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Termination of protein synthesis is not 100% efficient. A
number of natural mechanisms that suppress translation
termination exist. One of them is STOP codon readthrough,
the process that enables the ribosome to pass through the
termination codon in mRNA and continue translation to the
next STOP codon in the same reading frame. The efficiency of
translational readthrough depends on a variety of factors,
including the identity of the termination codon, the
surrounding mRNA sequence context, and the presence of
stimulating compounds. Understanding the interplay
between these factors provides the necessary background for
the efficient application of the STOP codon suppression
approach in the therapy of diseases caused by the presence
of premature termination codons.

Termination of Translation

Termination of translation is one of the most complex stages
in protein biosynthesis.1 It occurs when the STOP codon in
mRNA (UAA-ochre, UAG-amber or UGA-opal) enters the A-
site on the small ribosomal subunit, and leads to the release of a
nascent polypeptide chain from the peptidyl-tRNA positioned at
the ribosomal P-site. Both in eukaryotes and bacteria, 2 classes of
release factors (I and II) mediate this process, although these
mechanisms are distinct.

In bacteria, there are 2 class-I release factors, RF1 or RF2; they
recognize STOP codons through the direct action of a “peptide
anti-codon” sequence (RF1 interacts with UAG and UAA, RF2
with UGA and UAA) and mediate the hydrolysis of the peptidyl-

tRNA ester bond.2,3 Subsequently, a class-II release factor, RF3,
which possesses GTPase activity, mediates recycling of class-I fac-
tors by ejecting them from post-termination complexes.4-6

Eukaryotic translation is terminated by a protein heterodimer
consisting of 2 release factors, eRF1 (class-I) and eRF3 (class-II).7

In contrast to bacteria, where 2 class-I release factors are required,
in eucaryotes, eRF1 alone recognizes all 3 STOP codons,8-10

although its interaction with UGA differs from interactions with
UAA or UAG.11 eRF1 is a tRNA-shaped protein, containing 3
domains: N-terminal, middle and C-terminal.12 Recognition of
STOP codons occurs through a complex, 3-dimensional network
formed by conserved residues in the N-terminal domain of
eRF1.13-15 The highly conserved GlyGlyGln motif in the middle
domain of eRF1 is responsible for the release of a peptide from
the ribosome.9 The middle domain as well as the C-terminal
domain of eRF1 interact with eRF3, and the C-terminal domain
of eRF3 binds GTP. Formation of a ternary eRF1�eRF3�GTP
complex16-18 leads to GTP hydrolysis.5,19 Activation of the eRF3
GTPase activity additionally requires the interaction of the ter-
nary complex with poly(A)-binding proteins (PABPs) present at
the 30-UTR of mRNA.20 Hydrolysis of GTP leads to the correct
positioning of eRF1 in the ribosomal peptidyl transferase center,
which catalyzes the cleavage of the peptidyl–tRNA bond and
releases a polypeptide chain from the ribosome.21

To summarize, effective termination of translation in eukar-
yotes requires the presence of a STOP codon in the ribosomal A-
site, its interaction with 2 release factors, eRF1 and eRF3, and a
close distance between the terminating ribosome and 30UTR-
bound PABPs (Fig. 1).

Translational readthrough of natural STOP codons
The process of protein synthesis termination, although effec-

tive, is not 100% efficient. Several natural mechanisms of termi-
nation suppression exist, including ribosomal frameshifting,22

suppressor tRNAs (aminoacylated tRNAs with anticodons com-
plementary to STOP codons in mRNA)23 and STOP codon
readthrough (RT).24,25

In this review, we will focus on the latter mechanism. STOP
codon RT relies on competition between 2 distinct phenomena:
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the recognition of a termination codon by eRF1, which triggers
the proper termination of translation, and accommodation of
a near-cognate tRNA (nc-tRNA) in the A-site of the ribosome,
which leads to erroneous decoding of the STOP codon. Nc-
tRNAs are able to pair with STOP codons at 2 of the 3 positions
of a codon–anticodon sequence. This interaction may compete
with the STOP codon recognition by the release factor eRF1,
and thereby inhibit the process of protein synthesis termination.
As a result, an amino acid is erroneously incorporated into the
polypeptide chain and the ribosome continues translation to the
next STOP codon in the same reading frame (Fig. 2).

Spontaneous suppression of the translation termination, called
basal RT, has been best studied in viruses. So far, prediction of
eukaryote genes undergoing RT is mostly based on phylogenetic
comparisons and ribosome profiling studies,26-28 and only few
genes have been studied experimentally.29,30 Nevertheless, it has
been estimated that the level of basal RT of STOP codons in
mammalian cells ranges from 0.01 to 0.1%.31

Efficiency of Basal RT

Type of the STOP codon
The potential efficiency of basal RT is different for each of 3

STOP codons. Experiments in mammalian cell lines, using an

overexpressed dual luciferase reporter vector carrying each of the
STOP codons, have demonstrated that UGA has the highest
basal RT potential and thus the lowest fidelity. UAG is less
“leaky,” and UAA has the highest fidelity.30,32-34

Although the identity of a particular STOP codon is crucial
for the efficiency of basal RT, this process also depends on other
factors. Experimental studies in a number of organisms have
shown that both downstream and upstream sequence context
plays an essential role in determining the RT potential of STOP
codons.

30 context
In both bacteria and eukaryotes, the base immediately follow-

ing the STOP codon (position C4, with the first nucleotide of
the termination codon marked as C1) exerts the strongest influ-
ence on RT efficiency.35-39 This has led to the hypothesis that an
actual translation termination signal consists of a tetranucleotide
sequence, not only the STOP codon itself.40,41

While different studies are consistent in demonstrating that
the termination efficiency depends on the C4 nucleotide, it has
been shown both in yeast,24,42 and in higher eukaryotes that this
effect depends greatly on the identity of the STOP codon. Which
tetranucleotide is the most efficient in eliciting the RT in eukar-
yotes remains controversial (see Table 1). For example, the level
of basal UGA-C readthrough in mammalian cells (3–4%) was
shown to be 3–6 times higher than for the remaining UGA-N
tetranucleotides. However, for other STOP codons, the presence
of C at the C4 position did not significantly affect the efficiency
of suppression: for UAG (1–2%) or for UAA (�0 .5%).33

Until recently, STOP codon RT was documented in only few
genes in higher eukaryotes: syn, kelch and hdc in Drosophila mela-
nogaster,26,43,44 and b-globin gene in rabbits.45 However, the
recent comparative phylogenetic analyses of Drosophila and other
metazoan genomes identified over 280 genes undergoing
RT.26,46 32% percent of these genes contained UGA codon fol-
lowed by cytosine (UGA-C); these genes were nearly 10 times
more likely to undergo RT than genes with other nucleotide con-
texts. Importantly, these results confirmed that the order of
STOP codon “leakiness” in eukaryotes was UGA>UAG>UAA,
and the influence of C4 nucleotide on RT was C>U>G>A.26

The common conclusion of the studies in eukaryotes was that
cytosine at position C4 promoted higher levels of basal RT
(equivalent to the lower efficiency of termination); this was espe-
cially evident for the “leakiest” UGA codon. This conclusion is
consistent with the earlier observation that leaky STOP codons
in combination with the C4 cytosine (UGA-C and UAG-C) are
rarely used termination contexts in mammals.39 Nonetheless, the
identity of a nucleotide immediately downstream of the STOP
codon is still not sufficient to predict the RT efficiency for a given
nonsense mutation.

The variability in the impact of the C4 nucleotide position on
the efficiency of STOP codons RT can be, at least partially,
explained by the influence of other surrounding sequences.
Again, an important insight into the broader sequence context of
a basal RT has come from studies on viruses, where 3 main types
of motifs stimulating RT have been identified.23 Type I involves

Figure 1. The major factors involved in translation termination in Eukar-
yota. NTC – normal termination codon; PABP – poly(A)-binding proteins;
eRF1 and eRF3 – termination factors.

Figure 2. The principle of termination codon readthrough. Near-cognate
tRNA (nc-tRNA) successfully competes with eRF1 and leads to the decod-
ing of a STOP codon.
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the UAG-CAAUYA motif, type II – UGA-CGG or UGA-CUA
motif, and type III consists of the UAG-G motif plus a down-
stream stimulatory RNA pseudoknot structure.23,47-50

Motifs similar to those found in viruses have also been identi-
fied in eukaryotes. The CAA sequence downstream of the STOP
codon was associated with the high RT level in yeast.24,51 A more
recent study of the leaky context in yeast revealed that at least 6
nucleotides (¡CAAUUA) downstream of the STOP codon were
involved in promoting RT.52 Tests performed in the human kid-
ney epithelial cell line (HEK-293T) revealed a high level of RT
(7–31%) in 4 genes featuring a highly conserved -CUAG
sequence downstream of the UGA codon;30 experimental dele-
tion of this 30-motif almost completely abolished RT, clearly
demonstrating the importance of the downstream -CUAG
sequence in the UGA readthrough in mammals. The significance
of the 3 sequence context was also confirmed in another study,
which revealed that the C-terminally extended peroxisomal iso-
forms of 2 human proteins, LDHB and MDH1, result from
translational RT of the respective genes containing the UAG-CU
motif at the 30end of their regular coding sequences.53

An interesting example of the interplay between the adjacent
sequence context and STOP codon RT was reported in a study
on a patient with junctional epidermolysis bullosa, the terminal
recessive disease caused by mutations in the gene LAMA3.54 The
patient’s condition was surprisingly good, in spite of the presence
of 2 nonsense mutations in LAMA3 (R943X/R1159X). The
study revealed that expected deficiency of the full length laminin-
332 protein was rescued by spontaneous RT of the R943X allele.
The authors suggested that the sequence surrounding the 943X
codon (AGU-UGA-CUA) was a crucial factor in the induction
of premature STOP suppression.

50context
The evolutionary conservation of the 50-sequence context of

termination codons in Escherichia coli and humans led to the pos-
tulate that the upstream sequence adjacent to the STOP codon
also plays a role in the efficiency of translation termination.55

Indeed, it was shown that the penultimate and/or ultimate posi-
tions could modulate the level of translational RT in bacteria and
yeast.51 Experiments on yeast demonstrated that the presence of
adenine at 2 positions immediately upstream of the termination
codon stimulates RT of UAG, and most probably of other
STOP codons as well.42,56 This is consistent with the observation
that adenines 50-adjacent to STOP codons are evolutionarily con-
served in genes regulated by RT: among 91 plant and animal

viral RNAs subjected to RT, 65 sequences had adenine in posi-
tion ¡1, 69 in position ¡2, and 50 carried adenines both in
positions ¡1 and ¡2.42,56 The importance of the upstream
sequence context in the STOP codon RT is also supported by
studies on mammalian cells, although the RT potential of specific
50-adjacent sequences is still not clear. In experiments performed
on mouse fibroblasts (NIH3T3) and human HEK293T cell
lines, the highest RT was observed when the ¡1 position was
occupied by adenine or generally purine; in these models, uracil
at the ¡1 position was always associated with the lowest RT
level.30,57

In any case, the influence of the 50-adjacent sequence on the
efficiency of the STOP codon RT is considered to be more subtle
compared to the effect of the 30-sequence context.58

Mechanisms explaining the impact of sequence context
on the RT efficiency

In spite of intensive studies, molecular mechanisms explaining
the influence of the sequence context upon the RT efficiency
remain unclear.

The effect of a nucleotide following the termination codon
(position C4) appears to be linked to interactions of mRNA with
the translational machinery rather than to interactions of the
STOP codon with nc-tRNAs.59 Crosslinking experiments have
demonstrated that the C4 nucleotide in mRNA interacts with
eRF1.60 One of the ways by which the sequence downstream of
the termination codon could affect RT is the formation of sec-
ondary structures (stem–loops, pseudoknots), which can interact
with the ribosome.61,62 Such interaction of the mRNA pseudo-
knot with the ribosome was suggested to favor the binding of
nc-tRNAs at the A-site over binding of eRF1.25 It was even sug-
gested that structures formed by the 30-end of mRNA, acting as
components of efficient RT cassettes in eukaryotes may in fact be
the norm rather than an exception.62

Regarding the downstream sequence context, it has been pro-
posed that in yeast, the sequence 50 to the STOP codon could
stimulate RT through the direct interaction with the tRNA at the
ribosomal P-site. Alternatively, ultimate amino acids of the
nascent polypeptide could elicit RT through interaction with
the release factors and the ribosome.51 The latter mechanism
was, however, excluded in higher eukaryotes. Instead, it was sug-
gested that adenine at position ¡1 or ¡2 could induce RT by
modifying the structure of mRNA at the P-site; this would dis-
tort the structure of the ribosome, and modulate the competition
between release factors and natural suppressor tRNAs.56

Table 1. Basal RT potential: the influence of the STOP codon identity and of the C4 nucleotide context

STOP CODON

UGA > UAG > UAA SYSTEM USED REFERENCE

C>U»A>G G>C>UDA C>U»A>G Yeast Bonetti et al.42

C»U>G�A C�U>>G�A C�U>>G>A Mammalian McCaughan et al.39

C>>A>U»G U>C>G»A C>G>U»A Mammalian Manuvakhova et al.33

C>A»G»U C>A»G»U C>A»G»U Mammalian Floquet et al.31

C>A>G>U Mammalian Beznoskova et al.63
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Recently, it has been proposed that eIF3, the eukaryotic trans-
lation initiation factor, could be involved in promoting pro-
grammed RT of all 3 STOP codons set in the unfavorable
termination context.63 In this mechanism, which appears to be
evolutionary conserved, eIF3 interacts with the pre-termination
complex, where it prevents eRF1 from recognizing the third/
wobble position of the STOP codon. As a consequence, nc-
tRNAs with a mismatch in the same position can decode the
STOP codon, allowing the protein synthesis to be continued.

Last but not least, a study of the S. cerevisiae genome, search-
ing for adjacent open reading frames separated only by a unique
STOP codon (called SORFs),64,65 identified several “leaky”
STOP codons surrounded by sequences different from those
believed to promote RT. This implies that our understanding of
the role of 50- and 30-sequence context in the STOP codon sup-
pression is still incomplete, and suggests that mechanisms other
than RT might be involved in allowing ribosomes to bypass
STOP codons.65,66

Other factors influencing the efficiency of termination codon
RT

The STOP codon identity and the surrounding sequence con-
text are not the only factors that influence the efficiency of termi-
nation codon suppression. The RT of STOP codons can be also
enhanced by the increased level of mRNA that is subjected to ter-
mination suppression67 or the depletion of termination machin-
ery components like eRF1 and/or eRF3.68-70 Such mechanisms
involve changes in the cellular level of gene expression and are
not dependent on STOP codon identity and mRNA sequence
context.

It has been shown that post-translational modification of some
ribosomal proteins can also influence the RT process. Hydroxyl-
ation of the proline residue at position 64 of RPS23 protein in
the 40S ribosomal subunit is essential for the accurate translation
process. The hydroxylation site is located in the ribosomal decod-
ing center and can affect the termination codon recognition.
Inhibition of the hydroxylases involved in RPS23 modification
could stimulate the production of full-length proteins from
sequences containing nonsense mutations.71,72

Alternatively, translational RT can be stimulated by externally
provided chemical compounds, such as low molecular weight

drugs. Aminoglycoside antibiotics (AAGs) are among the most
important representatives of this group.58

STOP codon RT stimulated by AAGs
AAGs are oligosaccharides consisting of streptidine or

2-deoxystreptidine as the molecular core and a variable number
of sugar rings and ammonium groups.73 Early papers indicating
the RT potency of AAGs were already published in the
1960s.74,75 AAGs, commonly used to treat Gram-negative bac-
terial infections, efficiently bind to the 7 nucleotide sequence
in 16S rRNA and inhibit the function of the bacterial ribo-
some.11 In eukaryotes, a one-base difference (A->G at position
1408) in the 7 nucleotide motif in 18S rRNA significantly low-
ers the efficiency of its interaction with AAGs (e.g. a »25–50-
fold decrease in binding affinity for paromomycin).76,77 None-
theless, this low efficiency is sufficient to reduce discrimination
between cognates and nc-tRNAs in eukaryotes, thereby stimu-
lating translational RT.

Our current understanding does not allow unambiguous pre-
diction of the sequence context’s influence upon the susceptibil-
ity of STOP codons to AAG-mediated suppression in
mammalian cells.31-33 Nevertheless, the majority of evidence
indicates that, as in basal RT, UGA is the “leakiest” termination
codon and cytosine (or pyrimidine) residue at the C4 position
correlates with the highest level of AAG-induced RT (see
Table 2).

Statistical analysis of the RT potential, based on the study of
cultured mouse cells (NIH3T3) transfected with 66 sequences
containing a variety of termination codon contexts, suggested
that the combination of UGA-C with uracil in position ¡1 (U-
UGA-C) had the highest potential of AAG-stimulated RT. In
the presence of AAGs, all codons studied with this sequence con-
text systematically underwent RT, resulting in a full-length pro-
tein expression exceeding 0.5% of wild-type sequence
expression.31

Biological consequences of the STOP codon RT
The process of STOP codons RT may have important biolog-

ical consequences, ranging from those essential for the cell life
(as in programmed RT) to detrimental ones.

Table 2. RT potential in the presence of RT-stimulating compounds; the influence of the STOP codon identity and of theC4 nucleotide context

STOP CODON

UGA > UAG > UAA RT-STIMULATING DRUG REFERENCE

C>U>A>G C>U»G»C C>U>G»A G418 Howard et al.32

C>U>A»G C>U»G»C C »U»G»C Gentamicin
C>U»A>G C »U»G»C C »U»G»C Paromomycin
C>A»G>U U>C»G>A C>U>G>A G418 Manuvakhova et al.33

C>ADG >U U>CDG >A C>G>ADU Gentamicin
C>A�G>U C>ADG DU GDU >ADC Paromomycin
C>ADG DU G>CDU >A U>C>ADG Neomycin
C>A>G>U U>C>ADG U>ADC DG Sisomycin
C>U>ADG G>C>A>U A>U>C>G Lividomycin
C>A»G»U C>A»G»U C>A»G»U Gentamicin Floquet et al.31
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Viruses have long been known to use RT to increase their cod-
ing capacity.36,65,78,79 Some pathogenic fungi that infect plants
utilize RT in order to include additional signaling sequences tar-
geting the synthesized proteins to a specific cellular compart-
ment, like peroxisomes.80 In higher organisms, the biological
function of programmed STOP codon RT is less clear, although
recent studies have led to the identification of some functional,
RT-derived extended proteins. Examples include regulated RT in
a number of Drosophila genes,28 peroxisomal isoforms of meta-
bolic enzymes in diverse model organisms53 or programmed RT
in mammals.29,30,45,53,81

On the other hand, the RT-mediated C-terminal extension of
polypeptides may cause a dominant-negative effect of mistrans-
lated proteins, which may interfere with normal, cellular func-
tions or lead to the gaining a new function harmful to the cell.
Synthesis of useless polypeptides is also a waste of resources.
There are mechanisms in the cell to prevent detrimental effects of
the RT process. One of them is the existence of tandem STOPs,
which are secondary in-frame STOP codons present downstream
from the primary STOP codon. Tandem STOPs have been pur-
ported to limit the level of STOP codon suppression by provid-
ing a second chance for the translation termination apparatus to
stop protein synthesis.66,82 Tandem STOPs in yeast are preferen-
tially located at the third codon after the primary STOP; the six
preceding nucleotides act as a sequence context favoring transla-
tion termination at the first STOP.83 According to studies in
yeast and in ciliated species (Paramecium tetraurelia and Tetrahy-
mena thermophila), tandem STOP codons are more frequent in
highly expressed genes, where translation termination occurs
more frequently.83,84

Decoding of STOP codons
There are several nc-tRNAs, which can recognize each of the

termination codons, but their usage in the process of translational
RT does not appear to be random (see Table 3). According to a
number of studies, mainly in viral and yeast mRNAs, UGA is the
most frequently decoded as tryptophan, but it can also be mis-
read by cysteine or arginine tRNAs.85-88 UAA is decoded as

glutamine.85,86,88 Depending on the study, UAG has been
reported to be decoded as either glutamine or tryptophan,85,86,88

or as tryptophan, tyrosine or lysine.24 A recent study, using a
novel mass spectrometry-based approach for identifying amino
acids incorporated at the STOP codon in the in vivo reporter sys-
tem in yeast, has confirmed that the UGA codon is decoded as
tryptophan, cysteine or arginine, but indicated that both UAA
and UAG can be decoded as glutamine, tyrosine or lysine.15 In
addition, the latter study suggested that the sequence surround-
ing the STOP codon had no impact on the identity or propor-
tion of amino acids incorporated during the RT process.

Inconclusive results obtained in a variety of studies and stud-
ied organisms suggest that the identity of the amino acid inserted
at the STOP codon is likely to be irrelevant. This is related to the
fact that the purpose of the STOP codon suppression in the pro-
grammed RT is to access another ORF. This feature distinguishes
translational RT from, for example, selenocysteine insertion at
UGA codons, where character of accommodated tRNA is pre-
cisely determined.89

In conclusion, in spite of the observed bias in the decoding of
STOP codons, it is currently impossible to predict theoretically
which amino acid will be incorporated in the synthesized peptide
during the process of termination codon RT.

Translational RT of premature termination codons
STOP codon RT stimulated by chemical compounds such as

AAG is a promising approach to restore protein translation from
pathogenic alleles containing premature termination codons
(PTC). It is estimated that 20% of all genetic human diseases are
caused by single base-pair substitutions, which introduce PTCs
into the mRNA.90 The idea of the RT-driven correction of PTC
mutations has been tested for many inherited human diseases,
especially in the context of using AAGs as RT-stimulating agents.

The first report on the PTC-RT induced by AAGs was pub-
lished already in 1985. In this study, PTC-containing sequences
cloned in a reporter gene overexpressed in COS-7 cells were used
to demonstrate that paromomycin and G418 could restore
almost 20% of the wild-type protein activity.91 The first in vivo

Table 3. Near-cognate codons for the eukaryotic STOP codons. *Near-cognate codons reported to be most frequently involved in the translational RT of
each of the STOP codons are shown in bold (in vitro studies) or underlined (in vivo reporter studies)

TERMINATION CODONS EFFECT ON TRANSLATION

UAA UAG UGA STOP

POSSIBLE NEAR-COGNATE CODONS* AMINO ACID INSERTED

GAA GAG Glu E
AAA AAG Lys K
CAA CAG Gln Q

AGA, CGA Arg R
GGA Gly G

UCA UCG UCA Ser S
UUA UUG UUA Leu L

UGG UGG Trp W
UGC, UGU Cys C

UAC, UAU UAC, UAU Tyr Y
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proof of the therapeutic potential of AAGs was demonstrated in
mdx mice, an animal model of Duchenne muscular dystrophy
caused by premature PTC in the dystrophin gene.92 Following
treatment with gentamicin, up to 10–20% of the normal level
expression of the full-length dystrophin was observed. Since
then, the PTC-RT stimulating potential in the therapy of human
genetic diseases has been tested for many aminoglycosides, their
mimetics and derivatives. A variety of different models have been
used in these studies, including in vitro transcription and transla-
tion systems,33 cell lines,34,93-99 and animal models.100-104 Some
of the compounds have shown promising results and have been
tested in clinical trials.105-114

Although clinical improvement has been observed in some of
the studies, the efficiency of PTC-readthrough therapies is not
always satisfactory. Essentially, the same factors which determine
RT of natural termination codons may also influence the effi-
ciency of PTC suppression. The lessons from the RT of natural
STOP codons provide important clues in this respect: the iden-
tity of a STOP codon and its surrounding sequence remain the
most important factors. Until recently, neither of these could be
changed without invasive genome modifications. While the
emerging technologies based on the CRISPR/Cas9 system115

promise a change in the therapeutic potential related to the

correction of PTC at the genomic level, it remains important to
know how PTCs and their surrounding sequence context influ-
ence the potential therapeutic use of translational RT. This
knowledge is necessary to make an informed choice of a particu-
lar approach, best suited to a given mutation, or to apply addi-
tional measures that can influence the RT level. Even more
importantly, the efficiency of various AAGs or their derivatives in
promoting the suppression of natural STOP codons has to be
taken into account in efforts to establish the most effective thera-
peutic protocol for a given PTC mutation. Finally, further stud-
ies are required to better understand and systematize the variety
of sequence-unrelated factors that can modulate the suppression
of translation termination.
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