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Phenotypic Plasticity to Preserve Essential Functions
Phenotypic plasticity encompasses the versatile abilities of an organism to modify its pheno-
type according to changes in the environment. Such adaptations, in response to a decrease of
fitness, are commonly exploited by microorganisms and plants that cannot easily escape their
environment and, hence, are at risk of extinction. Functional redundancy and plasticity is
therefore anticipated for obligate intracellular parasites, including members of the phylum Api-
complexa, to ensure successful host cell invasion—a critical step for their survival.

The phylum Apicomplexa includes many medically and veterinary-relevant parasites, most
notably the human pathogens Plasmodium and Toxoplasma gondii, responsible for malaria
and toxoplasmosis, respectively. These parasites are the most studied of the phylum, not only
because of their prevalence but also because of their accessibility to genetic manipulation [1,2],
which has allowed the investigation of several aspects of their lytic cycle, particularly their
mechanisms of entry into the target cell.

Invasion by most Apicomplexa is a multistep process consisting of recognition, attachment,
and active penetration into host cells, which has been dissected in depth in Toxoplasma tachy-
zoites [3]. Parasite propulsion into the host cell is powered by a myosin motor complex termed
the glideosome. During motility and invasion, T. gondiimyosin A (TgMyoA) presumably
translocates adhesins at the moving junction (MJ) from the apical to the posterior pole of the
parasite [4]. The MJ forms a constriction around the parasite at the point of entry into the host
cell that appears as a ring structure. Apical membrane antigen 1 (AMA1) in association with a
complex of rhoptry neck proteins (RONs) that are anchored into the host cortical cytoskeleton
[5] are the currently known components of this MJ.

Insults imposed upon the parasite by experimental genome editing strategies, such as abla-
tion of TgMyoA and TgAMA1 genes, significantly compromised the fitness of the parasites and
have now been demonstrated to elicit phenotypic plasticity. Such plasticity has uncovered
informative redundancy and adaptation mechanisms. Hereafter, we compare and contrast the
methodologies available to investigate the function of crucial genes in T. gondii and discuss
how some experimental approaches contribute to or even favor the emergence of alternative
mechanisms to ensure completion of the vital step of host cell invasion.

A Plethora of Tools to Tackle the Function of Critical Genes in
Toxoplasma gondii
The amenability of T. gondii to genetic manipulation has led to the development of various
experimentally regulated expression systems to investigate the function of genes critical for
parasite survival and, notably, for invasion [2].
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Recently, the generation of gene knockouts by homologous recombination was greatly facil-
itated by the elimination of random integration events in parasites lacking Ku80, a protein
involved in the non-homologous end-joining pathway of DNA repair [6,7]. Furthermore,
Cre recombinase, either expressed upon transient transfection [8] or stably as a dimerizable
Cre (DiCre) activated by rapamycin [9], efficiently excises genes flanked by LoxP sites. These
refined technologies allow the generation of null mutants; however, the clonal isolation pro-
cedure and subsequent propagation of severely impaired mutants is prone to selection of
spurious adaptation events resulting in an attenuation of the phenotype severity. In contrast,
strategies aimed at an acute conditional depletion of a protein in a clonal population over a rel-
atively short period of time prior to phenotypic assessment minimizes the risks of emergence
of compensatory mechanisms. This holds true for the tetracycline (tet)-inducible transactivator
system [10], the FKBP-destabilization domain [11], and the conditional DiCre-mediated exci-
sion system [9]. The drawback or limit of these approaches is the quasi-impossibility of fully
eliminating a protein even if it falls below detectable levels, and in consequence, should never
be considered or interpreted as a null mutant.

TgMyoA and TgAMA1 were initially investigated using the regulatable tet-inducible system
[10,12] and shown to be critical for invasion (Table 1). More recently, null mutants for
TgMyoA and TgAMA1 [9,13] were isolated despite their severe phenotypes. While these genes
can now be qualified as dispensable for parasite survival in vitro, subsequent studies revealed a
considerable level of plasticity towards compensatory mechanisms that ensured invasion by
these mutants [14–16]. These two examples are detailed below and underscore the complexity
in interpreting data and the need to carefully take into account the capacity of parasite adapta-
tion. In turn, these data reveal critical information about the function of other related genes,
shedding light on their potential for functional redundancy.

Table 1. Summary of the phenotype and adaptation observed in the cell lines discussed in this review according to the technology used to investi-
gate the function of the corresponding gene.

Cell line System Phenotype Ref.

MyoA-cKD Conditional transcriptional repression 16% invasion [10]

MyoA-KO Gene excision 25% invasion [9,14]

MyoC-KO Gene deletion 100% invasion [14,15]

MyoA-cKO/MyoC-KO Conditional gene excision/gene deletion 5% invasion [14]

MyoA-KO/MyoC-
cKD-ATc

Gene disruption/Conditional transcriptional
repression

10% invasion, Peripheral relocalization of MyoC [15]

MyoA-KO/MyoC-cKD
+ATc

Gene disruption/Conditional transcriptional
repression

2% invasion [15]

GAP45-cKD Conditional transcriptional repression 20% invasion [19]

GAP45-cKO Conditional gene excision 6% invasion [14]

GAP80-KO Gene deletion 100% invasion, Compensation by GAP45 [15]

AMA1-cKD Conditional transcriptional repression 15% invasion [12]

AMA1-KO Gene excision 20% invasion, Up-regulation of AMA2 [13]

AMA1-KO Gene disruption 10% invasion, Up-regulation of AMA2 and AMA4/RON2L1 [16]

AMA2-KO Gene deletion 75% invasion [16]

AMA1-KO/AMA2-KO Gene disruption/gene deletion 5% invasion, Up-regulation of AMA4/RON2L1 [16]

ACS-KO Gene deletion Up-regulation of ACL [24]

MORN1-KO Gene excision Basal complex formation defect, Cytokinesis defect, 24% apicoplast
segregation defect

[8]

MORN1-cKD Conditional transcriptional repression Basal complex formation defect, Cytokinesis defect, 100% apicoplast
segregation defect

[26]

doi:10.1371/journal.ppat.1005069.t001
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TgMyoA-KO and Recruitment of Another Myosin
The MyoA-glideosome refers to the machinery anchored to the parasite pellicle and acting as a
component of gliding motility that critically contributes to invasion and egress (Fig 1A) [10].
Ablation of the TgMyoA gene (TgMyoA-KO) [9] raised legitimate questions regarding the
validity of the gliding motility model for invasion and, alternatively, suggested the possibility
of functional redundancy given the existence of 11 myosins in the T. gondii genome, with six
of them belonging to the same class XIV as TgMyoA [17]. Pertinently, attempts to simulta-
neously disrupt TgMyoA and its close homologue TgMyoC failed [14]. Indeed, it has not
been possible to isolate TgMyoA-KO clones in which TgMyoC was already deleted (TgMyoA-
cKO/TgMyoC-KO). Moreover, conditional depletion of TgMyoC in TgMyoA-KO/TgMyoC-
cKD caused a further decrease in invasion, as well, clearly indicating that TgMyoC accounts for
the residual invasion seen in the TgMyoA-KO (Table 1) [14,15].

Further characterization of TgMyoC revealed that this motor belongs to the MyoC-glideo-
some, a complex localized to the basal polar ring, that shares an overall similar architecture with
the MyoA-glideosome as well as the commonmyosin light chains MLC1 and ECL1 (Fig 1A and
1B) [15,18]. In parasites lacking TgMyoA, TgMyoC strikingly relocalizes along the parasite pelli-
cle where TgMyoA normally resides (Fig 1C) [15]. This is achieved via interaction with GAP45,
which typically anchors TgMyoA to the pellicle but which functionally replaces GAP80 in the
recruitment of TgMyoC to the pellicle. Further evidence for plasticity was also observed in para-
sites lacking TgGAP80, in which TgGAP45 brings TgMyoC to the posterior pole [15,19].

Relocalization of TgMyoC immediately ensures survival of TgMyoA-KO parasites, and con-
tinuous passaging of these parasites in culture reveals an improved fitness with time and partial
restoration of the invasion process.

TgAMA1-KO and the Up-Regulation of Other AMA Family Members
Conditional knockdown of AMA1 (TgAMA1-cKD) caused a strong impairment in invasion
resulting from the inability to form an intimate interaction between the parasite and the host
cell at the MJ (Table 1) [12,20]. In contrast, and rather unexpectedly, TgAMA1-KO parasites
were still able to enter host cells at the same speed as wild-type parasites through the

Fig 1. A. Schematic representation of a T. gondii tachyzoite highlighting the localization and composition of the three glideosomes. B. Localization
of three glideosomes by immunofluorescence using the endogenously tagged TgGAP70 and TgGAP80 and the anti-TgGAP45 antibodies. Scale bars: 2 μm.
C. Relocalization of MycMyoC to the periphery of the tachyzoite in addition to its basal localization in absence of TgMyoA in the MycMyoC-cKD/MyoA-KO
strain. Scale bars: 2 μm.

doi:10.1371/journal.ppat.1005069.g001
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establishment of a visible MJ [13]. Intriguingly, the invasion efficiency of the TgAMA1-KO
was superior to that of the TgAMA1-cKD, suggesting that a compensatory mechanism was
selected during the continuous passaging of the mutant [13,16]. With the view that the MJ
serves as a platform for the transmission of the force generated by the glideosome [21],
TgAMA1 had to be replaced by a functionally redundant protein capable of bridging the RONs
and the parasite actomyosin system. In this context, two homologues of TgAMA1 were readily
identified: TgAMA2 and the sporozoite AMA1 (TgAMA3), which specifically interacts with
the sporozoite RON2 (TgRON2L2) [22]. Both proteins represent plausible, functionally redun-
dant candidates. Concordantly, in the TgAMA1-KO, TgAMA2 expression was shown to be
up-regulated at the transcript level as monitored by qPCR [13,16] and was detectable at the MJ
interacting with TgRON2 in place of TgAMA1 [16]. In addition, continuous in vitro culture
over 12 months showed an increasing invasion rate and, therefore, an improved fitness. Inter-
estingly, in the TgAMA1-KO/TgAMA2-KO double mutant, TgAMA4, which also shares
sequence similarities with TgAMA1 and TgAMA3, was found to be overexpressed. This over-
expression was accompanied by the concomitant up-regulation of the specific TgAMA4 ligand
TgRON2L1 [16].

This series of AMA-RON2 pairs that can be mobilized upon successive gene deletions high-
lights the considerable degree of parasite plasticity and the critical role of the MJ for host cell
entry.

Plasticity Operates in Other Apicomplexa and in Processes Outside
of Invasion
A striking and comparable example of genome plasticity related to the invasion process has
been reported for the etiologic agent of human malaria, Plasmodium falciparum. Indeed, upon
gene deletion, this parasite is able to redeploy a machinery composed of adhesin ligands orga-
nized hierarchically to ensure invasion via alternative pathways [23].

Carbon metabolism generates metabolites critically needed for biomass production and cell
survival. Upon genetic intervention, the parasites are also expected to adjust and compensate
for the deletion of genes implicated in any of these vital processes. For example, the pool of
cytoplasmic acetyl-CoA is an essential metabolite needed for acetylation of proteins and lipo-
genesis and can be produced from citrate through the action of ATP citrate lyase (ACL) or
from acetate by acetyl-CoA synthetase (ACS). In Toxoplasma tachyzoites, TgACS and TgACL
can be individually deleted without noticeable phenotypes but cannot be deleted in combina-
tion. While TgACL is barely detectable in wild-type parasites, it is readily up-regulated in
TgACS-KO parasites to adjust the level of acetyl-CoA required for proper growth [24]. This
response to loss of fitness illustrates a rapid adaptation to unfavorable conditions by up-regula-
tion of a complementary metabolic pathway.

Lastly, organelle biogenesis and cell division are fundamental events that can also challenge
the faculty of tachyzoite adaptation. Such an adaptation was reported upon the disruption of
the membrane occupation and recognition nexus protein 1 (TgMORN1), a protein that associ-
ates with several structures implicated in cell division [25]. While conditional depletion of
TgMORN1 (TgMORN1-cKD) showed impairment in basal complex formation, cytokinesis,
and apicoplast (plastid-like organelle) inheritance [26], a TgMORN1-KO mutant, isolated fol-
lowing Cre recombinase excision, presented an attenuation of the phenotype severity, in partic-
ular for apicoplast segregation [8]. The apicoplast hosts essential metabolic pathways [27]
and is rapidly lost upon multiple rounds of division in the TgMORN1-cKD, indicating that
MORN1 is critical for the survival of the parasite. It is therefore surprising that TgMORN1-KO
parasites can be propagated in culture with only a quarter of them without apicoplast. These
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results suggest an adaptation phenomenon possibly because of a functional redundancy since
other MORN-containing proteins are present in the T. gondii genome.

Concluding Remarks
T. gondii is an experimentally versatile member of the Apicomplexan phylum that needs to be
taken seriously when it comes to the emergence and study of compensatory mechanisms. The
few examples discussed here only show the tip of the iceberg. The frequency at which the com-
pensatory changes occur has not yet been determined, and thus the mechanisms responsible
have not yet been unraveled; however, they might include epigenetic processes such as chroma-
tin remodeling or changes in protein conformation and stability.

The gene knockout technologies available for Toxoplasma [2] and Plasmodium [1] are fur-
ther potentiated by the CRISPR/Cas9-based genome editing strategy [28–32]. This genome
editing engenders off-target effects, and thus it becomes even more crucial to be aware of the
strengths and weaknesses of these approaches. The acute, conditional depletion of a protein
remains the panacea to study its function. As illustrated above, the complete deletion of a gene
opens a new dimension of investigations that deserve to be globally scrutinized prior to draw-
ing conclusions. We are entering an area where global phenotypic analyses become feasible
and should be used to embrace the phenotypic complexity of a single gene deletion and, inci-
dentally, to avoid pitfalls.
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