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Abstract: Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical
phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction,
and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA
sequence. Epigenetic marks may be reversible and their differential response to external stimuli could
explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug
development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions
between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were
identified in SSc skin specimens and blood samples containing a wide variety of dysregulated
miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence
also confirm their participation in impaired angiogenesis and aberrant immune responses. Research
approaches focusing on earlier stages of the disease and on differential miRNA expression in various
tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs
as biomarkers and therapeutic targets.
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1. Introduction

Systemic sclerosis (SSc) is a rare autoimmune disease with miscellaneous clinical man-
ifestations and a distinct autoantibody profile [1,2]. It is characterized by high morbidity
and mortality related to the extent of fibrosis and obliterative vasculopathy of the internal
organs [3–5]. The etiology of SSc is not fully unraveled, but evidence supports a complex
interaction between genetic variants, environmental exposures, and epigenetic modifica-
tions [6]. The modest effect size of SSc-associated genetic risk loci shifted the interest of the
scientific community toward the contribution of epigenetics to disease predisposition and
its complex pathogenesis [7–9].

SSc pathophysiology is distinguished by the interaction between three main altered
pathways: microangiopathy, immune dysfunction, and fibrosis [10–12]. An inaugural
vascular injury [13–15] leads to activation of cell-mediated and humoral immune re-
sponses [16,17], subsequently resulting in fibroblast to myofibroblast differentiation [18]
with production and deposition of collagen and other extracellular matrix (ECM) compo-
nents into the vascular walls, skin, and internal organs [19–21].

Biomedicines 2021, 9, 1471. https://doi.org/10.3390/biomedicines9101471 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-8156-0621
https://doi.org/10.3390/biomedicines9101471
https://doi.org/10.3390/biomedicines9101471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9101471
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9101471?type=check_update&version=2


Biomedicines 2021, 9, 1471 2 of 18

Epigenetics refers to the modulation of gene expression through heritable and re-
versible alterations of the chromatin structure without interfering with the DNA sequence.
Epigenetic mechanisms have previously been linked to the pathogenesis of SSc, extensively
reviewed elsewhere [22–26]. Evidence of association to SSc has previously been reported
for all major epigenetic alterations, including DNA methylation [27–31], histone modifi-
cations [32–34], non-coding small (miRNA), and long (lncRNA) RNA transcripts [35–37].
Epigenetic mechanisms regulate diverse physiological processes such as cell division and
differentiation, growth, and development, being responsible at least in part for the variable
phenotypic traits in both health and disease [7,9,37]. The epigenome is susceptible to
change and can be influenced by various environmental factors, including air pollution,
infection, diet, drugs, metals, and chemicals [38–40].

DNA methylation is an enzyme-mediated process occurring mostly at the CpG sites
where cytosine is located in the vicinity of guanidine in the nucleotide sequence of the
DNA structure. DNA methyltransferases (DNMTs) catalyze the addition of a methyl
(CH3) group to the 5-carbon of the cytosine ring, generating 5-methylcytosine (5-mC). The
methylation status (5-mC content) of a CpG island (cluster of CpG sites) in the promoter
region of a gene modulates gene transcription. This translates into either gene-silencing
if highly methylated or active gene transcription in low methylated states [24,36,41]. His-
tone modifications refer to post-translational alterations (such as methylation, acetylation,
phosphorylation, ubiquitylation, or sumoylation) of the histone proteins, which alter their
interaction with the DNA strand. The subsequent conformational changes in the chromatin
architecture make the DNA more or less accessible to transcriptional factors, resulting
in activation or repression of gene transcription [42,43]. Non-coding RNAs, miRNAs
(<30 nucleotides) [44,45], and lncRNAs (>200 nucleotides) [46,47] are functional regula-
tors of gene expression at the transcriptional and post-transcriptional level. These RNA
fragments are transcribed from the DNA but are not translated into proteins [22,23,26,48].

MiRNAs, the focus of this review, bind post-transcriptionally to a complementary
sequence from a target mRNA and induce gene silencing. This can be achieved by blocking
mRNA translation or promoting mRNA cleavage based on the degree of complementar-
ity [24,37]. MiRNAs have the ability of regulating multiple mRNA targets, whereas transla-
tion of one mRNA transcript into protein can be modulated by various miRNAs [49,50]
(Figure 1).

Upregulation or downregulation of diverse miRNAs has been identified in blood
samples and tissue biopsies from patients with SSc [34,51]. MiRNAs involved in fibrosis
received particular attention compared to the scarce data on immune disfunction and
vasculopathy [52]. An even more attractive aspect besides a better understanding of the
contribution to disease pathogenesis is their potential use as diagnostic and prognostic
markers as well as the possibility of developing targeted therapies [53].

The purpose of this review is to illustrate the current knowledge on the role of miRNAs
in modulating the three main pathogenic pathways in SSc as well as depicting their clinical
utility as biomarkers and therapeutic targets.
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Figure 1. Illustration of epigenetic mechanisms. This figure is a schematical representation of the epigenetic mechanisms
that modulate gene expression: (1) Histone modifications refer to post-translational modifications of the histone proteins
leading to conformational changes that make DNA more or less accessible to RNA polymerase II (RNA POL II); (2) DNA
methylation is an enzyme-mediated process consisting of the addition of a methyl (CH3) group to the 5-carbon of the cytosine
ring from a CpG site. Clusters of CpG sites form a CpG island. The methylation status of a CpG island located in the
promotor region of a gene can either lead to gene silencing if highly methylated or active gene transcription if slightly
methylated; (3) Non-coding RNAs (lncRNAs and miRNAs) are functional RNA fragments transcribed from the DNA by
RNA Pol II but unable to be translated into proteins. LncRNAs possess diverse functions, such as the capacity of altering
mRNA splicing or recruiting chromatin remodeling proteins and transcription factors. MiRNAs have the ability to bind
post-transcriptionally to a complementary sequence from a target mRNA and induce gene silencing. Depending on the
degree of homology they can either inhibit transcription or induce mRNA cleavage.
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2. Serum- and Tissue-Specific miRNA Signatures in SSc

Multiple studies have aimed at identifying miRNAs involved in the pathogenesis of
SSc and their potential as diagnostic or prognostic biomarkers, as well as therapeutic targets.
In this regard, Zhu H (2012) identified a plethora of miRNAs differentially expressed in SSc
skin biopsies compared to healthy controls (HC). The miRNA profiles differed between
the limited (lcSSc) and diffuse (dcSSc) clinical subtypes. Twenty-one miRNAs overlapped
between the two SSc subgroups, out of which six (miR-21, miR-31, miR-503, miR-146, miR-
29b, miR-145) were predicted to target mRNAs involved in fibrosis. Further, the analysis
was restricted to the TGF-β-associated genes and the miRNAs that regulate their expression
levels in both skin specimens and SSc fibroblasts: SMAD7 (miR-21 predicted target),
SMAD3 (miR-145 predicted target), and COL1A1 (miR-29b predicted target). In these
samples, miR-21 increased levels were mirrored by SMAD7 downregulation, whereas miR-
145 and miR29b decreased levels were associated with SMAD3 and COL1A1 upregulation.
Stimulation of healthy dermal fibroblasts with recombinant TGF-β resulted in increased
miR-21/decreased SMAD7, increased miR-145/decreased SMAD3, and decreased miR-
29b/increased COL1A1 levels, suggesting that these miRNAs do not directly control their
target mRNAs [34].

Interestingly, these miRNAs were not reproduced in the study conducted by Li (2012).
By means of miRNA microarray analysis, 24 miRNAs were identified as being differentially
expressed in SSc skin samples. Results were confirmed by real-time PCR. Target genes
with a known role in SSc pathogenesis were identified for six miRNAs (hsa-miR-206, hsa-
miR-133a, hsa-miR-125b, hsa-miR-140-5p, hsa-miR-23b, hsa-let-7g) using bioinformatics
analysis. Hsa-miR-206 received particular attention as it regulates an impressive number
of genes, 15 of them being correlated with SSc pathogenesis [54].

As expected, miRNAs identified in SSc serum samples differ from tissue miRNAs.
Steen (2015) proposed a circulating miRNA signature in a large cohort of 189 patients.
The study included 120 SSc patients, 29 systemic lupus erythematosus (SLE) patients, and
40 HC. From the 37 identified miRNAs, 19 were significantly dysregulated (14 miRNAs
decreased and five miRNAs increased). Quantitative PCR reflected the main differences
between SSc patients and HC with respect to the expression of the miRNA 17~92 cluster,
as well as miR-16, miR-223, and miR-638. Predicted targets of these miRNAs are mRNAs
involved in different fibrotic pathways, including TGF-β [51].

A different miRNA circulating profile was demonstrated by means of microarray
analysis in the serum of 10 SSc patients compared to six HC in a study by Rusek et al.
(2019). Out of the 15 miRNAs differentially expressed, miR-4484 was remarkably increased
(18-fold). Bioinformatics analysis suggested miR-4484 as a potential regulator of fibrosis
through the identification of a wide range of target genes involved in the TGF-β/SMAD and
Wnt/β-catenin signaling pathways, as well as collagen synthesis and extracellular matrix
(ECM) homeostasis [45]. Matrix metalloproteinase-21 (MMP-21), even though not a direct
target gene according to computational analysis, was hypothesized to be up-regulated by
miR-4484 due to their close chromosomal vicinity and the increased MMP-21 serum levels.
These findings further enabled the authors to suggest that miR-4484 and MMP-21 might
play a role in SSc pathogenesis and proposed them as serum biomarkers [45].

Another relevant aspect is that circulating miRNA profiles are able to discriminate
between SSc clinical subtypes (lcSSc versus dcSSc) and autoantibody specificities, as shown
by Wuttge (2015). Out of 45 selected miRNAs, four miRNAs (miR-223, miR-181b, miR-
342-3p, miR-184) consistently exhibited different expression levels in the lcSSc and dcSSc
subgroups. In the autoantibody subgroups, five miRNAs (miR-409, miR-184, miR-92a,
miR-29a, miR-101) showed statistically different expression levels [55].

A distinct miRNA signature in SSc and idiopathic pulmonary fibrosis (IPF) lung
fibroblasts was expressed in the experiment led by Mullenbrock (2018). The author proved
that various miRNAs were differentially expressed compared to controls. To validate their
function, transfection of miR-29b-3p, miR-138-5p, and miR-146b-5p mimics was performed
and their effects on gene expression were quantified using a Nanostring fibrosis panel. One
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hundred seventy-five pro-fibrotic target genes were consequently downregulated in the SSc
and IPF lung fibroblasts, supporting a role for miR-29b-3p, miR-138-5p, and miR-146b-5p
in fibrosis in these disease models [56].

3. MiRNAs: Culprits in SSc Pathogenesis
3.1. Profibrotic miRNA Transcripts

Zhu H (2012) identified altered expression levels of miR-21, miR-145, and miR-29b in
SSc skin and cultured fibroblasts [34]. A further study from the same group explored the
expression levels of miR-21 and its target gene Smad7 in SSc and bleomycin-treated mice
skin biopsies. They validated miR-21 as an important regulator of the TGF-β signaling
pathway through the manipulation of its direct target, SMAD7. On the one hand, TGF-β
fibroblast stimulation induced upregulation of miR-21 and downregulation of Smad7,
and on the other hand, transfection of small interfering RNA (siRNA) decreased Smad7
protein levels. Smad7 is a negative regulatory component of the TGF-β signaling pathway.
Therefore, decreased levels of Smad7 will have the opposite effect by stimulating fibrosis.
Similar results were obtained in the bleomycin-treated mice with upregulation of miR-21
and downregulation of Smad7. After treatment with bortezomib, miR-21 decreased, Smad7
levels were restored, and skin fibrosis improved [57]. The same profibrotic phenotype of
miR-21 was demonstrated by S. Jafarinejad-Farsangi (2019). Upregulation of miR-21 was
observed in both diffuse cutaneous SSc (dcSSc) and TGF-β-stimulated fibroblasts, leading
to increased type I collagen production [58].

Ly (2020) has recently proven that miR-145 mediates α-smooth muscle actin (α-SMA)
myofibroblast differentiation through downregulation of transcription factor Kruppel-like
factor 4 (KLF4) in TGF-β1-stimulated dermal fibroblasts and SSc fibroblasts. KLF4 has
a prohibitory effect on the XYLT1 gene. XYLT1 encodes xylosyltransferase-1 (XT-1), a
proteoglycan synthesis biomarker. Experiments revealed that exogenous delivery of KLF4
siRNA into normal human fibroblasts led to downregulation of KLF4 mRNA levels and
upregulation of XYLT1 expression levels in a dose-dependent manner in response to TGF-
β1. The same trend was identified in SSc fibroblasts, therefore leading to the identification
of a new miR-145/KLF4 profibrotic pathway [59].

Another validated profibrotic miRNA is miR-92a. Transfection of miR-92a mimics in
normal fibroblasts resulted in decreased expression levels of matrix metalloproteinase-1
(MMP-1). MiR-92a upregulation in SSc fibroblasts and serum from SSc patients might be a
consequence of TGF-β endogenous activation as increased miR-92a levels were evidenced
in normal dermal fibroblasts stimulated with TGF-β and decreased expression levels were
shown after inhibition of TGF-β with siRNA [60]. MMP-1 is also the target gene for
another profibrotic miRNA, miR-202-3p, as shown by Zhou (2017). In SSc skin samples
and cultured fibroblasts, miR-202-3p was upregulated and MMP-1 was downregulated.
Luciferase reporter assays identified MMP-1 as the target gene for miR-202-3p and gain
and loss of function assays showed that in SSc fibroblasts MMP-1 was regulated by miR-
202-3p [61].

Nakayama (2017) showed that miR-4458 plays a decisive role in type I collagen
production via the IL-23 immune pathway, therefore indicating IL-23 as an important factor
in SSc fibrogenesis and a possible therapeutic target. In normal fibroblasts, IL-23 stimulation
leads to increased miR-4458 levels and downregulation of type I collagen production.
Conversely, IL-23 stimulation of SSc fibroblasts also prompts miR-4458 upregulation, but
the effect at the protein level is enhanced type I collagen synthesis [62].

MiR-155 also proved to play a role in SSc fibrogenesis by regulating Wnt/β catenin
and Akt profibrotic pathways. This finding was illustrated after transfection of mouse
fibroblasts with miR-155 inhibitor, which resulted in increased degradation of β-catenin,
decreased phosphorylation of Akt, and, subsequently, decreased type I collagen production.
In bleomycin-treated miR-155 knockout mice and after topical administration of antagomiR-
155 in bleomycin-induced fibrosis mouse models, decreased protein levels of β-catenin
and pAkt were evidenced. Additionally, improvement of skin fibrosis was noted, therefore
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supporting the therapeutic potential of miR-155 inhibition [63]. Christmann (2016) further
suggested miR-155 as a potential therapeutic target since miR-155 knockout mice exhibited
less aggressive lung involvement and better survival rates after bleomycin administration
compared to wild-type controls [64]. Additionally, the same group suggested a promising
role for miR-155 as a prognostic biomarker in SSc-ILD due to its correlation with higher
high-resolution computed tomography (HRCT) fibrosis scores and lower performances on
pulmonary function tests (PFTs) [64].

Data from Artlett (2017) showed that miR-155 expression levels depend upon inflam-
masome activation. The study depicted the strong link between inflammasome activa-
tion, miR-155 expression, and collagen synthesis in SSc fibroblasts and bleomycin mouse
models. Inflammasome inhibition in SSc fibroblasts via caspase-1 inhibitor determined
downregulation of miR-155 and decreased collagen production. Fibroblasts from NLRP3
knockout mice did not exhibit enhanced miR-155 expression levels after stimulation with
bleomycin, showing that miR-155 expression cannot be achieved without inflammasome
activation [65].

The study by Henderson (2021) validated miR27a-3p as a profibrotic epigenetic direct
regulator of the sFRP-1 protein, a Wnt pathway antagonist. Transfection of miR27a-3p
mimic in TGF-β1-stimulated normal dermal fibroblasts induced COL1A1 and Axin-2
upregulation, as well as downregulation of the antifibrotic PPARγ mRNA and decline in
MMP-1 protein levels. The authors also revealed decreased sFRP-1 protein levels in the
serum and skin biopsies of early dcSSc patients and increased miR27a-3p expression levels
in SSc dermal fibroblasts. A 33% drop in collagen synthesis resulted following exogenous
delivery of antagomiR27a-3p in sFRP-1-depleted SSc dermal fibroblasts. These results
suggest a role for miR27a-3p in SSc fibrosis [66]. Another study from the same group
confirmed miR33a-3p as an additional epigenetic regulator of the Wnt pathway through
direct repression of Dickkopf-1 (DKK-1) mRNA translation. MiR33a-3p was increased
in SSc fibroblasts, whereas DKK-1 was decreased. AntagomiR33a-3p transfection into
SSc fibroblasts led to a significant reduction in collagen 1 synthesis, again supporting a
profibrotic role for this miRNA in SSc pathogenesis [67].

MiR-483-5p displayed a profibrotic phenotype in SSc. Serum levels of miR-483-5p are
elevated in such patients. Transfection of miR-483-5p mimics in primary human fibroblasts
and pulmonary endothelial cells caused increased synthesis of type IV collagen via mod-
ulation of COL4A1 and COL4A2 target genes. Transfection of miR-483-5p in endothelial
cells also increased the expression levels of αSMA and SM22A mRNA, suggesting that
miR-483-5p orchestrates the myofibroblast differentiation of endothelial cells [44].

Table 1 summarizes the main profibrotic miRNAs identified so far along with their
targeted genes.

Table 1. Profibrotic miRNAs involved in SSc pathogenesis.

miRNA Expression Tissue
Specimen(s) Target Gene(s) Reference(s)

miR-21 Upregulated

Fibroblasts
Skin

Bleomycin-treated
mice skin samples

SMAD7
Zhu et al. [34,57]

Jafarinejad-Farsangi
et al. [58]

miR-145 Upregulated
Fibroblasts

TGF-β1-
stimulated
fibroblasts

KLF4 Ly et al. [59]

miR-92a Upregulated
Fibroblasts

Serum
TGF-β-stimulated

fibroblasts
MMP1 Sing et al. [60]

miR-202-3p Upregulated Fibroblasts
Skin MMP1 Zhou et al. [61]

miR-4458 Upregulated Fibroblasts Unknown Nakayama et al. [62]

miR-155 Upregulated
Fibroblasts

Skin
Serum

CSNK1A1
SHIP1

Yan et al. [63]
Christmann et al. [64]

Artlett et al. [65]
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Table 1. Cont.

miRNA Expression Tissue
Specimen(s) Target Gene(s) Reference(s)

miR-27a-3p Upregulated
Fibroblasts

Skin
Serum

sFRP-1 Henderson et al. [66]

miR-33a-3p Upregulated Fibroblasts DKK-1 Henderson et al. [67]
KLF4: Kruppel-like factor 4; MMP1: matrix metalloproteinase 1; sFRP-1: secreted frizzled-related protein-1;
DKK-1: Dickkopf-1.

3.2. Antifibrotic miRNA Transcripts

TGF-β, a promoter of collagen synthesis and fibroblast proliferation and differentia-
tion, plays a central role in SSc pathogenesis [68]. TGF-β signaling is mediated through its
receptors, TGF-β receptor type 1 (TGFBR1) and type 2 (TGFBR2) [69]. Numerous in vitro
and in vivo experiments have shown that TGFBR2 is involved in dermal and internal
organ fibrosis [70–72]. From that perspective, Shi (2018) has demonstrated that TGFBR2
upregulation in SSc dermal fibroblasts and in dermal biopsies is a direct consequence of
miR-3606-3p downregulation. Additionally, transfection of miR-3606-3p mimics in SSc
dermal fibroblasts resulted in a reduction of TGFBR2 expression, as well as reduced p-
SMAD2/3 and type I collagen protein levels [73]. MiR-3606-3p silencing of the TGFBR2
mRNA could represent a new therapeutic strategy in SSc.

Besides the profibrotic phenotype displayed by miR-4458, Nakayama (2017) likewise
showed that miR-18a influences type I collagen production. In normal fibroblasts, IL-
23 stimulation led to decreased miR-18a expression levels and downregulation of type
I collagen synthesis. In contrast, IL-23 stimulation of SSc fibroblasts caused miR-18a
downregulation and increased type I collagen synthesis. This paradox is explained by
strong downregulation of miR-18a, a potent antifibrotic miRNA, due to intrinsic activation
of TGF-β in SSc fibroblasts. The profibrotic activity of IL-23 was subsequently demonstrated
by accelerated skin fibrosis after IL-23 injection of bleomycin-treated mice [62].

Five members of the let-7 family were dysregulated in SSc and localized scleroderma
(LSc) skin samples compared to normal controls and keloid skin specimens. Let-7a was
significantly downregulated in scleroderma tissues, with lower levels in the LSc group
compared to the SSc group. TGF-β1 stimulation of normal fibroblasts resulted in decreased
expression levels of Let-7a and increased production of type I collagen, suggesting that
downregulation of Let-7a might mitigate the overexpression of extracellular matrices,
mainly the secretion of type I collagen. This hypothesis was validated by transfection of
the Let-7a inhibitor in the normal fibroblasts, which led to increased production of type
I collagen. Serum levels of Let-7a were also downregulated and the same trend of lower
levels in the LSc subset compared to the SSc subset was maintained. Injection of Let-7a in
bleomycin-induced fibrosis mouse models resulted in improvement of skin fibrosis [74].

Maurer (2010) demonstrated significant downregulation of miR-29a in SSc-cultured
fibroblasts, SSc skin biopsies, and bleomycin-induced fibrosis mouse models. In order to
validate its function and role in SSc fibrogenesis, transfection of pre-miR-29a/29b/29c in
SSc fibroblasts was conducted. This manipulation led to downregulation of type I collagen
and markedly decreased expression levels of type III collagen being observed after pre-miR-
29a transfection. Conversely, transfection of anti-miR-29a in normal fibroblasts determined
upregulation of type I and type III collagens. COL3A1 proved to be a direct target of miR-
29a after cotransfection of HEK 293 cells with pre-miR-29a and pGL3 luciferase reporter
containing the 3’-UTR of COL3A1. Cotransfection resulted in reduced relative luciferase
activity, whereas cotransfection with anti-miR-29a and pGL3 luciferase reporter led to
enhanced relative luciferase activity. The group subsequently analyzed the influence of
several profibrotic cytokines, namely TGF-β, PDGF-B, and IL-4, on miR-29a expression.
They demonstrated that stimulation of normal fibroblasts with these molecules resulted
in downregulation of miR-29a similar to levels seen in SSc fibroblasts, whereas inhibition
of TGF-β and PDGF-B pathways with imatinib restored miR-29a levels in SSc fibroblasts
as well as bleomycin-induced skin fibrosis. Given the direct regulation of collagen genes
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by miR-29a, this miRNA could be a potential antifibrotic therapeutic target [75]. In a
recent study by Jafarinejad-Farsangi (2019), transfection of miR-29a mimics significantly
reduced collagen type I expression levels in SSc and TGF-β-stimulated fibroblasts, further
supporting the antifibrotic role of miR-29a [58].

Similarly, Ciechomska (2014) validated TAB1 as another target gene for miR-29a,
demonstrating an important role for this miRNA in SSc fibrosis. Transfection of miR-29a in
normal fibroblasts led to downregulation of TIMP-1 and upregulation of MMP-1, resulting
in decreased extracellular matrix deposition. Bioinformatics analysis identified TAB1 as a
possible target gene for miR-29a. Validation of TAB1 was performed through cotransfection
of HeLa cells with pre-miR-29a and TAB1 3’UTR luciferase reporter. Luciferase analysis
showed a 20% reduction in luciferase activity after cotransfection. Subsequently, phar-
macological inhibition of TBA1 or transfection of anti-TAB1 siRNA in normal fibroblasts
resulted in TIMP-1 reduction, demonstrating that TAB1 plays a key role in the regulation
of TIMP-1 expression levels [76].

Honda (2013) depicted miR-150 as an antifibrotic miRNA that mediates its effects via
integrin β3 inhibition. Integrin β3 is an adhesion molecule that is supposed to play an im-
portant role in the endogenous TGF-β activation in SSc fibroblasts. In SSc skin and cultured
fibroblasts, low miR-150 levels and high integrin β3 levels were identified. Transfection
of miR-150 mimics in SSc fibroblasts resulted in decreased integrin β3, phosphorylated
SMAD3, and type I collagen, while on the contrary miR-150 antisense inhibition in normal
fibroblasts caused enhanced expression of the aforementioned molecules [77].

PDGF receptor β is the target gene for miR-30b. Tanaka (2013) demonstrated that
miR-30b was repressed in SSc serum samples. Decreased levels were also seen in SSc
skin specimens and experimental mouse models, whereas PDGFR-β was highly expressed
in SSc fibroblasts compared to controls. Hence, downregulation of miR-30b leads to a
profibrotic phenotype via enhanced expression of the PDGFR-β [78].

MiR-135b and miR-196a are validated antifibrotic miRNAs. O’Reilly (2016) proved
that IL-13 signaling leads to increased extracellular matrix deposition in SSc fibroblasts
through regulation of the signal transducer and activator of transcription-6 (STAT6). IL-
13-induced downregulation of miR-135b results in upregulation of STAT6 and increased
collagen synthesis [79]. The involvement of epigenetics in SSc fibrosis is also illustrated
by Makino (2013). Regulation of discoidin domain receptor 2 (DDR2) mRNA and protein
level is accomplished through negative feedback: decreased DDR2 stimulates miR-196a
expression and decreased collagen synthesis in normal fibroblasts. In SSc fibroblasts, this
feedback is incompetent due to downregulation of miR-196a by endogenous activation
and downstream signaling of TGF-β, generating enhanced collagen production [80].

MiR-125b modulates both the activation of fibroblasts into myofibroblasts and fi-
broblast apoptosis. It exerts a tissue dependent effect as seen with cancer and cardiac
fibrosis [81,82]. Kozlova (2019) demonstrated that miR-125b is downregulated in SSc der-
mal fibroblasts and skin samples. This leads to enhanced fibroblast apoptosis through
induction of apoptosis genes BAK1, BMF, and BBC3, but also reduces fibroblast prolifer-
ation and differentiation as shown by decreased αSMA mRNA expression and protein
levels. Hence, miR-125b plays a protective, antifibrotic role in SSc pathogenesis [83].

MiR-16-5p inhibits tissue fibrosis by repressing myofibroblast activation through direct
inhibition of NOTCH2 expression. Yao (2020) revealed that transfection of antogomiR-16-
5p in cultured skin fibroblasts led to a rise in the levels of several profibrotic markers, such
as COL1A1, COL1A2, connective tissue growth factor (CTGF), as well as α-SMA, a marker
of myofibroblast differentiation. On the contrary, MMP-1 and matrix metalloproteinase-8
(MMP-8) levels were decreased in response to miR-16-5p inhibition. Additional exogenous
delivery of siNOTCH2 partially reversed the expression of the abovementioned biomarkers.
Decreased miR-16-5p and increased NOTCH2 expression levels were identified in SSc
serum samples, suggesting that miR-16-5p interferes in SSc pathogenesis by modulating
fibroblast to myofibroblast differentiation [84].
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Table 2 outlines the main characteristics of the antifibrotic miRNAs identified in
patients with SSc.

Table 2. Antifibrotic miRNAs involved in SSc pathogenesis.

miRNA Expression Tissue
Specimen(s) Target Gene(s) Reference(s)

miR-145 Downregulated Fibroblasts
Skin SMAD3 Zhu et al. [34]

miR-29b Downregulated Fibroblasts
Skin COL1A1 Zhu et al. [34]

miR-let-7a Downregulated
Fibroblasts

Skin
Serum

Unknown Makino et al. [74]

miR-29a Downregulated

Fibroblasts
Skin

Bleomycin-treated
mice skin samples

COL1A1
COL3A1

TAB1

Maurer et al. [75]
Jafarinejad-Farsangi

et al. [58]
Ciechomska et al. [76]

miR-3606-3p Downregulated Fibroblasts
Skin TGFBR2 Shi et al. [73]

miR-18a Downregulated Fibroblasts Unknown Nakayama et al. [62]
miR-150 Downregulated Fibroblasts ITGB3 Honda et al. [77]

miR-30b Downregulated

Skin
Serum

Experimental
mouse model

Unknown Tanaka et al. [78]

miR-135b Downregulated
Fibroblasts

Serum
Monocytes

STAT6 O’Reilly et al. [79]

miR-16-5p Downregulated Fibroblasts
Serum NOTCH2 Yao et al. [84]

COL1A1: collagen type 1 alpha 1 chain; COL3A1: collagen type 3 alpha 1 chain; TAB1: transforming growth
factor beta activated protein kinase 1; TGFBR2: transforming growth factor beta receptor 2.

Figure 2 is an illustration of the regulatory effects of various profibrotic and antifibrotic
miRNAs involved in SSc tissue fibrosis.

3.3. Apoptosis and miRNAs

SSc fibroblasts are resistant to apoptosis. This dysfunctional programmed cell death
further contributes to increased extracellular matrix deposition [85]. Two members of the
Bcl-2 family, namely Bax and Bcl-2, control apoptosis. Mir-29a and miR-21 regulate the
expression levels of Bax and Bcl-2 [86,87].

Accordingly, Jafarinejad-Farsangi (2015) demonstrated the proapoptotic role of miR-
29a in SSc and TGF-β-stimulated fibroblasts through regulation of the expression levels
of the Bcl-2 family members. MiR-29a downregulates the antiapoptotic Bcl-2 and Bcl-XL
proteins, therefore increasing the Bax:Bcl-2 ratio. An elevated Bax:Bcl-2 ratio translates into
enhanced apoptosis. The dual properties of mir-29a, both antifibrotic and proapoptotic,
make it an excellent therapeutic target [86].

In a subsequent study, Jafarinejad-Farsangi (2016) confirmed the increased Bcl-2 levels
in SSc fibroblasts and the resulting decreased Bax:Bcl-2 ratio. This confers resistance to
apoptosis, as previously demonstrated [86]. Transfection of SSc fibroblasts with miR-21
mimics additionally upregulated Bcl-2 levels and lowered the Bax:Bcl-2 ratio, support-
ing miR-21 as an antiapoptotic factor. On the contrary, transfection of miR-21 inhibitor
increased Bax expression levels and consequently enhanced apoptosis. MiR-21 inhibition
is an attractive therapeutic target in inducing apoptosis and reversing fibrosis in SSc [87].

Table 3 is a schematic representation of the miRNAs that modulate apoptosis in SSc.
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Figure 2. TGF-β1, the main regulator of fibrosis, plays a central role in SSc pathogenesis. SMAD and non-SMAD TGF-β
signaling pathways lead to transcription of fibrosis-related genes responsible for fibroblast proliferation, myofibroblast
differentiation, and extracellular matrix deposition. Upregulation (red squares) or downregulation (blue squares) of
diverse miRNAs interfere with these mechanisms and promote tissue fibrosis. KLF4: Kruppel-like factor 4; MMP1: matrix
metalloproteinase 1; sFRP-1: secreted frizzled-related protein-1; DKK-1: Dickkopf-1; LRP 5/6: lipoprotein receptor-related
proteins (LRP) 5 and 6; COL1A1: collagen type 1 alpha 1 chain; COL3A1: collagen type 3 alpha 1 chain; TAB1: transforming
growth factor beta activated protein kinase 1; TGFR1: transforming growth factor beta receptor 1; TGFR2: transforming
growth factor beta receptor 2; Wnt: Wnt signaling pathway; alpha-SMA: alpha-smooth muscle actin; CTGF: connective
tissue growth factor; TIMPs: tissue inhibitors of metalloproteinases; IL-13R alpha 1: interleukin-13 receptor alpha 1; IL-4R
alpha: interleukin-4 receptor alpha; STAT6: signal transducer and activator of transcription 6.

Table 3. Apoptosis and miRNAs.

miRNAs Expression Tissue Sample(s) Regulatory Effect Consequence Reference

miR-29a Downregulated
Fibroblasts

TGF-β-stimulated
fibroblasts

Increased Bax:Bcl2
ratio Proapoptotic Jafarinejad-Farsangi

et al. [86]

miR-21 Upregulated Fibroblasts Decreased Bax:Bcl2
ratio Antiapoptotic Jafarinejad-Farsangi

et al. [87]

3.4. Microangiopathy and miRNAs

Proliferative microangiopathy is responsible for severe manifestations such as digital
ulcers and pulmonary arterial hypertension. Iwamoto (2016) investigated the potential
role of epigenetics in mediating SSc vasculopathy. The study revealed that SSc fibroblasts
and dermal biopsies exhibited lower levels of miR-193b compared to normal controls. By
means of computational analysis, several genes were identified as potential targets and
urokinase-type plasminogen activator (uPA) was the most significantly dysregulated by
miR-193b stimulation or inhibition. Accordingly, transfection of miR-193b mimics lowered
uPA levels and transfection of miR-193b inhibitors upregulated uPA expression. These
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findings were also shown in HC and primary human pulmonary artery smooth muscle
cell (HPASMCs) cultures and validated at the protein level. Immunohistochemistry and
double-staining of SSc skin samples with uPA and α-SMA proved that uPA is highly
expressed in vascular structures, especially by vascular smooth muscle cells (VSMCs), and
modestly expressed by skin fibroblasts. Obtained data suggest a possible role of uPA in
SSc vasculopathy that was further validated on HPASMCs cultures where uPA enhanced
the expression of the PCNA proliferation marker and decreased apoptosis detected by
flow cytometry. Upregulation of MiR-193b represents a potential treatment for targeting
vasculopathy in SSc [88].

MiR-126 is a negative regulator of epidermal growth factor like-domain 7 (EGFL7),
a modulator of angiogenesis that exhibits pro-angiogenic properties. According to the
publication of Liakouli (2019), EGFL7 expression levels are increased in early onset dcSSc
skin specimens but decreased in long-standing dcSSc skin biopsies. The authors further
showed that exogenous delivery of human recombinant (rh)EGFL7 suppressed the im-
paired angiogenesis in cocultures of early-onset and long-standing dcSSc fibroblasts with
HUVECs. Moreover, (rh)EGFL7 suppressed COL1A1 expression levels in early-onset SSc
fibroblasts, whereas EGFL7 small interfering (si)RNA increased COL1A1 mRNA levels.
These results emphasize the dual role of EGFL7 in SSc pathogenesis, modulating both
angiogenesis and fibrosis [89].

Table 4 represents a summary of the modulatory effects of miRNAs in SSc vasculopathy.

Table 4. Microangiopathy and miRNAs.

miRNA Tissue Samples Regulatory Effect Reference

miR-193b
Fibroblasts

Skin
HPASMCs cultures

uPA expression Iwamoto et al. [88]

miR-126
Fibroblasts

Skin
HUVECs

EGFL7 expression Liakouli et al. [89]

uPA: urokinase-type plasminogen activator; EGFL7: epidermal growth factor like-domain.

3.5. Immune Dysfunction and miRNAs

B cell-activating factor (BAFF), a TNF superfamily member, revealed its important role
in the pathogenesis of several autoimmune diseases by modulating the activity and survival
of B cells. In SSc, stimulation of dermal fibroblasts with either Poly(I:C) or IFN-γ (known
upregulators of BAFF) resulted in decreased expression levels of miR-30a-3p. Conversely,
transfection of miR-30a-3p mimics in these cells lowered BAFF expression levels and
consequently determineed decreased B cell survival. To a further extent, transfection of
normal fibroblasts with miR-30a-3p inhibitor enhanced BAFF levels, demonstrating that
miR-30a-3p is an important regulator of BAFF production and secretion [90].

The interplay between miRNA dysregulation and interferon (IFN) signatures in SSc
was explored by Ciechomska (2020) through mRNA–miRNA sequencing and functional
studies on monocytes. Accordingly, miR-26a-2-3p was significantly downregulated in SSc
monocytes compared to controls, while expression of selected IFN-stimulated genes was
increased in SSc monocytes but not in controls or rheumatoid arthritis samples. Transfection
of miR-26a-2-3p mimics to TLR-stimulated THP-1 cells proved that this miRNA is a
negative regulator of IFN-stimulated genes. These findings suggest that miR-26a-2-3p
downregulation might be responsible, at least in part, for the increased IFN production in
SSc [91].

Table 5 illustrates the characteristics of miRNAs involved in the dysregulation of the
immune system in SSc.
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Table 5. Immune dysfunction and miRNAs.

miRNA Tissue Sample Regulatory Effect(s) Reference

miR-30a-3p Fibroblasts BAFF production and secretion Alsaleh et al. [90]
miR-26a-2-3p Monocytes Regulation of IFN-stimulated genes Ciechomska et al. [91]

4. MiRNAs: Diagnostic and Prognostic Biomarkers

An interesting finding was that of Makino (2012), who found highly expressed levels
of miR-142-3p in the serum of SSc patients. These levels were significantly dysregulated
compared to the scleroderma spectrum disorder (SSD), systemic lupus erythematosus
(SLE), and dermatomyositis (DM) cohorts, suggesting that miR-142-3p could be a potential
diagnostic marker in distinguishing SSc from SSD [92].

Izumiya (2015) illustrated the relationship between five let-7 family miRNA members
and the severity of pulmonary hypertension in SSc patients. Microarray analysis of skin
biopsies from six patients without pulmonary hypertension (PH) and nine patients with
PH identified 32 miRNAs that were upregulated and 14 miRNAs that were downregulated.
After validation by quantitative real-time PCR, the expression levels of let-7a, let-7d, let-7e,
let-7f, and let-7g were significantly dysregulated in the PH group. Furthermore, let-7d
and let-7b were correlated with an increased pulmonary arterial pressure measured by
echocardiography, making them possible candidates as biomarkers of PH severity in SSc
patients [93].

The association between cancer and SSc is another troubling aspect in the management
of these patients. SSc patients have a higher risk of developing certain types of cancer,
mainly breast, lung, and hematological malignancies [94]. Dolcino (2018) investigated the
potential role of epigenetics in promoting carcinogenesis in SSc. The expression levels
of 5 MiRNAs (miR-21-5p, miR-92a-3p, miR-155-5p, miR-16-5p, miR-126) with proven
implication in these types of malignancies were detected by real-time PCR in the serum
of 30 SSc patients and 10 HC. MiR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p were
significantly dysregulated in the SSc group compared to controls. Mir-126 levels were not
statistically different between SSc patients and controls. The upregulation of miR-21-5p,
miR-92a-3p, and miR-155-5p in both SSc and cancer specimens, with implications in fibrosis
as well as angiogenesis and proliferation, suggests that there might be a defining role for
epigenetic mechanisms in cancer predisposition in SSc [95].

5. Role of miRNAs in SSc Interstitial Lung Disease (SSc-ILD) Pathogenesis

Pulmonary involvement in SSc is associated with increased morbidity and mortality
and therefore warrants special attention with respect to the role miRNAs might play in
lung fibrosis.

Wu (2021) analyzed one miRNA and three mRNA datasets retrieved from the Gene
Expression Omnibus (GEO) database and identified nine differentially expressed miRNAs
in SSc-ILD lung samples compared to controls. These miRNAs regulate various fibrosis-
related signaling pathways, such as the integrin family, TNF-related apoptosis inducing
ligand (TRAIL) protein, and vascular endothelial growth factor (VEGF)/VEGF receptor
(VEGFR) signaling networks [96].

Compared to idiopathic pulmonary fibrosis (IPF), an organ-specific fibrotic disease,
Mullenbrock (2018) identified a similar miRNA profile in SSc lung fibroblasts. Transfection
of miR-29b-3p, miR-138-5p, and miR-146b-5p in both IPF and SSc pulmonary fibroblasts
resulted in downregulation of several profibrotic genes, COL1A1 (miR-29b-3p target gene),
connective tissue growth factor (CTGF; miR138-5p target gene), and actin alpha 2 (ACTA2;
miR-146b-5p target gene) [97].

As previously mentioned, data from Christmann (2016) promoted miR-155 as an attrac-
tive therapeutic target and also a promising prognostic biomarker in SSc-ILD [64]. Another
proposed prognostic biomarker is miR-200c identified in peripheral blood mononuclear
cells (PBMCs) among patients with ILD and different connective tissue diseases (CTDs).
Higher miR-200c levels were detected among patients with SSc-ILD compared to other
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CTDs and in patients with more severe forms of lung fibrosis (defined by the decline of
FVC and FEV1) [98]. Results from a different study showed that transfection of miR-30c in
experimental mouse models resulted in decreased dermal thickness and collagen produc-
tion as well as improved vascular dysfunction and lung fibrosis scores, promoting miR-30c
as a versatile therapeutic target in SSc [99].

MiR-320a is downregulated in serum and PBMCs of SSc-ILD patients and lung sam-
ples of bleomycin-induced ILD. Through its target genes, TGFR2 and insulin-like growth
factor receptor 1 (IGF1R), miR-320a modulates the expression of type I collagen in normal
human pulmonary fibroblasts cell lines. Further stimulation of these cells with TGF-β
upregulated both miR-320a and collagen genes, again pointing toward the central role of
the TGF-β signaling pathway in tissue fibrosis [100].

Pulmonary endothelial myofibroblast differentiation and type IV collagen synthesis
are induced in vitro by miR-483-5p, a profibrotic miRNA that was detected in high levels
in SSc serum samples [44].

6. Future Directions

Research in the field of miRNAs in SSc has mostly focused on miRNAs exhibiting an
antifibrotic or profibrotic effect in the hope of identifying and developing more targeted
therapies. Some of the earliest promising results came from Montgomery (2014). In this
study, bleomycin-induced pulmonary fibrosis improved after intravenous administration
of double-stranded miR-29b mimics. These chemically modified miRNA transcripts were
able to restore COL1A1 and COL3A1 expression levels and even decrease total collagen
amount in lung biopsies. These findings suggest that miR-29b therapeutic delivery may
not only stop progression of pulmonary fibrosis but also reverse already established
lung fibrosis [101]. In this respect, miRagen Therapeutics has a phase 2, double-blind,
placebo-controlled clinical trial investigating the potential use of Remlarsen/MRG-201
(miR-29 mimic) for the treatment of keloid scars (www.clinicaltrials.gov, accessed on
27 March 2021). MRG-229, a second-generation miR-29 mimic designed for treatment
of idiopathic pulmonary fibrosis (IPF), has recently shown favorable efficacy and safety
profiles in preclinical studies (www.miragen.com, accessed on 27 March 2021). Another
attractive target could be the inhibition of miR-155. Several lines of research showed that
bleomycin-treated miR-155 knockout mice achieved improved skin and pulmonary fibrosis
scores [63,64]. Therefore, silencing profibrotic miRNAs with synthetic antagomiRs could
also represent an approach in SSc therapy. Besides miRNA mimics and antagomiRs, several
other methods of delivery have been developed, but the most important questions remain
their stability, cell and tissue specificity, and subsequent immune response [24,101,102].

Exosomes, small membrane vesicles containing genetic information, are emerging as
a new direction in the study of SSc pathogenesis. They mediate intercellular interactions
within the same tissue but also modulate cell phenotypes away from their origin in distant
organs. Thus, free-circulating exosomes could explain the progression of fibrosis from
skin to different organs [103,104]. Current evidence even implies that exosomes might
represent the link between the three disrupted mechanistic pathways in SSc: microangiopa-
thy, immune disfunction, and fibrosis [105]. The serum exosome content of 28 miRNAs
previously shown to mediate various fibrotic pathways in SSc was evaluated by means
of semiquantitative real-time PCR (RT-PCR) in three lcSSc patients, three dcSSc patients,
and HC. The expression levels of six profibrotic miRNAs were increased and 10 antifibrotic
miRNAs were decreased in both SSc subsets compared to normal controls. A significant
difference was also observed in the expression levels of eight antifibrotic miRNAs (miR-
let-7a, miR-290, miR-92a, miR-1250, miR-133, miR-140, miR-146a, miR-200a) that were
markedly downregulated in the dcSSc subgroup compared to levels observed in the lcSSc
subgroup. Furthermore, normal dermal fibroblasts were exposed in vitro to three different
concentrations of exosomes isolated from both SSc subgroups in order to validate their
involvement in fibrosis. RT-PCR evidenced dose-dependent upregulation of COL1A1,
COL3A1, and fibronectin 1 (FN1), genes encoding type I collagen, type III collagen, and

www.clinicaltrials.gov
www.miragen.com
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fibronectin. Their corresponding protein levels were also increased after exosome exposure.
Other genes that were induced after exosome treatment were genes involved in myofibrob-
last activation as well as genes encoding TGF-β and CTGF 56. As a result, exosomes act as
potent biological tools that could be used as diagnostic and even prognostic biomarkers,
whereas their manipulation as therapy delivery carriers is an exciting perspective in many
diseases, including SSc [105].

7. Limitations

This is a narrative literature review that focused on the current state of research in the
field of epigenetics, particularly miRNAs, and their role in SSc pathogenesis. “Systemic
sclerosis”, “pathogenesis”, “epigenetic mechanisms”, and “miRNAs” were the MeSH
terms used to select and retrieve information from the National Library of Medicine
(PubMed.gov). Original articles, narrative reviews, systematic reviews, and meta-analysis
were considered and included in the present study after applying text availability (only
full-text articles) and language (only English) filters. This review is therefore prone to
the inherited limitations of this research methodology such as selection bias, difficulty in
determining complex interactions, and drawing conclusions.

8. Conclusions

MiRNAs are involved in various physiological and pathological processes. These
molecules have validated their role in modulating vasculopathy, immune responses, and
fibrosis in SSc and represent promising therapeutic targets. Even though advances in the
field are continuously expanding, certain limitations remain to be addressed in future
studies. SSc heterogeneity, small cohorts, permissive inclusion criteria without a clear
distinction in terms of disease severity, and status, together with scarce data regarding
current treatments, are just some of the culprits responsible for the discordance between
reports. MiRNAs are cell- and tissue-specific, therefore their expression is expected to differ
between body compartments and internal organs. In this respect, a more balanced research
agenda should also be considered given the fact that most protocols investigated miRNA
expression levels in skin biopsies and dermal fibroblasts with an emphasis on profibrotic
and antifibrotic transcripts.
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