
Research Article
Deep Neural Network with Joint Distribution Matching for
Cross-Subject Motor Imagery Brain-Computer Interfaces

Xianghong Zhao ,1,2 Jieyu Zhao ,1 Cong Liu ,2 and Weiming Cai 2

1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315100, China
2School of Information Science and Engineering, Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China

Correspondence should be addressed to Jieyu Zhao; zhao_jieyu@nbu.edu.cn

Received 4 December 2019; Revised 11 January 2020; Accepted 17 January 2020; Published 24 February 2020

Academic Editor: Gelin Xu

Copyright © 2020 Xianghong Zhao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Motor imagery brain-computer interfaces (BCIs) have demonstrated great potential and attract world-spread attentions. Due to the
nonstationary character of the motor imagery signals, costly and boring calibration sessions must be proceeded before use. This
prevents them from going into our realistic life. In this paper, the source subject’s data are explored to perform calibration for
target subjects. Model trained on source subjects is transferred to work for target subjects, in which the critical problem to
handle is the distribution shift. It is found that the performance of classification would be bad when only the marginal
distributions of source and target are made closer, since the discriminative directions of the source and target domains may still
be much different. In order to solve the problem, our idea comes that joint distribution adaptation is indispensable. It makes the
classifier trained in the source domain perform well in the target domain. Specifically, a measure for joint distribution
discrepancy (JDD) between the source and target is proposed. Experiments demonstrate that it can align source and target data
according to the class they belong to. It has a direct relationship with classification accuracy and works well for transferring.
Secondly, a deep neural network with joint distribution matching for zero-training motor imagery BCI is proposed. It explores
both marginal and joint distribution adaptation to alleviate distribution discrepancy across subjects and obtain effective and
generalized features in an aligned common space. Visualizations of intermediate layers illustrate how and why the network
works well. Experiments on the two datasets prove the effectiveness and strength compared to outstanding counterparts.

1. Introduction

Brain-computer interfaces (BCIs), which set up a direct way
from thought to realization, have provided us an imaginative
future and have been paid great attention to [1–4]. As one
important role of BCI families, motor imagery BCIs have wit-
nessed great developments. For the reasons that there is no
need of stimulations and the process is consistent with peo-
ple’s natural thinking habits, there have been many emerging
applications, such as movement of a cursor or robotic limb
and controlling of a wheelchair. However, motor imagery
signals inherit the problem of nonstationary character of
EEG (electroencephalogram) [5, 6]. Consequently, costly
and boring calibration sessions must be proceeded before
every test session for the same person [7–11]. It has long been

known that a classifier with high accuracy for a subject could
perform terribly for the same subject at a different time,
which is called intersession or cross-session problem. Fur-
thermore, the intersubject or cross-subject problem is more
critical. Data from different subjects may have great discrep-
ancy between each other, and the statistical distribution
varies across subjects much more than that across sessions
[10, 11]. This makes the cross-subject problem more diffi-
cult to handle. Other persons’ data usually are discarded
because only a few algorithms can take advantage of them.
It is really a waste of time and resources.

One initial approach to get over this problem was to fix
the classification rule beforehand and trained the patients
to force brain activity to conform to this rule. For instance,
subjects were trained to modulate and control the bandpower
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of their EEG signal [12, 13]. These methods pose great pres-
sure on BCI users and take much time for users to fulfil the
requirements.

To overcome this limitation, several groups introduced
machine learning, especially transfer learning methods for
adapting BCIs to target subjects [7–11, 14–18]. In recent
years, several groups have started explicitly modelling such
variations to exploit the common structure that is shared
between multiple subjects. Several works explored data
from other subjects (called source subjects, the data from
them are called source data), in order to regularize com-
mon spatial patterns (CSP), ultimately to make the esti-
mation of covariance matrix more unbiased and filters
more effective for target subjects (the data of them are
called target data) [14–16]. Other works constructed filter
bank to extract more abundant features, selected them
according to some designed rules, and then ensembled
them to obtain high performance [8, 17, 18]. There are
also researchers transforming features from different sub-
jects into another space and making them more similar
[9–11, 18]. They successfully managed to learn more com-
mon decoding rules with high accuracy utilizing both
source and target data.

Most methods above learn a new shallow representa-
tion model by which the domain discrepancy can be
explicitly minimized. However, without learning deep fea-
tures to suppress domain-specific exploratory factors of
variations, the transferability of shallow features is
restricted by task-specific structures [19, 20]. Deep learn-
ing has been proved not only to have more power to
extract compact and deep-level features but also possess
more strength to represent the task. It has won great
achievements in many fields, especially including EEG
decoding [21–34]. For instance, we focus anomaly detec-
tion [21], visual evoked potentials [22], P300 detection
[24], workload analysis [25], error-related negativity
responses (ERN) [30], movement-related cortical poten-
tials (MRCP) [30], attentional information [35], and motor
imagery tasks [26–34]. Deep neural networks are paid
more and more attention for motor imagery tasks. These
methods explored deep neural networks to obtain more
compact and effective features. However, they need much
more data for training. Usually, data from different sub-
jects are pooled together and fed directly into the network,
regardless of the statistical distribution discrepancy across
subjects. It will result in obvious deterioration of the net-
work [7, 34, 36].

In this work, we will not only explore deep learning
methods to learn more compact and deep-level features
but also utilize domain adaptation methods to alleviate
the discrepancy across data from source and target. This
theory will help make full use of other persons’ historical
data and cut off the training efforts for target users as
much as possible. It will benefit BCI users the most and
make BCI plug-and-play in realistic application scenarios.
The main contributions of this paper are as follows.
Firstly, a new joint distribution distance measure, called
joint distribution discrepancy (JDD), is proposed. It can
effectively measure the joint distribution discrepancy

between data from different subjects. It can be added to
the deep neural network as an effective regularized part.
We also propose the idea that the crucial domain adapting
method is to adapt both the marginal distribution and
joint distribution between different domains. It can be
illustrated as Figure 1. From the figure, it is found that
the performance of classification would be bad when only
the marginal distributions of the source and target are
made closer, since the discriminative directions of the
source and target domains may still be much different.
Our idea is that it is indispensable to minimize the dis-
crepancy between the joint distributions of source and tar-
get, in order to make the classifier trained in the source
domain perform best in the target domain. JDD can make
source and target data aligned and close according to the
class they belong to ultimately make the discriminative
line of source data close and similar to that of target data.
The model trained on source will be transferred to the tar-
get better. On the contrary, marginal domain adaptation
(MDA) alone makes the marginal distribution closer,
may not lead to good classification results, and is not as
effective as our idea. Without JDD alignment, the data
from the source and target cannot be merged together.
The discriminative directions between source and target
data will be much different and classifier trained with
source data will not work well for target data. It is also
proved that JDD have a reverse relationship with classifi-
cation in total. When JDD decreases, the classification
accuracy will grow up. Secondly, a deep neural network
with joint distribution matching for cross-subject motor
imagery BCI is proposed. It explores both marginal and
joint distribution adaptations to fine-tune the network, in
order to alleviate all these discrepancies across subjects
and obtain effective features in an aligned common space.
Visualizations of intermediate layers illustrate how and
why the network works well. Model trained with source
data is transferred directly to the target subjects. Experi-
ments on the two datasets prove the effectiveness and
strength compared to counterparts.
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Figure 1: Illustration for joint distribution adaptation. DS: source
domain, red solid circle; DT: target domain, black dashed circle. +:
centroid of positive class; -: centroid of negative class. Red hollow
circle: centroid of source data; black solid circle: centroid of target
data. fS: discriminative line for source data; fT: discriminative line
for target data. Marginal domain adaptation (MDA) utilizing
MMD makes the centroid of source data (red hollow circle) and
that of the target data (solid black circle) closer. Joint distribution
adaptation aligns source and target data according to the class
they belong to. It makes the discriminative lines of source and
target most similar, and the classifier trained with source data will
be transferred to target most effectively.
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2. Related Works

Transfer learning methods are designed to make the train-
ing data domain closer to the test domain and have got
great achievements in many areas, such as image, audio,
and text processing [19, 20, 37–41]. Due to the time-
varying and nonstationary characters of EEG signals, the
training data are statistically different from the test data,
and the performance of the classifier obtained from the
training data will degrade significantly, especially when test
data come from different subjects [7–11, 14–18]. Consider-
ing these, transfer learning methods are adopted to make
improvements for BCI. Song and Yoon exploited train
and test data together to make the estimation of variance
matrix more accurate for test data [14]. Lotte and Guan
introduced a unifying theoretical framework to design four
regularized methods and alleviate the bias of estimation of
variance matrix [15]. These methods explore both source
and target data to extract more stationary CSP (common
spatial patterns) features and make progress in classifying
tasks. Park and Lee obtained a robust and adaptive filter
bank from source subjects and then learned the classifiers
corresponding to these filters banks and then employed a
two-level ensemble strategy to reach a single decision out-
put [16]. Park et al. in [8] firstly divided EEG data with a filter
bank. Secondly, the regularized CSP (R-CSP) is applied to
them. Features were selected according to mutual informa-
tion. Finally, an ensemble classifier was trained to obtain
results. Zanini et al. proposed a transfer learning method
based on the Riemannian geometry framework [10]. It uti-
lized affine transform to the covariance matrix of sessions
or subjects. Like a clustering process, it obtained a covari-
ance matrix as the center and made data from different
sessions/subjects more similar. Then the classification was
performed based on a mixture of Riemannian Gaussian
distributions defined on the manifold. It transformed data
from different sessions and subjects to a new common
space and achieved outstanding results. Rodrigues et al.
in [11] proposed a method called RPA. It was based on
Procrustes analysis for matching the statistical distribu-
tions of two datasets. Symmetric positive definite matrices
(SPD) as statistical features and geometrical operations on
the data points were utilized. Improvements in transfer
learning via RPA by performing classification tasks on
simulated data and on eight publicly available BCI datasets
were assessed.

Domain adaptation theory can also play an important
role in subject transfer problems. It can alleviate the differ-
ences between subjects. Pan et al. in [42] presented a method
which not only reduced the distance between the source
domain and target domain using maximum mean discrep-
ancy (MMD) [43] but also tried best to preserve the variance
of the original data. Tao et al. in [37] first constructed a gen-
eralized measure for domain adaptation on reproducing ker-
nel Hilbert spaces (RKHS) by simultaneously considering
both the projected marginal discrepancy and the projected
maximum distribution scatter discrepancy between the
source and the target domain. Long et al. in [38] decomposed
the joint distribution as Pðx, yÞ = Pðx ∣ yÞpðyÞ, and then both

the differences of PðyÞ and Pðx ∣ yÞ for source and target
domain were simultaneously decreased in order to match the
joint distribution Pðx, yÞ. Firstly, an initial classifier provided
pseudolabels to the target data using MMD. Then, the differ-
ence of the conditional distribution Pðx ∣ yÞ between source
and target was minimized to improve the previous classifier;
process was iterated until convergence. The algorithm per-
formed well on many text and image datasets. It achieved very
good results in comparison and the algorithm was called
ARRLS. The idea is similar to ours. The difference between ours
and ARRLS is that ours utilizes the proposed JDD to reduce the
joint distribution discrepancy in RKHS straightforwardly.

Previous methods exploit shallow networks to match the
domains of a single level; deep neural networks are good at
extracting multilevel and compact features and will have bet-
ter descriptions for specific tasks [26–34]. Many deep learn-
ing approaches are applied to decode EEG signals. Tabar and
Halici exploited CNN and SAE (stacked autoencoders) to
classify motor imagery EEG signals [26]. It combined time,
frequency, and space information of motor imagery data
into deep models and achieves outstanding results in BCI
competition IV dataset 2b. Schirrmeister et al. in [30] first
investigated different deep architectures and then intro-
duced a compact fully convolutional network called EEGNet
for four different tasks. Compared with the corresponding
works, they performed averagely the best over different data-
sets. They claimed that they suggested a common simplified
architecture. It can provide robust performance across many
different BCI modalities. It is very effective in our experiments
and is chosen as one of the baselines. In a whole, these
methods exploit mainly CNN and its corresponding struc-
tures. Other types of deep neural networks extend their poten-
tial on motor imagery signals. Wang et al. in [27] proposed a
deep framework based on long short-term memory (LSTM)
networks. One-dimensional-aggregate approximation (1D-
AX) was employed to extract an effective signal representation
for LSTM networks. Meanwhile, the channel weighting tech-
nique was further deployed to enhance the effectiveness
inspired by CSP. Lu et al. in [29] proposed a novel deep learn-
ing scheme based on restricted Boltzmann machine (RBM).
Specifically, frequency domain representations obtained via
fast Fourier transform (FFT) and wavelet package decomposi-
tion (WPD) were obtained to train the three RBMs. These
RBMs were then stacked up with an extra output layer to form
the frequential deep belief network (FDBN). The output layer
employed the softmax regression to accomplish the classifica-
tion task.

Recent studies reveal that a deep neural network with
domain adaptation technique can learn both deeper and
more transferable features. It can generalize well to the novel
domain [19, 20]. Tzeng et al. in [39] proposed a DDC model
that adds an adaptation layer and a dataset shift loss to the
deep CNN for learning a domain-invariant representation.
While the performance was improved, DDC only adapts a
single layer of the network and Long et al. furthered this idea
[20]. Multilevel features are matched utilizing multiple-
kernel MMD. Long et al. also exploited a better way to reduce
the computation cost for MMD and obtained a better result.
Yosinski et al. in [40] revealed that feature transferability got
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worse on stack-behind layers and significantly drops on the
last layers; hence, it was critical to adapt multiple layers
instead of only one layer. Jian et al. in [41] proposed an
adversarial representation learning approach to learn high-
level representations that are both domain-invariant and tar-
get-discriminative, in order to tackle the cross-domain classi-
fication problem. It was inspired by Wasserstein generative
adversarial networks and obtained good results in 4 common
domain adaptation datasets.

The discussed methods above focus on images, text,
and so on. There are also a few works to cover deep
domain networks for BCI. Fahimi et al. in [35] developed
an end-to-end deep CNN to decode the attentional infor-
mation from EEG time series. They also explored the con-
sequence of input representations on the performance of
deep CNN by feeding three different EEG representations
into the network. Additionally, intersubject transfer learn-
ing techniques were performed as a classification strategy.
It is called CNN-subject adaptation and is called CNN-
SA in short in our paper. Farshchian et al. in [36] imple-
mented various domain adaptation methods to stabilize
the interface over significantly long time, including canon-
ical correlation analysis, minimizing the Kullback-Leibler
divergence of the empirical probability distributions. These
twomethods provided a significant and comparable improve-
ment in the performance of the interface. However, the
implementation of an adversarial domain adaptation net-
work trained to match the empirical probability distribu-
tion outperformed the two methods based on latent
variables, while requiring remarkably fewer data. Tan
et al. in [44] modeled cognitive events by characterizing
the data using EEG optical flow, which is designed to pre-
serve multimodal EEG information in a uniform represen-
tation. After that, a deep transfer learning framework,
which was suitable for transferring knowledge by joint
training, was constructed. It contained an adversarial net-
work and a special loss was designed.

3. Methods

Previous methods applied for EEG decoding either utilize
deep networks alone or exploit shallow domain adaptation
networks to explicitly minimize the domain discrepancy. It
can be imagined that the performance may be enhanced, if
deep neural networks can be combined with the transfer
learning methods above. By learning deep and high com-
pact features with deep networks and domain adaptation,
domain-specific exploratory factors of variation will be
suppressed and generalized; the transferability of deep fea-
tures will not be restricted by subject-specific structures
[20, 39]. Therefore, a deep neural network with domain
adaptation is proposed. Meanwhile, as previous works
shown [8, 14–17, 45], the most important characters of
motor imagery signals are ERD (event-related synchroni-
zation) and ERS (event-related desynchronization). CSP
is considered as the most effective and popular method.
However, in the conventional classification process, the
discriminating operation is separated from feature extract-
ing operations. The features extracted cannot assure the

best performance of classification. If CSP is adopted in
deep networks along with the discriminative process, it is
possible to grantee the best classification results. CSP is
aimed at finding spatial filters which maximize (or mini-
mize) the variance of the projected data points of one class
while the other is minimized (or maximize). Given motor
imagery signal matrices X1 and X2 (channels by samples,
ch × T in short), which belong to class 1 and class 2,
respectively, the target function of the optimization can
be described as formula (1) mathematically. The mean of
Xi was removed before fed to the following equation:

arg min
w

 J1 wð Þ = wTX1X
T
1w

wTX2X
T
2w

: ð1Þ

The vectors obtained from above are called CSP filters,
which can extract energy features and make the differences
of the two classes maximized. Operations for wTX1 is
much alike one-dimensional convolution in deep learning.
The number of filters we pursue is the number of kernels
for convolution. Considering this, a deepCSP neural network
with joint distribution adaptation (DCJNN) is proposed. The
detailed architecture and settings are as Table 1 and Figure 2.
Rectified linear unit (ReLU) function is selected as activa-
tion function, which is defined as Re LuðxÞ = ln ð1 + exÞ.

The first layer utilizes one-dimensional convolutional
kernel to realize time-domain filters for each channel.
What the filters want to accomplish is to filter the EEG
time series and divide them into different bands according
to the classification task, such as mu rhythm and beta
rhythm, which are the important EEG bands for motor
imagery task. Frequency bands should be carefully chosen,
the reason is that the performance of the CSP algorithm
depends much on the frequency bands [8, 18, 45]. Proper
frequency bands and time-domain features are expected to
be caught automatically in this layer. This layer also
includes a batch normalization (BN) block and a dropout
block. They can help accelerate the training process and
improve the robustness of the network, which is similar
as each of the following layers. Dropout block in fact
increases the diversity of input samples and prevents the
model from overfitting.

The second layer is aimed at pursuing spatial filtering
like the CSP algorithm in formula (1) and extracting
deep-level features combining time, spatial, bandpower,
and intersubject characteristics. Similarly, as the first layer,
the second layer employs one-dimensional convolutional
kernel. The differences between them are that the second
layer focuses on filtering EEG signals in the spatial
domain. It is worth noting that it is specifically designed
to produce spatial filters and enhance the signal to
signal-plus-noise ratio of the EEG signal of interest. The
third and fourth layers exploit 2D convolution to pursue
both the spatial and frequency domain features. The last
two layers are the same as conventional CNN networks.
The features are flattened, and a full-connection layer is
constructed. The outputs are the vectors for classification.
The dimension N is the number of classes.
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At the fifth layer, maximummean discrepancy (MMD) is
exploited to adapt the marginal distribution between the
source and target. They try their best to make the marginal
distribution of source features aligned to that of target. The
empirical MMD can be calculated as follows:

MMD
~

Ps, Ptð Þ2 = 1
ns

〠
ns

i=1
ϕ xsið Þ − 1

nt
〠
nt

j=1
ϕ xtj
� � !2

= trace Kx ∘W1ð Þ:
ð2Þ

Ps and Pt represent marginal distribution of source and
target, respectively. xsi and xtj denote the features at the
fifth layer for the ith and jth sample of source and target
data, respectively. Kx stands for gram matrix of data
including source and target. “o” denotes the Hadamard
product. In formula (2), W1 = ½½ð1/nsÞ⋯ ð1/nsÞ�1×ns,
½−ð1/ntÞ⋯−1/nt�1×nt�T ⋅ ½½ð1/nsÞ⋯ ð1/nsÞ�1×ns, ½−ð1/ntÞ⋯
− 1/nt�1×nt�. The parameters ns and nt stands for the
number of source samples and target samples. They equal to
ba. ba stands for the number of batch data fed into the network

Temporal convolution Spatial convolution CNN and pooling CNN and pooling

Ch
an
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l

t

Source

Temporal convolution Spatial convolution CNN and pooling CNN and pooling
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Target

Sharing Parameters
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Figure 2: Proposed deep network structure for domain adaption (DCJNN).

Table 1: Detailed architecture for the proposed DCJNN.

Layer Input (ba × ch × T)1 Operations Output

1

ch × T 32 × Conv1D 1 × 16ð Þ 32 × ch × T

32 × ch × T BatchNorm 32 × ch × T

32 × ch × T Dropout (0.2) 32 × ch × T

2

32 × ch × T 32 × Conv1D ch × 1ð Þ 32 × 1 × T

32 × 1 × T BatchNorm 32 × 1 × T

32 × 1 × T Transpose 1 × 32 × T

1 × 32 × T Dropout (0.2) 1 × 32 × T

3

1 × 32 × T 16 × Conv2D 2 × 16ð Þ 16 × 32 × T

16 × 32 × T BatchNorm 16 × 32 × T

16 × 32 × T Maxpool2D (2 × 4) 16 × 16 × T/4

4
16 × 16 × T/4 4 × Conv2D 2 × 16ð Þ 4 × 16 × T/4
4 × 16 × T/4 Maxpool2D (2 × 8) 4 × 8 × T/32

5 4 × 8 × T/32 Flatten 1 × 4 × 8 × T/32ð Þ
6 1 × 4 × 8 × T/32ð Þ Softmax regression (N × 1)2

1ba denotes the number of samples fed to the network each time. ch denotes the channel. T denotes the number of time points. 2N stands for the
number of classes.
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each time. The detailed operation for MMD loss is as follows.
Firstly, a batch of source samples are fed to the neural network.
They flow through each layer and obtain results. xsi represents
the outputs of the fifth layer for ith source sample. After that,
the networks are frozen and a batch of samples from the target
similarly flow through all the layers. xtj represents the outputs
of the fifth layer for jth target sample. At last, the MMD loss is
computed as formula (2) and constitute the total loss as for-
mula (5). The corresponding gradients are back propagated
to improve the network parameters.

Similarly, the following JDD loss can be calculated. JDD
block explores the predicted results of source and target
along with the features, in order to make the joint distribu-
tion between source and target aligned to each other. If we
want to compute the differences of joint distribution Pðx, yÞ
between source and target domain, our idea is to find a way
to measure the discrepancy of two joint distributions.
Inspired by maximum mean discrepancy and kernel embed-
ding theory, JDD is defined as Definition 1. JDD takes both
features and labels into consideration and measures the joint
distribution discrepancy between the source and target. It is a
more accurate and effective measure when we explore source
labelled data to predict target data. Figure 3 illustrates the

JDDs have a reverse relationship with the classification accu-
racies. It is a very effective distance measure to align the
source and target domain.

Definition 1. Joint distribution discrepancy (JDD)

JDD ℱ 1,ℱ 2, P,Qð Þ = sup
fk k≤1,f ∈ℱ 1; gk k≤1,g∈ℱ 2

ð
f xð Þg yð ÞdP x, yð Þ

�

−
ð
f xð Þg yð ÞdQ x, yð Þ

�
:

ð3Þ

In which x, y, and Pðx, yÞ represent samples, their corre-
sponding predicted labels, and joint distribution, the same is
to Qðx, yÞ. It can be deduced that the discrepancy JDDðℱ 1,
ℱ 2, P,QÞ equals zero if and only if joint distributions Pðx, yÞ
and Qðx, yÞ are equal to each other. The smaller JDD indicates
the two joint distributions lie closer to each other. Therefore,
JDDðℱ 1,ℱ 2, P,QÞ can be exploited as an efficient way tomea-
sure the discrepancy between two joint distributions Pðx, yÞ
and Qðx, yÞ. In our algorithm, Pðx, yÞ and Qðx, yÞ represent
joint distribution for source and target data, respectively.
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Figure 3: Relationship between classification accuracy and JDD. The horizontal and vertical ordinate represents the JDD and classification
accuracy, respectively. (a) GrazA subj1. (b)Graz subj3. (c) Giga subj2. (d)Giga subj3.
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Therefore, JDD measures the joint distribution discrepancy
between the source and target.

Empirical unbiased estimation of JDD can be calculated
as follows:

JDD
~

ℱ 1,ℱ 2, Ps, Ptð Þ2 = 1
ns

〠
ns

i=1
ϕ xsið Þ ⊗ φ ysið Þ

�����
−

1
nt

〠
nt

i=1
ϕ xti
� �

⊗ φ yti
� ������

2

HS

=
1
ns2

〠
ns

i=1
〠
ns

j=1
K1 xsi , x

s
j

� �
K2 ysi , y

s
j

� �

+
1
nt2

〠
nt

i=1
〠
nt

j=1
K1 xti , x

t
j

� �
K2 yti , y

t
j

� �

−
2

ns ⋅ nt
〠
ns

i=1
〠
nt

j=1
K1 xsi , x

t
j

� �
K2 ysi , y

t
j

� �

= 1T Kx ∘ Ky ∘W1
� �

1,
ð4Þ

where “o” stands for Hadamard product; Kx and Ky stand for
gram matrix of data and predicted labels including source
and target domains, respectively. ysi and ytj represent the
labels predicted by the networks, for ith source samples and
jth target samples, respectively. Therefore, it is found the
joint distribution discrepancy between source and target
can be calculated only by the corresponding kernel gram
matrix. It is convenient and effective. In our paper, all the
kernels we adopt are the RBF kernels.

To summarize, our objective loss of the neural network
can be as formula (5). The first part of the loss denotes the
supervised loss of source data. In this paper, cross-entropy
loss is applied. γJ and γM denote the trade-off parameters.
The second and third parts are JDD as formula (4) and
MMD loss as formula (2).

loss =
ð
X×Y

V y, f xð Þð ÞdPs x, yð Þ + γJ JDD
~

ℱ 1,ℱ 2, Ps, Ptð Þ2

+ γM MMD
~

Ps, Ptð Þ2:
ð5Þ

4. Experiments and Results

The first EEG dataset used in the BCI Competition 2008 and
called Graz dataset A (GrazA in short) is provided by the
Graz Institute [46] (URL: http://www.bbci.de/competition/
iv/). This dataset consists of EEG data from 9 subjects (called
“subj1” to “subj9”). The cue-based BCI paradigm consisted of
four different motor imagery tasks, namely, the imagination
of movement of the left hand (class 1), right hand (class 2),
both feet (class 3), and tongue (class 4). Two sessions on dif-
ferent days were recorded for each subject. Each session is
comprised of 6 runs separated by short breaks. One run con-
sists of 48 trials (12 for each of the four possible classes),

yielding a total of 288 trials per session. The signals were
sampled with 250Hz and bandpass filtered between 0.5Hz
and 100Hz. The sensitivity of the amplifier is set to 100μV.
An additional 50Hz notch filter was enabled to suppress
the line noise. In our paper, for example, when we want to
study “subj1,” then “subj1” and its data are called target sub-
ject and target data, respectively. The other eight subjects and
their data are called source subjects and source data. The set-
tings are similar to the second dataset in our paper. As prepro-
cessing, each channel of the EEG data was bandpass filtered
causally to 4Hz~40Hz by a Chebyshev type 2 filter of order
five (stop-band attenuation of 20dB), and then an epoch of
0.5 s to 5 s relative to the stimulus is used in our paper. There-
fore, we have a dataset of 9 by 288 by 64 by 450 (subjects by
trials by channels by time points). EEG signals are typical non-
stationary and time-varying data. Figure 4 in [10] demon-
strates that the data of all subjects are depicted together. It
indicates that there are great discrepancies among data from
different subjects. They vary a lot across subjects and show
very bad separation among subjects.

The second dataset adopted in this paper was supplied
by Handong Global University [47], called GigaDataset
(http://gigadb.org/dataset/100295) in our paper. 52 healthy
subjects (26 males, 26 females; mean age: 24:8 ± 3:86 years,
called subj1~subj52) participated. The subjects were asked to
imagine left hand or right hand movement. At the beginning
of each trial, a cross appeared for 2 s, and then text indicating
left or right was shown for 3 s. Subjects were asked to imagine
left or right hand movement according to the presented direc-
tion at the motor imagery phase. Right after the motor imag-
ery phase, a cross appeared for 2 s again. Thus, the total time
of each trial was 7 s and the intertrial interval was set randomly
to between 0.1 and 0.8 s. 68 electrodes (in which 64 were for
EEG) were utilized to record the motor imagery signals. The
sampling rate was 512Hz. In this paper, the data of randomly
chosen six subjects, namely, subj2, subj9, subj11, sub13,
subj21, and subj36, were explored and all the 64 EEG channels
were used. As preprocessing, epoch of 0.4 s to 3 s after the cue
was utilized and was bandpass filtered to 4Hz~30Hz. After
that, they are downsampled to 100Hz. There were 200 trials
for each subject, one half was for imagining the left and the
other half was for imagining the right. Therefore, we have
a dataset of 6 by 200 by 64 by 260 (subjects by trials by
channels by time points). Figure 5 demonstrates the brain
electrical activity mapping (BEAM) for imagining the right
hand for subjects 2 and 9. the BEAMs actually indicate
the energy distribution or the activity of neurons across
the brain. The same row belongs to the same subject per-
forming the same task at different times and the different
rows belong to different subjects, respectively. It is clear
that not only different subjects show very great differences
when performing the same task but also the same subjects
make differences performing the same task at different times.
Distribution of EEG data is very much time-varying and
different from subject to subject. It is in great need of dis-
tribution matching.

As illustrated in the third section, the second layer of our
network tries to play a similar role as common spatial filters.
After training the networks utilizing GigaDataset, the
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absolute values of some filters are demonstrated as Figure 6.
The value of spatial filters represents the importance of the
corresponding channel or the position of the EEG. The

greater the value is, the more important the corresponding
channel is. From the figure, totally speaking, it can be found
out that weight of filters corresponding to the right part is

Subj2

Subj9

Figure 5: Brain electrical activity mapping when performing right hand imagery in GigaDataset.
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Figure 6: CSP filters obtained by the proposed neural network.
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Figure 4: Motor imagery dataset: visualization of the original covariance matrices of all subjects [10].
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stronger than the left for the upper three. The other three are
on the contrary. It tells us the network learns to extract spa-
tial filters as CSP filters. Meanwhile, it verifies the theory of
ERD/ERS for motor imagery signals [8, 16, 45]. The upper
three show the right part of the head have stronger reflec-
tions, and the down three show the contrary. It can be
deduced that the upper three can be taken as the CSP filters
for imagining the left hand and the down three can be taken
as the CSP filters for imagining right hand [45]. It indicates
that our proposed network can learn to obtain CSP-like fil-
ters and to extract CSP features with iterations, as expected.
It will be effective at the classification stage.

In order to demonstrate the power of our algorithm JDD
further, the data of subj1 and subj2 in GrazA are visualized as
Figures 7(a) and 7(b), respectively. Red circles and hexa-
grams represent class 1 and class 2 data of subj1, respectively.
Black circles and hexagrams represent class 1 and class 2 data
of subj2, respectively. Red and black lines represent the
discriminative lines for subj1 and subj2, respectively. In
Figure 7(a), firstly, data from subj1 and subj2 are indepen-
dently feed into our proposed network in which the JDD
constraints are removed. Outputs from the fifth layer (flatten
layer) are taken as initial features. After that, kernel principal
component analysis (KPCA) is adopted and the dimension is
reduced to 2 [47, 48]. The discriminative lines are obtained
by linear discriminative analysis on the two-dimensional
data. Figure 7(a) illustrates the features extracted without
JDD alignment. It is found that data from different subjects
have great discrepancy between them. The discriminative
line of subj1 is very different from that of subj2. It can be
deduced that the classification performance will be not good
when they are forced to being trained together. It will be also
very bad that the classifier trained on source data is directly
applied to the target data.

However, when the same processing method is
adopted, excluding that JDD constraints are added to the
neural network as proposed, the results are illustrated as
Figure 7(b). It can be found that the discrepancy between
data from subj1 and subj2 is much less and the data are
merged together. Furthermore, the discriminative lines of
the two subjects are much closer and more similar. Under
this condition, the performance will be good when the
classifier trained on source data is directly applied on the
target data. It will do great good to the performance of classi-
fication, since the trained classifiers from different subjects
will be well transferred. It indicates that our method
works well.

Four outstanding algorithms are selected as baselines.
ARRLS in [38] is very similar with ours since it takes both
marginal and conditional distribution into account. It aims
to match the joint distribution across subjects. It is not a deep
learning method, so as AT-GM-b in [10]. AT-GM-b in [10]
is also an outstanding algorithm. It transforms the data from
different subjects into a common space, which aims to make
data from subjects closer under the Riemannian framework.
They are not in a deep learning manner, but still they are very
representative and effective transfer learning methods for
BCI. CNN-SA in [35] and EEGNet in [30] explore a deep
learning framework to work out motor imagery tasks. EEG-

Net is designed to work out different kinds of data for BCI,
including motor imagery BCI. Until now, it is a very effective
and competitive method. Its network structure is similar to
ours but ours possesses marginal and joint distribution adap-
tation units. Ours focuses on how to alleviate domain dis-
crepancy across subjects and have more power in domain
adaptation. CNN-SA develops an end-to-end deep CNN to
decode the attentional information from EEG time series.
They also explore the consequence of input representations
on the performance of deep CNN by feeding three different
EEG representations into the network. Additionally, inter-
subject transfer learning techniques are performed as a clas-
sification strategy. Details can be found in [35]. It is a deep
learning method exploiting subject transfer technique, and
so it is chosen as another baseline. In our paper, the data
we try to classify are taken as target data and the data of other
subjects are taken as source data, which are utilized to train a
classifier. We run experiments on GrazA and GigaDataset
independently and two networks are trained. Taking dataset
GrazA as an example, when we want to classify the data of
subj1, then the data from subj2 to subj9 are taken as source
data and training dataset. The data of subj1 is the testing data
or called target data. Parameters γJ and γM in formula (5) are
chosen in {0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20}. They are opti-
mized through 5-fold cross validation. Training data are ran-
domly divided into five parts, four parts are for training, and
the remaining one is for validation. At each time, a batch of
training samples (ba = 32) are randomly selected from the
training dataset and fed to the neural network. The maxi-
mized epoch we run is set as 200. The same is for GigaData-
set. The deep neural networks for CNN-SA and ours are
constructed with TensorFlow 1.3.0 with GPU acceleration.
The optimizer is chosen as the AdamOptimizer. Implements
for EEGNet are used as provided in [49].

For GrazA, comparison results are illustrated as
Figures 8(a)–8(c). The results vary across subjects. These
methods are all competitive and effective. In a whole, our
algorithm runs best for most conditions, six out of nine.
The EEGNet wins the other three, including subj1, subj5,
and subj6. For these three subjects, ours falls a little behind
the champion, by 0.5%, 1.6%, and 7.1%, respectively, and still
we outperform the other three baselines much. In a whole,
mean and variance for classification results 69.6% and
15.1%, which indicates that our algorithm can be applied well
across all the subjects, in an unsupervised domain adaptation
manner. It averagely outperforms the counterparts by 8.2%,
7.3%, 8.5%, and 1.0%, respectively. The means of the other
four algorithms’ classification accuracies are 64.2%, 64.7%,
64.0%, and 68.9%, respectively. It is worth noting that GrazA
is a four-category problem and the accuracy is not very low,
although it can be further improved in the future. Further-
more, it is found that subjects can be divided into two catego-
ries. The accuracies of subj2, subj4, subj5, and subj6 are
relatively low, about 50%, which are also found in [10]. The
others perform very well, and the accuracies surpass 75%.
Differences across subjects performing motor imagery are
huge and obvious; the same thing happens for GigaDataset.
It is also the reason why we want to apply domain adaptation

9BioMed Research International



for motor imagery. Under motor imagery tasks, it is not
unusual that the performances of some subjects are relatively
worse than others. One of the reasons is that they are not
trained well for motor imagery. Another one is that some
of them are not very good at this, however hard they try. It

is usually called BCI blindness and it is another research topic
worth studying.

For GigaDataset, the comparison results are illustrated
as Figures 9(a) and 9(b). The results also vary across sub-
jects. In a whole, our algorithm runs best for most
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Figure 7: Visualization of motor imagery data. (a, b) Data after dimension reduction without and with JDD alignment, respectively.
(a) Without JDD alignment, (b) With JDD alignment.
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Figure 8: Comparison results for GrazA.
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conditions, four out of six. The EEGNet wins the other two,
including subj9 and subj21. For these subjects, ours falls a
little behind the champion, by 0.4% and 0.8%, respectively.
And still we outperform the other three baselines greatly.
EEGNet proves its strength and effectiveness. Considering
the facts in GrazA, it can be deduced that domain adapta-
tion may not work for all subjects due to the great diversity
of data distribution. However, our algorithm outperforms
the counterparts in a whole. Its strength and effectiveness
across all the subjects have been proved. Its mean and var-
iance for classification results 76.5% and 9.3%, which also
indicates that our algorithm can be applied well across all
the subjects, in an unsupervised domain adaptation man-
ner. It averagely outperforms the counterparts by 5.8%,
7.1%, 4.4%, and 1.7%, respectively. The means of the other
four algorithms’ classification accuracies are 72.3%, 71.4%,
73.3%, and 75.2%, respectively.

Meanwhile, relationship between classification accuracy
and JDD is also explored and the results are demonstrated
as Figure 3. It can illustrate whether JDD works well and
JDD’s influence. The horizontal and vertical ordinate rep-
resents the JDD and classification accuracy, respectively.
Figures 3(a)–3(d) represent the results for subj1 and subj3
in GrazA and subj2 and subj3 in GigaDataset, respectively.
From the figure, it can be found the trends of JDD and
classification accuracy are inverse with each other in a
whole. That is to say, the classification accuracy will grow
when JDD decreases. As in Figure 7, JDD plays an impor-
tant role in aligning source and target data. It makes the
source and target data merged together, and the discrimi-
native lines of source and target data are closer and more
similar to each other. Therefore, when JDD works, the
performance of domain adaptation will grow better, which
leads to better classification results.
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Figure 9: Comparison results for GigaDataset.
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5. Conclusions

In this paper, we proposed a deep neural network with joint
distribution matching for motor imagery brain-computer
interfaces. Firstly, the nonstationary character of EEG, espe-
cially across different subjects, is analyzed and illustrated as
Figures 4 and 5. Models trained with source subjects will
not transfer as well as expected to target. Furthermore, it
is found that performance of classification would be bad
when only the marginal distributions of source and target
are made closer, since the discriminative directions of the
source and target domains may still be much different. It
is indispensable that the joint distribution of the source
and target should be aligned as Figure 1 illustrates. There-
fore, a distance for measuring the joint distribution discrep-
ancy (JDD) between source and target data is proposed.
JDD takes both data and corresponding labels into consid-
eration. Minimizing JDD between source and target can
merge together and align data from different subjects, as
Figure 7 proves. Moreover, JDD has an inverse relationship
with classification accuracy in a whole. It is very useful for
optimizing process. Secondly, a deep neural network with
joint distribution matching is proposed. It explores both
marginal and joint distribution adaptation to fine-tune the
network, in order to alleviate all these discrepancies across
subjects and obtain effective features in an aligned common
space. Visualizations of intermediate layers illustrate how
and why the network works well. Model trained with
source data is transferred directly to the target subjects.
Experiments on the two datasets prove the effectiveness
and strength compared to outstanding counterparts. For
grazA, it averagely outperforms the counterparts by 8.2%,
7.3%, 8.5%, and 1.0%, respectively. For GigaDataset, it aver-
agely outperforms the counterparts by 5.8%, 7.1%, 4.4%,
and 1.7%, respectively. These prove the strength of the pro-
posed algorithm, which can be a robust and effective
method for cross-subject motor imagery BCI.

The above is our research on the cross-subject problem
in the same dataset. We will further our study to focus
cross-dataset problems. That is to say, we want to select
and transfer model trained with data from datasets to tar-
get subjects in another dataset. It will be more challenging
and makes more sense for realistic applications. Imagine
that, if data from any laboratory can be made full use of
and utilized to train effective models for target users, the
problem of being short of data and hard to train models
for motor imagery BCI will vanish ultimately. It will pro-
vide more flexibility and robustness for BCI. We believe
the BCI users will pay no effort for training and the BCI
devices will be plug-and-play in the future.
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