F� 1ð
Ri þ 0:5

n
Þ; ð6Þ

where F−1 is the inverse cumulative distribution function (i-CDF). The domain of ~R is uni-

formly distributed under the prior:

pðRijsÞ ¼ pðRiÞ ¼
1

n
: ð7Þ

The key advantage of the cat parameterisation is the removal of a term from the posterior

density (Eq 1), or more accurately the replacement of a non-trivial pð~R jsÞ term with that of a

uniform prior. This may facilitate efficient exploration of the posterior distribution by

MCMC.

This parameterisation has been widely used in BEAST and BEAST 2 analyses [3]. However,

the recently developed constant distance operators—which are incompatible with the cat para-

meterisation—can yield an increase in mixing rate under real by up to an order of magnitude

over that of cat, depending on the dataset [33].

3. Quantiles. Finally, rates can be parameterised as real numbers describing the rate’s

quantile with respect to some underlying clock model distribution [18]. Under the quant para-

meterisation, each of the 2N − 2 elements in ~R are uniformly distributed.

~R 2 R2N� 2
; 0 < Ri < 1 ð8Þ

pðRijsÞ ¼ pðRiÞ ¼ 1 ð9Þ

Transforming these quantiles into rates invokes the i-CDF of the underlying real clock

model distribution. Evaluation of the log-normal i-CDF is has high computational costs and

therefore an approximation is used instead.

rðRiÞ ¼ F̂ � 1ðRiÞ ð10Þ

where F̂ � 1 is a linear piecewise approximation with 100 pieces. While this approach has clear

similarities with cat, the domain of rates here is continuous instead of discrete. In this project

we extended the family of constant distance operators [33] so that they are compatible with

quant. Further details on the quant piecewise approximation and constant distance operators

can be found in S1 Appendix.

Clock model operators

The weight of an operator determines the probability of the operator being selected. Weights

are typically fixed throughout MCMC. In BEAST 2, operators can have their own tunable

parameter s, which determines the step size of the operator. This term is tuned over the course

of MCMC by achieving a target acceptance rate, typically 0.234 [10, 37, 38]. We define clock

model operators as those which generate proposals for either ~R or σ. Pre-existing BEAST 2

clock model operators are summarised in Table 1, and further operators are introduced

throughout this paper.
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The family of constant distance operators (ConstantDistance, SimpleDistance,

and SmallPulley [33]) are best suited for larger datasets (or datasets with strong signal)

where the likelihood distribution is peaked (Fig 1). While simple one dimensional operators

such as RandomWalk or Scale must take small steps in order to stay “on the ridge” of the

likelihood function, the constant distance operators “wander along the ridge” by ensuring that

genetic distances are constant after the proposal.

Scale and CisScale both operate on the clock model standard deviation σ however

they behave differently in the real and quant parameterisations (Fig 2). In real, large proposals

of σ! σ0 made by Scale could incur large penalties in the clock model prior density

pð~R js0Þ and thus may be rejected quite often. This led to the development of the fast clock

scaler [33] (herein referred to as CisScale). This operator recomputes all branch rates

~R ! ~R 0 such that their quantiles under the new clock model prior remain constant

pð~R jsÞ ¼ pð~R 0js0Þ. In contrast, a proposal made by Scale σ! σ0 under the quant parame-

terisation implicitly alters all branch rates rð~R Þ while leaving the quantiles ~R themselves con-

stant. Whereas, application of CisScale under quant results in all quantiles being

recomputed ~R ! ~R 0 such that their rates are constant, i.e. rð~R Þ ¼ rð~R 0Þ. In summary,

Scale and CisScale propose rates/quantiles in the opposite (trans) or same (cis) space

that the clock model is parameterised under (Fig 2).

Adaptive operator weighting

It is not always clear which operator weighting scheme is best for a given dataset. In this article

we introduce AdaptiveOperatorSampler—a meta-operator which learns the weights of

other operators during MCMC and then samples these operators according to their learned

weights. This meta-operator undergoes three phases. In the first phase (burn-in), Adapti-
veOperatorSampler samples from its set of sub-operators uniformly at random. In the

second phase (learn-in), the meta-operator starts learning several terms detailed below whilst

continuing to sample operators uniformly at random. In its final phase,

Table 1. Summary of pre-existing BEAST 2 operators.

Operator Description Parameters Parameterisations

RandomWalk Moves a single element by a tunable amount. ~R ; s cat, real, quant

Scale Applies RandomWalk on the log-transformation (suitable for parameters with positive domains). ~R ; s cat, real, quant

Interval Applies RandomWalk on the logit-transformation (suitable for parameters with upper and lower limits). ~R quant

Swap Swaps two random elements within the vector [3]. ~R cat, real, quant

Uniform Resamples one element in the vector from a uniform distribution. ~R cat, quant

ConstantDistance Adjusts an internal node height and recalculates all incident branch rates such that the genetic distances

remain constant [33].

~R ; t real, quant

SimpleDistance Applies ConstantDistance to the root node [33]. ~R ; t real, quant

SmallPulley Proposes new branch rates incident to the root such that their combined genetic distance is constant [33]. ~R real, quant

CisScale Applies Scale to σ. Then recomputes all rates such that their quantiles are constant (for real [33]) or

recomputes all quantiles such that their rates are constant (quant).
~R ; s real, quant

Summary of pre-existing BEAST 2 operators, which apply to either branch rates ~R or the clock standard deviation σ, and the substitution rate parameterisation they

apply to. ConstantDistance and SimpleDistance also adjust node heights t.

https://doi.org/10.1371/journal.pcbi.1008322.t001
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AdaptiveOperatorSampler samples operators (denoted by ω) using the following dis-

tribution:

pðoÞ /

1 with probability O

1

TðoÞ
X

p2POI

X

x2acceptsðoÞ

Dðxp; x
0

pÞ with probability 1 � O

8
>><

>>:

ð11Þ

where TðoÞ is the cumulative computational time spent on each operator,D is a distance func-

tion, and we use O = 0.01 to allow any sub-operator to be sampled regardless of its perfor-

mance. The parameters of interest (POI) may be either a set of numerical parameters (such as

branch rates or node heights), or it may be the tree itself, but it cannot be both in its current

form. The distance between state xp and its (accepted) proposal x0p with respect to parameter p
is determined by

Dðxp; x0pÞ ¼

RFðxp; x0pÞ
2 if p is a tree

1

jpj
kxp � x0pk

sp

" #2

if p is numerical

8
>>><

>>>:

ð12Þ

where RF is the Robinson-Foulds tree distance [39], and |p| is the number of dimensions of

numerical parameter p (1 for σ, 2N − 2 for ~R , and 2N − 1 for node heights t). The remaining

terms are trained during the second and third phases: the sample standard deviation σp of each

Fig 2. Clock standard deviation scale operators. The two operators above propose a clock standard deviation σ! σ0. Then, either the new

quantiles are such that the rates remain constant (“New quantiles”, above) or the new rates are such that the quantiles remain constant

(“New rates”). In the real parameterisation, these two operators are known as Scale and CisScale, respectively. Whereas, in quant,
they are known as CisScale and Scale.

https://doi.org/10.1371/journal.pcbi.1008322.g002
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numerical parameter of interest p, the cumulative computational runtime spent on each opera-

tor TðoÞ, and the summed distances
P

xDðxp; x0pÞ.
Under Eqs 11 and 12, operators which effect larger changes on the parameters of interest,

in shorter runtime, are sampled with greater probabilities. Division of the squared distance by

a parameter’s sample variance s2
p enables comparison between numerical parameters which

exist in different spaces.

Datasets which contain very poor signal (or small L) are likely to mix better when more

weight is placed on bold operators (Fig 3). We therefore introduce the SampleFromPrior
(~x ) operator. This operator resamples ψ randomly selected elements within vector~x from

their prior distributions, where c � Binomial n ¼ j~x j; p ¼ s
j~x j

� �
for tunable term s. Sample-

FromPrior is included among the set of operators under AdaptiveOperatorSampler
and serves to make the boldest proposals for datasets with poor signal.

In this article we apply three instances of the AdaptiveOperatorSampler meta-oper-

ator to the real, cat, and quant parameterisations. These are summarised in Table 2.

Bactrian proposal kernel

The step size of a proposal kernel q(x0|x) should be such that the proposed state x0 is sufficiently

far from the current state x to explore vast areas of parameter space, but not so large that the

proposal is rejected too often [37]. Operators which attain an acceptance probability of 0.234

are often considered to have arrived at a suitable midpoint between these two extremes [10,

37]. The standard uniform distribution kernel has recently been challenged by the family of

Fig 3. Traversing likelihood space. The z-axes above are the log-likelihoods of the genetic distance r × τ between two simulated nucleic acid sequences

of length L, under the Jukes-Cantor substitution model [40]. Two possible proposals from the current state (white circle) are depicted. These proposals

are generated by the RandomWalk (RW) and ConstantDistance (CD) operators. In the low signal dataset (L = 0.1kb), both operators can traverse

the likelihood space effectively. However, the exact same proposal by RandomWalk incurs a much larger likelihood penalty in the L = 0.5kb dataset by

“falling off the ridge”, in contrast to ConstantDistance which “walks along the ridge”. This discrepancy is even stronger for larger datasets and

thus necessitates the use of operators such as ConstantDistance which account for correlations between branch lengths and rates.

https://doi.org/10.1371/journal.pcbi.1008322.g003
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Bactrian kernels [31, 32]. The (Gaussian) Bactrian(m) distribution is defined as the sum of two

normal distributions:

S � BactrianðmÞ �
1

2
Normalð� m; 1 � m2Þ þ

1

2
Normalðm; 1 � m2Þ ð13Þ

where 0�m< 1 describes modality. When m = 0, the Bactrian distribution is equivalent to

Normal(0, 1). As m approaches 1, the distribution becomes increasingly bimodal (Fig 4). Yang

Table 2. Summary of AdaptiveOperatorSampler operators and their parameters of interest (POI).

Meta-operator POI Operators

AdaptiveOperatorSampler(σ) σ CisScale(s; ~R )

RandomWalk(σ)

Scale(σ)

SampleFromPrior(σ)

AdaptiveOperatorSampler(~R ) ~R ; t ConstantDistance(~R ; t)

RandomWalk(~R )

Scale(~R )

Interval(~R )

Swap(~R )

SampleFromPrior(~R )

AdaptiveOperatorSampler(root) ~R ; t SimpleDistance(~R ; t)

SmallPulley(~R ; t)

AdaptiveOperatorSampler(leaf) ~R leaf ; t ConstantDistance(~R leaf ; t)

LeafAVMVN(~R leaf )

RandomWalk(~R leaf )

Scale(~R leaf )

Interval(~R leaf )

Swap(~R leaf )

SampleFromPrior(~R leaf )

AdaptiveOperatorSampler(internal) ~R int ; t ConstantDistance(~R int ; t)

RandomWalk(~R int )

Scale(~R int )

Interval(~R int )

Swap(~R int )

SampleFromPrior(~R int )

AdaptiveOperatorSampler(NER) T NER{}

NERfDAE;DBE;DCEg

Different operators are applicable to different substitution rate parameterisations (Table 1). Nodes are broken down into regions to enable operators to be weighted

according to their dimension. AdaptiveOperatorSampler(root) applies the root-targeting constant distance operators only [33] while

AdaptiveOperatorSampler(~R ) targets all rates and all nodes heights t. Nodes are further broken down into leaf rate ~R leaf and internal node rate ~R int operators.

This facilitates suitable weighting of the LeafAVMVN operator, which is only applicable to leaf nodes (4. Screening operators for acceptance rate using simulated data.).

In this setup, the RandomWalk(x), Scale(x), and SampleFromPrior(x) operators apply to the corresponding set of branch rates x, whereas

ConstantDistance(x, t) is only applicable to internal nodes which have at least one child of type x 2 f~R leaf ;
~R int g. Finally, the Robinson-Foulds distance

between trees before and after every proposal accept is used to train the weights behind AdaptiveOperatorSampler(NER) (see Narrow exchange rate). In the

special case of NER proposals, the RF distance is always equal to 1.

https://doi.org/10.1371/journal.pcbi.1008322.t002
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et al. 2013 [31] demonstrate that Bactrian(m = 0.95) yields a proposal kernel which traverses

the posterior distribution more efficiently than the standard uniform kernel, by placing mini-

mal probability on steps which are too small or too large. In this case, a target acceptance prob-

ability of around 0.3 is optimal.

In this article we compare the abilities of uniform and Bactrian(0.95) proposal kernels at

estimating clock model parameters. The clock model operators which these proposal kernels

apply to are described in S1 Appendix.

Narrow exchange rate

The NarrowExchange operator [41], used widely in BEAST [9, 42] and BEAST 2 [10], is

similar to nearest neighbour interchange [43], and works as follows (Fig 5):

Step 1. Sample an internal/root node E from tree T , where E has grandchildren.

Step 2. Identify the child of E with the greater height. Denote this child as D and its sibling as C
(i.e. tD> tC). If D is a leaf node, then reject the proposal.

Step 3. Randomly identify the two children of D as A and B.

Step 4. Relocate the B − D branch onto the C − E branch, so that B and C become siblings and

their parent is D. All node heights remain constant.

We hypothesised that if NarrowExchange was adapted to the relaxed clock model by

ensuring that genetic distances remain constant after the proposal (analogous to constant dis-

tance operators [33]), then its ability to traverse the state space may improve.

Here, we present the NarrowExchangeRate (NER) operator. Let rA, rB, rC, and rD be

the substitution rates of nodes A, B, C, and D, respectively. In addition to the modest topologi-

cal change applied by NarrowExchange, NER also proposes new branch rates rA 0, rB 0, rC 0,
and rD0. While NER does not alter tD (i.e. tD 0  tD), we also consider NERw—a special case of

Fig 4. The Bactrian proposal kernel. The step size made under a Bactrian proposal kernel is equal to sS where S is

drawn from the above distribution and s is tunable.

https://doi.org/10.1371/journal.pcbi.1008322.g004
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the NER operator which embarks tD on a random walk:

tD 0  tD þ sS ð14Þ

for random walk step size sS where s is tunable and S is drawn from a uniform or Bactrian dis-

tribution. NER (and NERw) are compatible with both the real and quant parameterisations.

Analogous to the ConstantDistance operator, the proposed rates ensure that the genetic

distances between nodes A, B, C, and E are constant. Let Dij be the constraint defined by a con-

stant genetic distance between nodes i and j before and after the proposal. There are six pair-

wise distances between these four nodes and therefore there are six such constraints:

DAB : rAðtD � tAÞ þ rBðtD � tBÞ ¼

rA 0ðtE � tAÞ þ rD0ðtE � tD0Þ þ rB 0ðtD0 � tBÞ
ð15Þ

DAC : rAðtD � tAÞ þ rDðtE � tDÞ þ rCðtE � tCÞ ¼

rA 0ðtE � tAÞ þ rD 0ðtE � tD 0Þ þ rC 0ðtD 0 � tCÞ
ð16Þ

Fig 5. Depiction of NarrowExchange and NarrowExchangeRate operators. Proposals are denoted by T ! T 0. The vertical axes

correspond to node heights t. In the bottom figure, branch rates r are indicated by line width and therefore genetic distances are equal to the

width of each branch multiplied by its length. In this example, the DAE and DCE constraints are satisfied.

https://doi.org/10.1371/journal.pcbi.1008322.g005

PLOS COMPUTATIONAL BIOLOGY Adaptive dating and fast proposals: Revisiting the phylogenetic relaxed clock model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008322 February 2, 2021 11 / 30

https://doi.org/10.1371/journal.pcbi.1008322.g005
https://doi.org/10.1371/journal.pcbi.1008322


DAE : rAðtD � tAÞ þ rDðtE � tDÞ ¼

rA 0ðtE � tAÞ
ð17Þ

DBC : rBðtD � tBÞ þ rDðtE � tDÞ þ rCðtE � tDÞ ¼

rB 0ðtD 0 � tBÞ þ rC 0ðtD 0 � tCÞ
ð18Þ

DBE : rBðtD � tBÞ þ rDðtE � tDÞ ¼

rB 0ðtD0 � tBÞ þ rD0ðtE � tD0Þ
ð19Þ

DCE : rCðtE � tCÞ ¼

rC 0ðtD 0 � tCÞ þ rD 0ðtE � tD 0Þ
ð20Þ

Further constraints are imposed by the model itself:

ri; ri 0 > 0 for i 2 fA;B;C;Dg ð21Þ

tB; tC < tD0 < tE: ð22Þ

Unfortunately, there is no solution to all six Dij constraints unless non-positive rates or ille-

gal trees are permitted. Therefore instead of conserving all six pairwise distances, NER con-

serves a subset of distances. It is not immediately clear which subset should be conserved.

Automated generation of operators and constraint satisfaction. The total space of

NER operators consists of all possible subsets of distance constraints (i.e.

fg; fDABg; fDACg; . . . ; fDAB;DAC;DAE;DBC;DBE;DCEg) that are solvable. The simplest NER

kernel—the null operator denoted by NER{}—does not satisfy any distance constraints and

is equivalent to NarrowExchange. To determine which NER variants have the best per-

formance, we developed an automated pipeline for generating and testing these operators.

1. Solution finding. Using standard analytical linear-system solving libraries in MATLAB

[44], the 26 = 64 subsets of distance constraints were solved. 54 of the 64 subsets were found to

be solvable, and the unsolvables were discarded.

2. Solving Jacobian determinants. The determinant of the Jacobian matrix J is required

for computing the Green ratio of this proposal. J is defined as

J ¼

@rA 0

@rA

@rA 0

@rB

@rA 0

@rC

@rA 0

@rD

@rA 0
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@rB 0
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: ð23Þ

Solving the determinant |J| invokes standard analytical differentiation and linear algebra

libraries of MATLAB. 6 of the 54 solvable operators were found to have |J| = 0, corresponding

to irreversible proposals, and were discarded.
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3. Automated generation of BEAST 2 operators. Java class files were generated using

string processing. Each class corresponded to a single operator, extended the class of a meta-

NER-operator, and consisted of the solutions found in 1 and the Jacobian determinant found

in 2. |J| is further augmented if the quant parameterisation is employed (S1 Appendix). One

such operator is expressed in Algorithm 1 and a second in S1 Appendix.

Algorithm 1 The NERfDAE;DBE;DCEg operator.
1: procedure PROPOSAL(tA, tB, tC, tD, tE, rA, rB, rC, rD)
2:
3: sΣ  getRandomWalkSize() .Random walk size is 0 unless this is
NERw
4: t0D  tD þ sS . Propose new node height for D
5:
6: r0A  

rAðtD � tAÞþrDðtE � tDÞ
tE � tA

.Propose new rates

7: r0B  
rBðtD � tBÞþrDðt0D � tDÞ

t0D � tB

8: r0C  
rCðtE � tCÞ� rDðtE � t0DÞ

t0D � tC

9: r0D  rD
10:
11: jJj  ðtD � tAÞðtD � tBÞðtE � tCÞ

ðtE � tAÞðt0D � tBÞðt
0
D � tCÞ

.Calculate Jacobian determinant

12: return ðr0A; r
0
B; r

0
C; r

0
D; t

0
D; jJjÞ

4. Screening operators for acceptance rate using simulated data. Selecting the best NER

variant to proceed to benchmarking on empirical data (Results) was determined by perform-

ing MCMC on simulated data, measuring the acceptance rates of each of the 96 NER/NERw

variants, and comparing them with the null operator NER{} / NarrowExchange. In total,

there were 300 simulated datasets each with N = 30 taxa and varying alignment lengths.

These experiments showed that NER variants which satisfied the genetic distances between

nodes B and A (i.e. DAB) or between B and C (i.e. DBC) usually performed worse than the stan-

dard NarrowExchange operator (Fig 6). This is an intuitive result. If there is high uncer-

tainty in the positioning of B with respect to A and C, then there is no value in respecting

either of these distance constraints, and the proposals made to the rates may often be too

extreme or the Green ratio |J| too small for the proposal to be accepted.

Fig 6 also revealed a cluster of NER variants which—under the conditions of the simulation

—performed better than the null operator NER{} around 25% of the time and performed

worse around 10% of the time. One such operator was NERfDAE;DBE;DCEg (Algorithm 1).

This variant conserves the genetic distance between nodes A, B, C and their grandparent E.

This operator performed well when branch rates had a large variance (σ> 0.5), corresponding

to non clock-like data. On the other hand, the null operator NER{} performed better on

shorter sequences (L< 1kb) with weaker signal. Overall, NERfDAE;DBE;DCEg outperformed

the standard NarrowExchange operator when the data was not clock-like and contained

sufficient signal.

Finally, this initial screening showed that applying a (Bactrian) random walk to the node

height tD made the operator worse. This effect was most dominant for the NER variants which

satisfied distance constraints (i.e. the operators which are not NER{}).

Although there were several operators which behaved equivalently during this initial

screening process, we selected NERfDAE;DBE;DCEg to proceed to benchmarking (Results).

Due to the apparent sensitivity of NER operators to the data, we introduce the adaptive opera-

tor AdaptiveOperatorSampler(NER) which allows the operator scheme to fall back

on the standard NarrowExchange in the event of NERfDAE;DBE;DCEg performing poorly

(Table 2).
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An adaptive leaf rate operator

The adaptable variance multivariate normal (AVMVN) kernel learns correlations between

parameters during MCMC [30, 42]. Baele et al. 2017 observed a large increase (� 5 − 10×) in

sampling efficiency from using the AVMVN kernel substitution model parameters [30]. Here,

Fig 6. Screening of NER and NERw variants by acceptance rate. Top left: comparison of NER variants with the null operator NER{} =

NarrowExchange. Each operator is represented by a single point, uniquely encoded by the point stylings. The number of times each operator is

proposed and accepted is compared with that of NER{}, and one-sided z-tests are performed to assess the statistical significance between the two

acceptance rates (p = 0.001). This process is repeated across 300 simulated datasets. The axes of each plot are the proportion of these 300 simulations for

which there is evidence that the operator is significantly better than NER{} (x-axis) or worse than NER{} (y-axis). Top right: comparison of NER and

NERw acceptance rates. Each point is one NER/NERw variant from a single simulation. Bottom: relationship between the acceptance rates α of

NERfDAE;DBE;DCEg and NER{} with the clock model standard deviation σ and the number of sites L. Each point is a single simulation.

https://doi.org/10.1371/journal.pcbi.1008322.g006
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we consider application of the AVMVN kernel to the branch rates of leaf nodes. This operator,

referred to as LeafAVMVN, is not readily applicable to internal node branch rates due to their

dependencies on tree topology.

Leaf rate AVMVN kernel. The AVMVN kernel assumes its parameters live in x 2 RN for

taxon count N and that these parameters follow a multivariate normal distribution with covari-

ance matrix SN. Hence, the kernel operates on the logarithmic or logistic transformation of

the N leaf branch rates, depending on the rate parameterisation:

x ¼
log r for real

log q
1� q for quant

8
<

:
ð24Þ

where r is a real rate and q is a rate quantile. The AVMVN probability density is defined by

AVMVN ð~xÞ ¼MVN ~x; ð1 � bÞ
SN

N
þ b
IN
N

� �

; ð25Þ

where MVN is the multivariate normal probability density. β = 0.05 is a constant which deter-

mines the fraction of the proposal determined by the identity matrix IN , as opposed to the

covariance matrix SD which is trained during MCMC. Our BEAST 2 implementation of the

AVMVN kernel is adapted from that of BEAST [42].

LeafAVMVN has the advantage of operating on all N leaf rates simultaneously (as well as

learning their correlations), as opposed to ConstantDistance which operates on at most

2, or Scale which operates on at most 1 leaf rate at a time. As the size of the covariance

matrix SN grows with the number of taxa N, LeafAVMVN is likely to be less efficient with

larger taxon sets. Therefore, the weight behind this operator is learned by

AdaptiveOperatorSampler.

To prevent the learned weight behind LeafAVMVN from dominating the AdaptiveO-
peratorSampler weighting scheme and therefore inhibiting the mixing of internal node

rates, we introduce the AdaptiveOperatorSampler(leaf) and AdaptiveOpera-
torSampler(internal) meta-operators which operate exclusively on leaf node rates

~R leaf and internal node rates ~R int respectively (Table 2). The former employs the Lea-
fAVMVN operator and learns its weight during MCMC (after providing it sufficient time to

learn SN).

Model specification and MCMC settings

In all phylogenetic analyses presented here, we use a Yule [45] tree prior pðT jlÞ with birth rate

λ* Log-normal(1, 1.25). Here and throughout the article, a Log-normal(a, b) distribution is

parameterised such that a and b are the mean and standard deviation in log-space. The clock

standard deviation has a σ* Gamma(0.5396, 0.3819) prior. Datasets are partitioned into sub-

sequences, where each partition is associated with a distinct HKY substitution model [46]. The

transition-transversion ratio κ* Log-normal(1, 1.25), the four nucleotide frequencies (fA, fC,

fG, fT)*Dirichlet(10, 10, 10, 10), and the relative clock rate μC* Log-normal(−0.18, 0.6) are

estimated independently for each partition. The operator scheme ensures that the clock rates

μC have a mean of 1 across all partitions. This avoids non-identifiability with branch substitu-

tion rates. To enable rapid benchmarking of larger datasets we use BEAGLE for high-perfor-

mance tree likelihood calculations [47] and coupled MCMC with four chains for efficient

mixing [29]. The neighbour joining tree [48] is used as the initial state in each MCMC chain.

Throughout the article, we have introduced four new operators. These are summarised in

Table 3.
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In Table 4, we define all operator configurations which are benchmarked throughout Results.

Results

To avoid an intractably large search space, the five targets for clock model improvement were

evaluated sequentially in the following order: Adaptive operator weighting, Branch rate para-

meterisations, Bactrian proposal kernel, Narrow exchange rate, and An adaptive leaf rate oper-

ator. The four operators introduced in these sections are summarised in Table 3. The setting

which was considered to be the best in each step was then incorporated into the following step.

This protocol and its outcomes are summarised in Fig 7.

Methodologies were assessed according to the following criteria.

1. Validation. This was assessed by measuring the coverage of all estimated parameters in

well-calibrated simulation studies. These are presented in S2 Appendix and give confidence

operators are implemented correctly.

2. Mixing of parameters. Key parameters were evaluated for the number of effective samples

generated per hour (ESS/hr). These key parameters were the likelihood L and prior p densi-

ties, tree length l (i.e. the sum of all branch lengths), mean branch rate �r , branch rate of all

leaf nodes r, and relaxed clock standard deviation σ. We also included the HKY substitution

model term κ. The mixing of κ should not be strongly affected by any of the clock model

operators, and thus it served as a positive control in each experiment.

Methodologies were benchmarked using one simulated and eight empirical datasets [49–

56]. The latter were compiled by Lanfear as “benchmark alignments” (Table 5) [57, 58]. Each

methodology was benchmarked for million-states-per-hour using the Intel Xeon Gold 6138

CPU (2.00 GHz). These terms were multiplied by the ESS-per-state across 20 replicates on the

New Zealand eScience Infrastructure (NeSI) cluster to compute the total ESS/hr of each dataset

under each setting. All methodologies used identical models and operator configurations,

except where a difference is specified.

Round 1: A simple operator-weight learning algorithm greatly improved

performance

We compared the nocons, cons, and adapt operator configurations (Table 4). nocons con-

tained all of the standard BEAST 2 operator configurations and weightings for real, cat, and

quant. cons additionally contained (cons)tant distance operators and employed the same

operator weighting scheme used previously [33] (real and quant only). Finally, the adapt

configuration combined all of the above applicable operators, as well as the simple-but-bold

SampleFromPrior operator, and learned the weights of each operator using the

AdaptiveOperatorSampler.

Table 3. Summary of clock model operators introduced throughout this article.

Operator Description Parameters

AdaptiveOperatorSampler Samples sub-operators proportionally to their weights, which are learned (see Adaptive operator weighting). ~R ;s; tT
SampleFromPrior Resamples a random number of elements from their prior (see Adaptive operator weighting). ~R ;s

NarrowExchangeRate Moves a branch and recomputes branch rates so that their genetic distances are constant (see Narrow exchange rate). ~R ;T

LeafAVMVN Proposes new rates for all leaves in one move (see An adaptive leaf rate operator) [30]. ~R

Pre-existing clock model operators are summarised in Table 1. t denotes node heights while T denotes the whole tree, including topology.

https://doi.org/10.1371/journal.pcbi.1008322.t003
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This experiment revealed that nocons usually performed better than cons on smaller data-

sets (i.e. small L) while cons consistently performed better on larger datasets (Fig 8 and S1 Fig).

This result is unsurprising (Fig 3). Furthermore, the adapt setup dramatically improved mixing

for real by finding the right balance between cons and nocons. This yielded an ESS/hr (aver-

aged across all 9 datasets) 95% faster than cons and 520% faster than nocons, with respect to

leaf branch rates, and 620% and 190% faster for σ. Similar results were observed with quant.
However, adapt neither helped nor harmed cat, suggesting that the default operator weighting

scheme was sufficient.

This experiment also revealed that the standard Scale operator was preferred over CisS-
cale for the real configuration. Averaged across all datasets, the learned weights behind these

two operators were 0.47 and 0.03. This was due to the computationally demanding nature of

CisScale which invokes the i-CDF function. In contrast, the performance of Scale and

Table 4. Operator configurations and the substitution rate parameterisations which each operator is applicable to.

Configuration Operator Weight real cat quant
nocons RandomWalk(~R ) 10 ✓ ✓

Scale(~R ) 10 ✓

Uniform(~R ) 10 ✓ ✓

Interval(~R ) 10 ✓

Swap(~R ) 10 ✓ ✓ ✓

Scale(σ) 10 ✓ ✓ ✓

cons ConstantDistance(~R ; t) 20� 2N� 2

2N� 1
✓ ✓

SimpleDistance(~R ; t) 20

2
� 1

2N� 1
✓ ✓

SmallPulley(~R )
20

2
� 1

2N� 1
✓ ✓

RandomWalk(~R ) 5 ✓

Scale(~R ) 2.5 ✓

Uniform(~R ) 5 ✓

Interval(~R ) 2.5 ✓

Swap(~R ) 2.5 ✓ ✓

CisScale(s; ~R ) 10 ✓

Scale(σ) 10 ✓

adapt AdaptiveOperatorSampler(σ) 10 ✓ ✓ ✓

AdaptiveOperatorSampler(~R ) 30� 2N� 2

2N� 1
✓ ✓

AdaptiveOperatorSampler(~R ) 30 ✓

AdaptiveOperatorSampler(root) 30� 1

2N� 1
✓ ✓

AVMVN AdaptiveOperatorSampler(σ) 10 ✓ ✓

AdaptiveOperatorSampler(leaf) 30� N
2N� 1

✓ ✓

AdaptiveOperatorSampler(internal) 30� N� 2

2N� 1
✓ ✓

AdaptiveOperatorSampler(root) 30� 1

2N� 1
✓ ✓

NER{} NarrowExchange 15 ✓ ✓ ✓

NER AdaptiveOperatorSampler(NER) 15 ✓ ✓

Within each configuration (and substitution rate parameterisation), the weight behind ~R sums to 30, the weight of σ is equal to 10, and the weight of NER is equal to

15. Operators which apply to specific node sets (root, internal, leaf, or all) are weighted according to leaf count N. The adaptive operators are further broken down in

Table 2. All other operators (i.e. those which apply to which apply to other terms in the state such as the nucleotide substitution model) are held constant within each

dataset.

https://doi.org/10.1371/journal.pcbi.1008322.t004
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CisScale were more similar under the quant configuration and were weighted at 0.28 and

0.45. For both real and quant, proposals which altered quantiles, while leaving the rates con-

stant (Scale and CisScale respectively), were preferred.

Overall, the AdaptiveOperatorSampler operator was included in all subsequent

rounds in the tournament.

Fig 7. Protocol for optimising clock model methodologies. Each area (detailed in Models and methods) is optimised sequentially, and the best setting

from each step is used when optimising the following step.

https://doi.org/10.1371/journal.pcbi.1008322.g007

Table 5. Benchmark datasets, sorted in increasing order of taxon count N.

N P L (kb) Lunq (kb) ŝ Description

1 38 16 15.5 10.5 0.44 Seed plants (Ran 2018 [49])

2 44 7 5.9 1.8 0.30 Squirrel Fishes (Dornburg 2012 [50])

3 44 3 1.9 0.8 0.27 Bark beetles (Cognato 2001 [51])

4 51 6 5.4 1.8 0.52 Southern beeches (Sauquet 2011 [52])

5 61 8 6.9 4.3 0.53 Bony fishes (Broughton 2013 [53])

6 70 3 2.2 0.9 0.19 Caterpillars (Kawahara 2013 [54])

7 80 1 10.0 0.9 0.82 Simulated data

8 94 4 2.2 1 0.34 Bees (Rightmyer 2013 [55])

9 106 1 0.8 0.5 0.37 Songbirds (Moyle 2016 [56])

Number of partitions P, total alignment length L, and number of unique site patterns Lunq in the alignment are

specified. Clock standard deviation estimates ŝ are of moderate magnitude, suggesting that most of these datasets are

not clock-like.

https://doi.org/10.1371/journal.pcbi.1008322.t005
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Round 2: The real parameterisation yielded the fastest mixing

In Round 1 we selected the best configuration for each of the three rate parameterisations

described in Branch rate parameterisations, and in Round 2 we compared the three to each

other. adapt (real) and adapt (quant) both employed constant distance tree operators [33] and

Fig 8. Round 1: Benchmarking the AdaptiveOperatorSampler operator. Top left, top right, bottom left: each plot compares the ESS/hr

(±1 standard error) across two operator configurations. Bottom right: the effect of sequence length L on operator weights learned by

AdaptiveOperatorSampler. Both sets of observations are fit by logistic regression models. The benchmark datasets are displayed in Table 5. The

cat and quant settings are evaluated in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1008322.g008
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both used the AdaptiveOperatorSampler operator to learn clock model operator

weights. Clock model operators weights were also learned in the adapt (cat) configuration.

This experiment showed that the real parameterisation greatly outperformed cat on most

datasets and most parameters (Fig 9). This disparity was strongest for long alignments. In the

most extreme case, leaf substitution rates r and clock standard deviation σ both mixed around

50× faster on the 15.5 kb seed plant dataset (Ran et al. 2018 [49]) for real than they did for cat.

Fig 9. Round 2: Benchmarking substitution rate parameterisations. Top left, top right, bottom left: the adapt (real), adapt (cat), and adapt (quant)
configurations were compared. Bottom right: comparison of the mean tip substitution rate ESS/hr as a function of alignment length L.

https://doi.org/10.1371/journal.pcbi.1008322.g009
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The advantages in using constant distance operators would likely be even stronger for larger L.

Furthermore, real outperformed quant on most datasets, but this was mostly due to the slow

computational performance of quant compared with real, as opposed to differences in mixing

prowess (Fig 10). Irrespective of mixing ability, the adapt (real) configuration had the best

computational performance and generated samples 40% faster than adapt (cat) and 60% faster

than adapt (quant).
Overall, we determined that real, and its associated operators, made the best parameterisa-

tion covered here and it proceeded to the following rounds of benchmarking. This outcome

allowed Rounds 3, 4, and 5 to commence. If cat dominated in this round, then the operators

benchmarked in Rounds 4 and 5 would not be applicable to the parameterisation and the Bac-

trian proposal kernel benchmarked in Round 3 would not be applicable to branch rate catego-

ries in its present form.

Round 3: Bactrian proposal kernels were around 15% more efficient than

uniform kernels

We benchmarked the adapt (real) configuration with a) standard uniform proposal kernels,

and b) Bactrian(0.95) kernels [31]. These kernels applied to all clock model operators. These

results confirmed that the Bactrian kernel yields faster mixing than the standard uniform ker-

nel (Fig 11). All relevant continuous parameters considered had an ESS/hr, averaged across

the 9 datasets, between 15% and 20% faster compared with the standard uniform kernel.

Although the Bactrian proposal made little-to-no difference to the caterpillar dataset

Fig 10. Comparison of runtimes across methodologies. The computational time required for a setting to sample a single state is divided by that of the

nocons (cat) configuration. The geometric mean under each configuration, averaged across all 9 datasets, is displayed as a horizontal bar.

https://doi.org/10.1371/journal.pcbi.1008322.g010
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(Kawahara and Rubinoff 2013 [54]), every other dataset did in fact benefit. Bactrian proposal

kernels proceeded to round 4 of the relaxed clock model optimisation protocol.

Round 4: NER operators outperformed on larger datasets

Our initial screening of the NarrowExchangeRate (NER) operators revealed that the

NERfDAE;DBE;DCEg operator outperformed the standard NarrowExchange / NER{} oper-

ator about 25% of the time on simulated data, however it was also very sensitive to the dataset.

Therefore we wrapped up the two operators (NER{} and NERfDAE;DBE;DCEg) within an

AdaptiveOperatorSampler operator so that the appropriate weights could be learned.

In this round we benchmarked the Bactrian + adapt (real) setting with the adaptive NER oper-

ator (Table 4). The benchmark datasets are fairly non clock-like and therefore could potentially

benefit from NER (Table 5).

Our experiments confirmed that NERfDAE;DBE;DCEg was indeed superior on larger data-

sets (where L> 5kb; Fig 12). While there was no significant difference in the ESS/hr of contin-

uous parameters, NERfDAE;DBE;DCEg did have an acceptance rate 41% higher than that of the

standard NarrowExchange operator in the most extreme case (the bony fish alignment by

Broughton et al. [53]). The moderate variance in branch substitution rates (ŝ ¼ 0:5), coupled

with a long alignment (7kb), and high topological uncertainty (Fig 12) made this dataset the

perfect target. Every acceptance of a branch rearrangement proposal yields a new topology and

thus facilitates traversal of tree space.

Fig 11. Round 3: Benchmarking the Bactrian kernel. The ESS/hr (±1 s.e.) under the Bactrian configuration, divided by that under the uniform kernel,

is shown in the y-axis for each dataset and relevant parameter. Horizontal bars show the geometric mean under each parameter.

https://doi.org/10.1371/journal.pcbi.1008322.g011
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In contrast, the standard NarrowExchange operator outperformed on smaller datasets.

The new operator was not always helpful and sometimes it even hindered performance. Use of

an adaptive operator (AdaptiveOperatorSampler) removes the burden from the user

in making the decision of which operator to use. The AdaptiveOperatorSampler
(NER) operator proceeded into the final round of the tournament.

Fig 12. Round 4: Benchmarking the NER operators. Top: the learned weights (left) behind the two NER operators

(NER{} and NERfDAE;DBE;DCEg), and the relative difference between their acceptance rates α (right), are presented as

functions of sequence length. Logistic and logarithmic regression models are shown, respectively. Bottom: maximum

clade credibility tree of the bony fish dataset by Broughton et al. 2013 [53]. This alignment received the strongest boost

from NER, likely due to its high topological uncertainty and branch rate variance. Branches are coloured by

substitution rate, the y-axis shows time units, and internal nodes are labelled with posterior clade support. Tree

visualised using UglyTrees [59].

https://doi.org/10.1371/journal.pcbi.1008322.g012
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Round 5: The AVMVN leaf rate operator was computationally demanding

and improved mixing very slightly

We tested the applicability of the AVMVN kernel to leaf rate proposals. This operator exploits

any correlations which exist between leaf branch substitution rates. To do this, we wrapped the

LeafAVMVN operator within an AdaptiveOperatorSampler (Table 2). The two con-

figurations compared here were a) adapt + Bactrian + NER (real) and b) AVMVN + NER +

Bactrian + adapt (real) (Table 4).

These results showed that the AVMVN operator yielded slightly better mixing (around 6%

faster) for the tree likelihood, the tree length, and the mean branch rate (Fig 13). However, it

also produced slightly slower mixing for κ, reflecting the high computational costs associated

with the LeafAVMVN operator (Fig 10). The learned weight of the LeafAVMVN operator was

quite small (ranging from 1 to 8% across all datasets), again reflecting its costly nature, but also

reinforcing the value in having an adaptive weight operator which penalises slow operators.

The LeafAVMVN operator provided some, but not much, benefit in its current form.

Overall, we determined that the AVMVN operator configuration was the final winner of

the tournament, however its performance benefits were minor and therefore the computa-

tional complexities introduced by the LeafAVMVN operator may not be worth the trouble.

Tournament conclusion

In conjunction with all settings which came before it, the tournament winner outperformed

both the historical cat configuration [3] as well as the recently developed cons (real) scheme

[33]. Averaged across all datasets, this configuration yielded a relaxed clock mixing rate

Fig 13. Round 5: Benchmarking the LeafAVMVN operator. See Fig 11 caption for figure notation.

https://doi.org/10.1371/journal.pcbi.1008322.g013
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between 1.2 and 13 times as fast as cat and between 1.8 and 7.8 times as fast as cons (real),
depending on the parameter. For the largest dataset considered (seed plants by Ran et al. 2018

[49]), the new settings were up to 66 and 37 times as fast respectively. This is likely to be even

more extreme for larger alignments.

Discussion

Modern operator design

Adaptability and advanced proposal kernels, such as Bactrian kernels, are increasingly preva-

lent in MCMC operator design [60–63]. Adaptive operators undergo training to improve their

efficiency over time [64]. In previous work, the conditional clade probabilities of neighbouring

trees have served as the basis of adaptive tree operators [26, 27]. Proposal step sizes can be

tuned during MCMC [38]. The mirror kernel learns a target distribution which acts as a “mir-

ror image” of the current point [32]. The AVMVN operator learns correlations between

numerical parameters in order to traverse the joint posterior distribution efficiently [30].

Here, we introduced an adaptive operator which learns the weights of other operators, by

using a target function that rewards operators which bring about large changes to the state and

penalises operators which exhibit poor computational runtime (Eq 11). We demonstrated how

learning the operator weightings, on a dataset-by-dataset basis, can improve mixing by up to

an order of magnitude. We also demonstrated the versatility of this operator by applying it to a

variety of settings. Assigning operator weights is an important task in Bayesian MCMC infer-

ence and the use of such an operator can relieve some of the burden from the person making

this decision. However, this operator is no silver bullet and it must be used in a way that main-

tains ergodicity within the search space [64].

We also found that a Bactrian proposal kernel quite reliably increased mixing efficiency by

15–20% (Fig 11). Similar observations were made by Yang et al. [31]. While this may only be a

modest improvement, incorporation of the Bactrian kernels into pre-existing operators is a

computationally straightforward task and we recommend implementing them in Bayesian

MCMC software packages.

Traversing tree space

In this article we introduced the family of narrow exchange rate operators (Fig 5). These opera-

tors are built on top of the narrow exchange operator and are specifically designed for the

(uncorrelated) relaxed clock model, by accounting for the correlation which exists between

branch lengths and branch substitution rates. This family consists of 48 variants, each of which

conserves a unique subset of genetic distances before and after the proposal. While most of

these operators turned out to be worse than narrow exchange, a small subset were more effi-

cient, but only on large datasets.

Lakner et al. 2008 categorised tree operators into two classes. “Branch-rearrangement”

operators relocate a branch and thus alter tree topology. Members of this class include narrow

exchange, nearest neighbour interchange, and subtree-prune-and-regraft [43]. Whereas

“branch-length” operators propose branch lengths, but can potentially alter the tree topology

as a side-effect. Such operators include subtree slide [65], LOCAL [66], and continuous change

[67]. Lakner et al. 2008 observed that topological proposals made by the former class consis-

tently outperformed topological changes invoked by the latter [68].

We hypothesised that the increased efficiency behind narrow exchange rate operators could

facilitate proposing internal node heights in conjunction with branch rearrangements. This

would enable the efficient exploration of both topology and branch length spaces with a single

proposal. Unfortunately, by incorporating a random walk on the height of the node being
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relocated, the acceptance rate of the operator declined dramatically (Fig 6). This decline was

greater when more genetic distances were conserved.

These findings support Lakner’s hypothesis. The design of operators which are able to effi-

ciently traverse topological and branch length spaces simultaneously remains an open

problem.

Larger datasets require smarter operators

As signal within the dataset becomes stronger, the posterior distribution becomes increasingly

peaked (Fig 3). This change in the posterior topology necessitates the use of operators which

exploit known correlations in the posterior density; operators such as AVMVN [30], constant

distance [33], and the narrow exchange rate operators introduced in this article.

We have shown that while the latter two operators are efficient on large alignments, they

are also quite frequently outperformed by simple random walk operators on small alignments.

For instance, we found that constant distance operators outperformed standard operator con-

figurations by up to two orders of magnitude on larger datasets but they were up to three times

slower on smaller ones (Fig 8). Similarly, our narrow exchange rate operators were up to 40%

more efficient on large datasets but up to 10% less efficient on smaller ones (Fig 12).

This emphasises the value in our adaptive operator weighting scheme, which can ensure

that operator weights are suitable for the size of the alignment. Given the overwhelming avail-

ability of sequence data, high performance on large datasets is more important than ever.

Future outlook

Based on these experiments, we have corroborated the results of Zhang and Drummond 2020

[33] by showing that the relaxed clock rate parameterisation can be greatly superior to the cate-

gories parameterisation. However this is conditional on the use of operators. Standard scale

operators are ineffective in the real rate space on large datasets and constant distance operators

tend to be the same on smaller ones. As the categories configuration is the current relaxed

clock model default in both BEAST as well as BEAST 2, we therefore recommend researchers

make the transition to the real rate parameterisation and employ an operator setup similar to

that described in this article.

However, there remain several avenues for improvement. First, the use of a Weibull clock

model prior, as opposed to a log-normal, could further decrease calculation time due to its

closed-form inverse cumulative distribution function. Second, the leaf rate AVMVN operator

presented in this article could be improved by proposing rates for only a small subset of corre-

lated branch rates per proposal, as opposed to all at once. This would mitigate the computa-

tional burden associated with a covariance matrix which grows with the tree size (An adaptive

leaf rate operator). Finally, while our adaptive weighting operator can learn operator weights

within parameter spaces, it is not clear how to best assign weights between spaces; the relative

weighting between clock model operators and tree topology operators for instance.

Conclusion

In this article, we delved into the highly correlated structure between substitution rates and

divergence times of relaxed clock models, in order to develop MCMC operators which traverse

its posterior space efficiently. We introduced a range of relaxed clock model operators and

compared three molecular substitution rate parameterisations. These methodologies were

compared by constructing phylogenetic models from several empirical datasets and comparing

their abilities to converge in a tournament-like protocol (Fig 7). The methods introduced are

adaptive, treat each dataset differently, and rarely perform worse than without adaptation.
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This work has produced an operator configuration which is highly effective on large align-

ments and can explore relaxed clock model space up to two orders of magnitude more effi-

ciently than previous setups.
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