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ABSTRACT Manogepix is a broad-spectrum antifungal agent that inhibits glycosyl-
phosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we
characterized two efflux-mediated mechanisms in the fungal pathogens Candida al-
bicans and Candida parapsilosis that resulted in decreased manogepix susceptibility.
In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 ac-
tivated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. In C.
parapsilosis, a mitochondrial deletion activated expression of the major facilitator su-
perfamily transporter gene MDRI.
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nvasive fungal infections cause significant mortality and morbidity in humans, killing

>1.5 million people annually (1, 2). A rapidly growing immunocompromised popu-
lation is at particular risk, including those undergoing chemotherapy or solid organ
transplantation or those infected with HIV (3-5). Current antifungal treatments are
limited to three major classes of drugs: azoles, polyenes, and echinocandins (6). Issues
of safety, tolerability, and the evolution of fungal drug resistance necessitate the
development of antifungals with new mechanisms of action.

Fosmanogepix (formerly APX001, formerly E1211) is a novel intravenous (i.v.) and
orally available N-phosphonooxymethyl prodrug that is currently in clinical devel-
opment for the treatment of life-threatening invasive fungal infections that are often
resistant to standard-of-care antifungal therapy (ClinicalTrials identifier NCT03604705)
(7, 8). Fosmanogepix is converted by systemic phosphatases to the active moiety,
manogepix (MGX; APX001A, formerly E1210) (9). MGX targets the essential fungal
acyltransferase Gwt1 (10), blocking inositol acylation of glycosylphosphatidylinositol
(GPI) anchors and trafficking of GPl-anchored proteins from the endoplasmic reticulum
(ER) (11, 12). GPl anchors are attached to proteins in the ER and mediate their trafficking
and attachment to the cell surface (13). MGX does not inhibit the mammalian Gwt1
homolog, PIGW (12). Gwt1 inhibition halts fungal growth, activates unfolded protein
stress responses, and alters the composition of the fungal cell wall to expose immu-
nostimulatory B-(1—3)-glucans (14). MGX has activity against the major fungal patho-
gens Candida albicans (15), Candida auris (16), Cryptococcus neoformans (17), and
Aspergillus fumigatus (18), as well as less common pathogens, including Fusarium and
Scedosporium (19).

To further explore the therapeutic potential of fosmanogepix, it is important to
understand the potential for evolution of drug resistance. Spontaneous and serial
passage experiments revealed that the GWTT missense mutations V162A (heterozy-
gous) and V163A in C. albicans and Candida glabrata, respectively, demonstrated 16-
and 32-fold increases in MGX MIC values (20). These mutations are hypothesized to
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TABLE 1 C. albicans 5-3 and C. parapsilosis 5-2 demonstrate elevated MICs to MGX and FLC, while C. albicans 5-3 and C. albicans ZCF29/
ZCF29'W986L are resistant to beauvericin

Manogepix Fluconazole Beauvericin
Fold change Fold change Fold change

Background Strain MIC (ng/ml)  vs WT MIC (ug/ml)  vs WT MIC (ng/ml)  vs WT
C. albicans ATCC 90028 WT 0.0035 0.125 3.125

5-3 0.014 4 0.5 4 100 32
C. parapsilosis ATCC 22019  WT 0.007 2 25

5-2 0.056 8 4 2 25 1
C. albicans LC191 WT 0.0035 0.125 3.125

ZCF29/ZCF29WogsL 0.028 8 0.25 2 100 32

impede drug binding to the target and differ from essential catalytic residues in Gwt1
(10, 21). Off-target mutations driving increases in MGX MIC values are largely unknown,
although mutations in EMP24 suppress toxicity of the Gwt1 inhibitor gepinacin (14).
Emp24 facilitates quality control of GPI assembly by directing mature GPl-anchored
proteins from the ER to the Golgi complex (22). Emp24 loss of function is predicted to
release immature GPl-anchored proteins that accumulate during Gwt1 inhibition (23).

Spontaneous mutants of C. albicans (strain 5-3) and C. parapsilosis (strain 5-2) were
identified that demonstrated decreased susceptibility to MGX and fluconazole (FLC)
(20). The C. albicans mutant demonstrated 4-fold and 2-fold increases in the MICs of
MGX and FLC, respectively, versus MICS of the isogenic wild-type strain, while the C.
parapsilosis mutant demonstrated 8-fold and 4-fold increased MICs of MGX and FLC,
respectively, versus MICs of the isogenic wild-type strain (20) (Table 1). In vitro
susceptibility assays were performed as described in CLSI M27-A3, except that the
dilution scheme consisted of 2-fold serial dilutions from 5uM to 0.0049 uM
(1.792 wg/ml to 0.00175 wg/ml). MIC values were determined at 50% growth inhi-
bition relative to that of drug-free controls at 48 h (24).

These two strains were not mutated in the GWTT gene; thus, we hypothesized that
elevated MIC values for MGX and FLC could result from enhanced expression of
multidrug efflux pumps, affecting the susceptibility to the structurally and mechanis-
tically distinct antifungal agents. Although drug efflux has been frequently associated
with antifungal resistance (25), it has not been described for MGX. To assess efflux in
the strains with elevated MGX MIC values, we incubated cultures with Nile red, which
accumulates in lipid membranes and is actively extruded from cells by efflux (26). Nile
red is a substrate for the ATP-binding cassette (ABC) transporters Cdr1 and Cdr2, and
the major facilitator superfamily transporter Mdr1 (26), which are the efflux pumps
most frequently resulting in azole resistance in Candida (25). For these experiments,
unit equivalents of an optical density at 600 nm (ODg,,) of 1 of log-phase cultures were
washed 2 times in 1 ml buffer A (20 mM Na-HEPES, 150 mM NaCl, pH 7.5), resuspended
in 1 ml buffer A, and incubated at 30°C for 2 h. Nile red was added to 7 uM and
incubated for 1 h. Stained cells were washed 2 times in buffer A, and then efflux was
initiated by addition of glucose to 1% (wt/vol). Nile red fluorescence was determined
by flow cytometry after 30 min (Beckman CytoFLEX, phycoerythrin (PE) filter A01-1-
0052; analysis with CytExpert 2.3) and visualized by fluorescence microscopy on a
Zeiss AxioObserver.Z1 (Chroma Tech ET Cys5 filter). Both C. albicans and C. parapsilosis
MGX mutants with elevated MIC values accumulated ~60% less Nile red than their
parental strains (Fig. 1A and B), implicating drug efflux in the decreased susceptibility
to MGX.

To identify mutations responsible for activation of drug efflux, we sequenced the
genomes of the MGX mutants using the Illumina MiSeq platform (Genewiz). Adaptor
sequences and low-quality reads were removed using Trimmomatic v0.39 (27). Paired
reads were assembled to Candida Genome Database (28) C_albicans_SC5314_A21 (29)
and C_parapsilosis_CDC317 (30) by using Bowtie2 v2.3.5.1 (31) (Table 2). Missense
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FIG 1 Drug efflux is activated in mutants of C. albicans and C. parapsilosis with reduced susceptibility to
MGX. (A) C. albicans 5-3 and C. parapsilosis 5-2 mutants have reduced accumulation of the general efflux
pump substrate Nile red. Nile red fluorescence was monitored by flow cytometry. (Left) Median fluorescence
intensity (MFI; PE) = standard deviation (SD) measured in 3 independent experiments (10,000 events/sample).
(Right) Ratios of median fluorescence intensity for indicated mutant-wild type pair. Differences between
groups were determined by ratio paired t test. ¥, P =< 0.05; ** P = 0.005. Colored points indicate experimental
replicates. (B) Representative micrographs of C. albicans and C. parapsilosis wild-type strains and mutants with
decreased MGX susceptibility stained with Nile red, prepared the same as for those in panel A. Exposure times
(milliseconds) are indicated in red. (C) Relative transcript levels of CDR11, SNQ2, and MDR1 but not CDR1 or
FLUT are upregulated in C. albicans MGX" 5-3. RT-qPCR data are mean fold changes = SDs from 3 biological
replicates assayed in technical triplicates, normalized to ACTT and GPD1. (D) Transcript levels of MDR1 but not
CDR1, SNQ2, or FLUT are upregulated in C. parapsilosis MGX" 5-2. Experiments were performed the same as
for those in panel C and normalized to ACTT.

single nucleotide variants (SNVs) between parental and mutant assemblies were de-
tected using Mutect v1.1.7 (32) and SnpEff v2.6.3 (33) and validated by Sanger se-
quencing. Loss of heterozygosity or aneuploidy was not detected by the Yeast Mapping
Analysis Pipeline (34) and CNV-seq (35).
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TABLE 2 Fungal strains used in this study

Reference
Strain Genotype or source
C. albicans
ATCC 90028 Wild type ATCC
ATCC 90028 5-3 ZCF29W98sL/7CF29 20
CaLC191 (DAY185) URA3/ura3::imm434 HIS1/his1:hisG ARG4/arg4:hisG 45
CalC3815 URA3/ura3:iimm434 HIS1/his1:hisG ARG4/arg4::hisG 36
ZCF29W9o86L/ZCF29
C. parapsilosis
ATCC 22019 Wild type ATCC
ATCC 22019 5-2 capafmp06A3780-5672 20

In C. albicans MGX" 5-3, a single heterozygous SNV resulted in a W986L substitution
in the Zn(ll),Cys, transcription factor Zcf29. This gain-of-function mutation was previ-
ously identified in beauvericin-resistant C. albicans (36). Consistent with this connec-
tion, C. albicans MGX" 5-3 demonstrated a 32-fold increase in the MIC value versus that
in the wild-type (WT) strain to beauvericin, and an engineered ZCF29/ZCF29Vo8sL C,
albicans mutant demonstrated an 8-fold increase in the MGX MIC value versus that in
the WT strain (Table 1). Transcript levels for efflux pump genes were assessed using
reverse transcriptase quantitative real-time PCR (RT-qPCR). RNA was extracted from
10 ml log-phase yeast extract-peptone-dextrose (YPD) cultures grown at 30°C by using
a Qiagen RNeasy minikit. RNA was treated with Qiagen RNase-free DNase and reverse
transcribed using Bio-Rad iScript ¢cDNA synthesis kit. gPCR was performed using
Thermo Fisher Scientific SYBR green master mix and oligonucleotide primers described
in Table S2 in the supplemental material. Data were analyzed using Bio-Rad CFX
Manager 3.1. Transcript levels of efflux genes CDR11, SNQ2, and MDR1 were increased
in MGXr 5-3 by 6.8, 13.3, and 2.2-fold, respectively (Fig. 1C), consistent with transcrip-
tional profiling of C. albicans ZCF29/ZCF29W°8¢t (36). Transcript levels of CDR1 and FLU1
were unchanged (Fig. 1C).

No missense SNVs were detected in C. parapsilosis MGX" 5-2; however, a deletion
was detected in the mitochondrial chromosome from bases 15430 to 17322. The
boundaries of this deletion were defined using MitoDel v3.0 (37), which identified 2,087
reads across this junction. This deletion interrupts CAPAFMP06 (COXT), which encodes
cytochrome ¢ oxidase, and CAPAFMP06.3/CAPAFMP06.4, intronic open reading frames
(ORFs) to COX1 that encode enzymes with predicted roles in mRNA splicing (38).
Consistent with a respiratory defect, C. parapsilosis MGX" 5-2 formed petite colonies
on YP glucose-containing medium and did not grow on YP medium containing the
nonfermentable carbon source glycerol (Fig. 2A). Furthermore, when subcultured in
glycerol-supplemented synthetic complete medium for 2 h and then stained with
10 nM mitochondrial membrane potential-dependent stain MitoTracker Red CMXRos
(Invitrogen) for 30 min, C. parapsilosis MGX" 5-2 showed ~60% reduced staining relative
to that of the parental strain. MitoTracker Red fluorescence was quantified by flow
cytometry (Fig. 2B) (Beckman CytoFLEX, DsRed filter A01-1-0053) and visualized by
fluorescence microscopy (Fig. 2C) on a Zeiss AxioObserver.Z1 (Chroma Tech ET HQ
DsRed filter).

Respiratory competence is linked to drug susceptibility in diverse fungal pathogens
and is often driven by efflux pump overexpression (39). Indeed, transcript levels of
MDR1 were 8.5-fold upregulated in C. parapsilosis MGX" 5-2 (Fig. 1C), consistent with a
previously described petite mutant of C. albicans with decreased susceptibility to FLC
(40, 41). In some Saccharomyces cerevisiae and C. glabrata petite mutants, the Pdr1/Pdr3
transcription factors induce expression of ABC transporter genes PDR5 (ortholog of
CDR1), SNQ2, and YOR1 (42-44). This is not the case in C. parapsilosis MGX" 5-2, as
transcript levels of CDRT and SNQ2 were unchanged (Fig. 1C).

In conclusion, we have identified two efflux-mediated mechanisms conferring re-
duced susceptibility to MGX in two Candida species. In C. albicans, a gain-of-function
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FIG 2 C. parapsilosis MGX' 5-2 has a defect in mitochondrial function. (A) C. parapsilosis MGX' 5-2 forms
petite colonies on YPD agar and does not grow on YP-glycerol agar; 10+ fold dilutions of stationary-phase
cultures of C. parapsilosis were spotted on YP agar containing 2% (wt/vol) b-glucose or glycerol and then
photographed after 48 h of growth at 30°C. (B) C. parapsilosis MGX" 5-2 has reduced mitochondrial
membrane potential when subcultured in medium containing 2% (wt/vol) glycerol. MitoTracker Red
CMXRos fluorescence was monitored by flow cytometry. Data are median fluorescence intensities
(DsRed) + SDs from 3 independent experiments (10,000 events/sample). Differences between groups
were determined by ratio paired t test. * P =0.05. (C) Representative micrographs of MitoTracker
Red-stained cells prepared the same as for those in panel B.
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mutation in the transcription factor gene ZCF29 activated expression of ABC transporter
genes CDR11 and SNQ2. In C. parapsilosis, a mitochondrial deletion activated expression
of the major facilitator superfamily (MFS) transporter gene MDR1. The MIC of MGX was
at maximum 0.0056 wg/ml, suggesting that these individual mutations may not result
in clinically significant resistance. Additionally, loss of mitochondrial function is ex-
pected to impair virulence, as observed with some C. albicans petite mutants (41).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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