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Abstract: Type 2 diabetes and renal damage are strictly linked. The progressive increase in T2D
incidence has stimulated the interest in novel biomarkers to improve the diagnostic performance of
the commonly utilized markers such as albuminuria and eGFR. Through microarray method, we
analyzed the entire transcriptome expressed in 12 serum samples of diabetic patients, six without
DKD and six with DKD; the downregulation of the most dysregulated transcripts was validated in
a wider cohort of 69 patients by qPCRs. We identified a total of 33 downregulated transcripts. The
downregulation of four mitochondrial messenger RNAs (MT-ATP6, MT-ATP8, MT-COX3, MT-ND1)
and other two transcripts (seysnoy, skerdo) was validated in patients with eGFR stage G3 versus G2
and G1. The four messenger RNAs correlated with creatinine and eGFR stages, while seysnoy and
skerdo were associated with white blood cell values. All transcripts correlated also with Blood Urea
Nitrogen. The four mitochondrial messenger RNAs had a high diagnostic performance in G3 versus
G2 discrimination, with AUC values above 0.8. The most performant transcript was MT-ATP6, with
an AUC of 0.846; sensitivity = 90%, specificity = 76%, p-value = 7.8 × 10−5. This study led to the
identification of a specific molecular signature of DKD, proposing the dosage of RNAs, especially
mitochondrial RNAs, as noninvasive biomarkers of diabetes complication.

Keywords: circulating RNAs; biomarkers; DKD

1. Introduction

Diabetic Kidney Disease (DKD) is a microvascular complication of diabetes, which
occurs in 20–40% of patients [1]. It is the leading cause of end-stage renal disease (ESRD) in
developed countries [2].

The pathogenesis of DKD is quite complex and not completely understood. However,
it is possible to consider different pathways such as metabolic, hemodynamic, inflammatory,
involved in DKD, with a composite interplay [3]. Among these, pivotal roles are played
by oxidative stress and fibrosis, which could be considered bridges between different
mechanisms responsible for renal damage in diabetic patients [4–8].

Even though advances have been made over the past few years in diagnosing and
treating DKD patients, we are still not able to significantly reduce mortality among these

Int. J. Mol. Sci. 2022, 23, 8198. https://doi.org/10.3390/ijms23158198 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158198
https://doi.org/10.3390/ijms23158198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5436-8279
https://orcid.org/0000-0003-4483-3365
https://orcid.org/0000-0001-6593-8823
https://orcid.org/0000-0001-9021-6101
https://orcid.org/0000-0002-8205-2706
https://orcid.org/0000-0002-8149-7957
https://orcid.org/0000-0002-7023-3649
https://orcid.org/0000-0003-4149-9488
https://orcid.org/0000-0003-3313-8543
https://orcid.org/0000-0002-1781-0902
https://doi.org/10.3390/ijms23158198
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158198?type=check_update&version=3


Int. J. Mol. Sci. 2022, 23, 8198 2 of 14

patients. Interventions to slow down the progression of DKD, indeed, must start in the early
stages of the disease. However, a big obstacle in clinical practice is the lack of biomarkers
that can accurately identify diabetic patients who are at early risk of developing DKD and
predict the progression of the condition [9].

To date, albuminuria and estimated glomerular filtration rate (eGFR) are the most com-
mon biomarkers used in clinical practice for DKD. However, these parameters show several
limitations. Not all patients with DKD and reduced eGFR have increased albuminuria
and it is possible to find increased albuminuria for different reasons, such as urinary tract
infections, high blood pressure, high-protein diet, exercise, and fever [9,10]. Furthermore,
albuminuria does not have a prognostic value. Microalbuminuria does not always progress
to macroalbuminuria, but it can regress to a normoalbuminuric state [11]. As shown for
albuminuria, eGFR has several limitations. For instance, P30 (a performance measure that
represents the likelihood that the eGFR is within ±30% of the measured GFR) for the most
common estimating equations is generally between 80 and 90% [2]. In addition, these
equations are less precise for higher GFRs, and they are further limited by [12] variation in
creatinine production because of age, gender, race, and body composition. In addition, at
the beginning of the disease, this biomarker does not reflect the severity of the disease and
when eGFR reaches the threshold of 60 mL/min/1.73 m2 almost 60% of the nephrons are
already lost. Thus, it is a late biomarker of renal dysfunction and injury [13].

Therefore, it is clear that there is a need for a novel well-validated group of biomarkers
to use in combination with conventional ones to improve the understanding of DKD
pathophysiology and stratify patients according to their disease stage to conduct a tailored
treatment [3]. DKD is a complication with multifaceted pathogenesis, therefore it is possible
to consider biomarkers related to the different mechanisms involved in kidney injury, such
as oxidative stress (i.e., 8-hydroxyseoxy-guanosine—8-OHdG), glomerular (i.e., nephrin)
and tubular damage (i.e., urinary neutrophil gelatinase-associated lipocalin—NGAL—and
urinary kidney injury molecule 1—KIM-1), inflammation (i.e., interleukin-6—IL-6), and
fibrosis (i.e., type IV collagen) [3,14–16]. Unfortunately, none of these biomarkers are
available in clinical practice.

During the last few years, many studies have focused on the so-called ”omics-based
biomarkers” of DKD. Indeed, transcriptomics, metabolomics and proteomic approaches
have been used for urine or serum analysis of DKD patients [17]. As far as transcriptomics
studies are concerned, they limited their analysis to miRNome expression profiles, although
other classes of non-coding RNAs such as mRNAs and non-coding RNAs could be novel
biomarkers for DKD [17]. These molecules, as well as microRNAs, are easily detectable and
highly stable in biological fluids and against several pre-analytic conditions, for instance,
repeated freeze-thaw cycles, long Room Temperature (RT) incubation and postponed
processing of samples [18].

Moreover, there is evidence of long non-coding lncRNAs involved in DKD pathogen-
esis, such as Plasmacytoma Variant Translocation 1 (PVT1), ENSMUST00000147869, and
CYP4B1-PS1-001 [19–21].

In agreement with these considerations, this study aimed to analyze the entire tran-
scriptome in patients affected by DKD, in order to identify molecular fingerprints useful
for the identification of new biomarkers of the pathology.

2. Results
2.1. DKD Is Characterized by a Specific Serum RNA Molecule Signature

In order to identify a novel potential biomarker signature of DKD, the whole transcrip-
tome expressed in the serum samples of 12 diabetic patients in the presence or absence of
DKD (n = 6 ACR < 30 mg/g, eGFR ≥ 90 mL/min/1.73 m2 stage G1; n = 6 ACR between
30 and 299 mg/g, eGFR between 30 and 59 mL/min/1.73 m2 stage G3) was analyzed. Sta-
tistically significant dysregulated transcripts are represented as volcano and scatter plots in
Figure 1 (panels A and B respectively). We identified a total of 33 dysregulated transcripts,
all downregulated (FC ≤ 2, FDR p-value < 0.05), in patients with DKD with respect to
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diabetic patients without DKD. Supplementary Table S1 reports probe IDs, Gene symbols,
fold-changes, FDR p-values and descriptions of dysregulated transcripts identified through
microarray analysis.
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Figure 1. Volcano (A) and scatter plots (B) assessing the variation between diabetic patients with or
without Diabetic Kidney Disease (DKD). The volcano plot visualizes the base 10 negative logarithm
of the FDR-corrected p-values (Y-axis) and fold-change deregulation values (X-axis) (A). In the scatter
plot, the values plotted on the X and Y axis are the averaged normalized signal values in each group
(log2 scaled) (B). In both panels, green points indicate > 2.0-fold down-regulation of expression and
grey points indicate < 2.0-fold-change in expression. FDR-corrected p-value < 0.05.

2.2. Transcriptome Data Are Associated with Pathways of DKD Pathogenesis

To analyze the biological role of microarray-identified DE transcripts, we performed an
enrichment pathway analysis through the use of TAC software. DE transcripts were statis-
tically significantly associated with molecular pathways consistent with DKD pathogenesis
such as inflammatory pathways (i.e., IL-5 signaling pathway, IL-2 signaling pathway, IL-11
signaling pathway), mitochondrial function (i.e., electron transport chain OXPHOS system,
oxidative phosphorylation), UPR stress (i.e., cytoplasmic ribosomal proteins, major path-
ways of rRNA processing and cytosol) and fibrosis (i.e., VEGFA-VEGFR signaling pathway,
interferon type 1 signaling pathway) (Figure 2).
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Figure 2. Enrichment pathway analysis: statistically significant pathways associated with Differen-
tially Expressed (DE) transcripts in Diabetic Kidney Disease (DKD) patients versus diabetic patients
without DKD (T2D). Y-axis reports the specific names of associated pathways, X-axis reports Fisher’s
Exact Test values (−Log p-value ≥ 1.13).
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The pathways that had a stronger statistical significance (Fisher Exact Test p-value > 3.52)
were involved in UPR stress and mitochondrial functions. We reported the specific dysreg-
ulated transcripts associated to these pathways in Supplementary Table S2, and we also
highlighted these transcripts in the volcano plot in Supplementary Figure S1.

2.3. Selected Transcripts Have a Decreasing Expression Trend Related to eGFR Stages

To confirm microarray data, we quantified the expression level of selected transcripts
through Real-Time PCR in a wider independent validation cohort of 69 diabetic patients.
Clinical and demographic patient data are reported in Table 1.

Table 1. Demographic and clinical data of the validation cohort. WC: Waist Circumference;
BUN: Blood Urea Nitrogen; HbA1c: Hemoglobin A1; WBC: White Blood Cells; HCT: Haematocrit;
BP: Blood Pressure.

Clinical Parameters G1 G2 G3 p-Value

Age 67.30 ± 4.79 68.00 ± 5.10 70.60 ± 4.97 0.0825
Gender (% M) 78.26 80.77 75.00 0.8953
BMI (kg/m2) 27.25 (25.92–33.49) 29.17 (27.90–32.46) 29.76 (24.98–34.69) 0.6300

WC (cm) 104.10 ± 14.15 108.60 ± 12.97 107.50 ± 9.43 0.4900
AST (UI/L) 24.00 (22–29) 25.00 (21–34.50) 24.00 (21.50–30) 0.8400
ALT (UI/L) 31.00 ± (21–38) 25.50 ± (19–45) 18.50 ± (13–29.50) 0.0600

COL. TOT (mg/dL) 158.00 (122–180) 181.50 (143.5–207) 171.50 (141.3–209.5) 0.1700
HDL (mg/dL) 47.96 ± 9.38 45.65 ± 12.78 47.25 ± 11.20 0.7700
LDL (mg/dL) 75.40 (51.60–100.60) 96.70 (78.25–126.70) 77.40 (68.25–139.30) 0.0900

Triglycerides (mg/dL) 146.00 (83–202) 126.00 (88.75–244) 133.50 (108–156) 0.9200
Uric acid (mg/dL) 5.17 ± 1.63 6.25 ± 1.51 6.59 ± 1.25 0.0100

BUN (mg/dL) 18.22 (21.50–26.64) 21.96 (23.71–28.97) 33.41 (38.43–48.13) <0.0001
HBA1c (%) 7.70 ± 1.34 7.70 ± 1.64 8.00 ± 1.35 0.9400

Creatinine (mg/dL) 0.73 (0.66–0.81) 0.96 (0.85–1.05) 1.40 (1.08–1.48) <0.0001
Albuminuria (mcg/mL) 25.00 (12–33) 24.50 (6.75–124.8) 17.00 (10.50–37.75) 0.7900

ALB/CREAT 26.00 (14–45) 32.00 (8.5–72.5) 28.50 (13.25–89) 0.7900
WBC (µL−1) 7900 (5700–8900) 6200 (5200–8125) 7550 (5800–8875) 0.1400

HCT (%) 44.40 (42.20–46) 42.60 (39.93–45.13) 40.05 (37.60–41.70) 0.0100
Systolic BP (mmHg) 120.7 ± 11.20 125 ± 10.54 129.8 ± 11 0.0277

Dyastolic BP (mmHG) 75 ± 7.43 79.36 ± 6.90 80.65 ± 6.30 0.0210
Hyperthesis subjects (% H) 58.3 68 95 0.0208

There was no significant difference between the studied groups, except for levels of
uric acid, Blood Urea Nitrogen, creatinine, HCT systolic blood pressure, diastolic blood
pressure, presence of hypertension condition, (One-way ANOVA or Kruskal Wallis test
p-value < 0.05). We selected four coding RNAs, MT-ATP8, MT-ATP6, MT-COX3, and MT-
MD1, and two “Aceview” database-reported transcripts seysnoy and skerdo. We selected
these transcripts because, among the dysregulated transcripts (FDR p-value < 0.05), they
had a strong FC dysregulation (FC < 18) and they presented higher levels of fluorescence
signals in microarray data. Validation cohort patients have been grouped according to
ACR (n = 36 normoalbuminuric subjects, n = 33 macroalbuminuric subjects) or according
to eGFR stages (n = 24 G1, n = 25 G2, n = 20 G3). Taking into account ACR stratification,
the dysregulation of any of the selected transcripts was confirmed. On the contrary,
according to eGFR stratification, we validated the downregulation of all the 6 selected
transcripts: four messenger RNAs and two “Aceview”-identified transcripts. Through
Real-Time PCR we validated the downregulation of the four mRNAs, MT-ATP8, MT-ATP6,
MT-COX3, and MT-ND1 and the skerdo transcript in G3 patients with respect to both
G1 and G2 (Figures 3 and 4). Seysnoy was under-expressed only in G3 patients versus the
G2 comparison (Figure 4).
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Figure 3. Dot plots of mitochondrial coding RNAs MT-ATP8 (panel A), MT-ATP6 (panel B), MT-
COX3 (panel C) and MT-ND1 (panel D), validated through qPCR in serum samples of diabetic
patients with increasing eGFR stages G1, G2 and G3. The Kruskal Wallis test was used for MT-ATP8
which presented a non-parametric distribution. The One-way ANOVA test was used for all the other
transcripts showing parametric distributions. n = 69: G1 = 24, G2 = 25, G3 = 20. * p-value < 0.05
** p-value < 0.01 *** p-value < 0.001 **** p-value < 0.0001.
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Figure 4. Dot plots of seysnoy (A) and skerdo (B) transcripts validated through qPCR in serum
samples of diabetic patients with increasing eGFR stages G1, G2 and G3. The one-way ANOVA test
was used for the two transcripts showing parametric distributions. n = 69: G1 = 24, G2 = 25, G3 = 20.
* p-value < 0.05.

Table 2 reports p-values and fold-change values of analyzed transcripts in G3 versus
G2 and G3 versus G1 comparisons.

The downregulation of only the four messenger RNAs was also maintained in G3
versus G2 patients inside normoalbuminuria or microalbuminuria groups considered
separately. The results of these latter comparisons are shown in Supplementary Table S3
and Figures S2 and S3.
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Table 2. p-values and fold-change expression values of selected transcripts analyzed through Real-
Time PCR in the validation cohort in G3 versus G2 or G1 comparisons.

Transcripts FC
G3 vs. G1

FC
G3 vs. G2

p-Value
G3 vs. G1

p-Value
G3 vs. G2

MT-ATP8 −2.6 −3.3 0.0070 0.0003
MT-ATP6 −2.4 −3.4 0.0300 <0.0001
MT-COX3 −2.8 −4.1 0.0040 <0.0001
MT-ND1 −2.6 −3.7 0.0080 <0.0001
Seysnoy - −1.8 0.1367 0.0200
Skerdo −1.6 −1.8 0.0400 0.0100

2.4. Validated Transcripts Are Associated with Patients’ Clinical Data

We performed a correlation analysis to test the hypothesis of a potential correlation be-
tween analyzed transcript expression values and patients’ clinical data. In agreement with
Real-Time validation data, as expected, we found a correlation between all the transcripts
and serum creatinine, as well as eGFR. For seysnoy and skerdo, we also found a correlation
with White Blood Cell count (WBC). Blood urea nitrogen correlated with all analyzed
transcripts. Since creatinine, eGFR, WBC and BUN had a nonparametric distribution, the
correlation analysis between these clinical parameters and the expression levels of the
validated transcripts was evaluated by the Spearman test. Table 3 shows the p-values of the
correlation analysis.

Table 3. p-Values of Spearman correlation analysis between the expression levels of analyzed tran-
scripts and clinical patients’ data.

Transcripts Creatinine
(mg/dL)

eGFR ckd-epi
(mL/m × 1.73 m2) WBC (µL−1) BUN (mg/dL)

MT-ATP8 0.0023 0.0031 0.0602 0.0010
MT-ATP6 0.0112 0.0156 0.0889 0.0082
MT-COX3 0.0135 0.0155 0.1394 0.0050
MT-ND1 0.0101 0.0158 0.1168 0.0046
skerdo 0.0078 0.0063 0.0170 0.0252

seysnoy 0.0354 0.0303 0.0174 0.04403

2.5. ROC Curve Analysis

Performing ROC curve analysis, we analyzed the diagnostic performance of validated
transcripts for G3 versus G2 patient discrimination. All analyzed transcripts reached
statistical significance in ROC curve analysis. The four messenger RNAs showed high
diagnostic performances, with AUC values above 0.80. The two “Aceview”-identified
transcripts had lower diagnostic performances, with AUC values above 0.7. Since pa-
tients were stratified according to eGFR, in our cohort this parameter had an AUC value
equal to 1, while albuminuria ROC curve analysis did not reach the statistical significance
(AUC = 0.445, CI = 0.275–0.615, p-value = 0.527). Table 4 reports the AUC value, confi-
dence interval, sensitivity, specificity and p-value data of each transcript for G3 subject
identification. Figures 5 and 6 show ROC curves of messenger RNAs, and seysnoy and
skerdo respectively.
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Table 4. p-values and fold-change expression values of selected transcripts analyzed through Real-
Time PCR in the validation cohort in G3 versus G2 or G1 comparisons.

Transcripts AUC CI p-Value Sensitivity Specificity

MT-ATP8 0.816 0.687–0.945 2.0 × 10−6 90% 72%
MT-ATP6 0.846 0.728–0.964 7.8 × 10−5 90% 76%
MT-COX3 0.836 0.710–0.962 1.2 × 10−4 90% 76%
MT-ND1 0.842 0.718–0.966 9.4 × 10−5 90% 76%
seysnoy 0.714 0.580–0.892 1.0 × 10−2 75% 76%
Skerdo 0.736 0.580–0.892 3.0 × 10−3 80% 72%

3. Discussion

T2D and renal damage are inextricably linked. The increase in the incidence of T2D
and the clinical relevance of DKD, determining an important rise in cardiovascular morbid-
ity and mortality [19], explain the scientific interest in this complication. Taking into account
the clinical relevance of DKD, subjects at higher risk to develop this complication should be
identified earlier in order to address the main efforts for prevention and treatments that may
arrest and prevent further disease progression. Currently, the biopsy is the gold standard
for kidney disease diagnosis, however, it is highly invasive and has a risk of complications.
Most DKD patients do not undergo renal biopsy [20]. Albuminuria and estimated glomeru-
lar filtration rate (eGFR) are the most commonly used diagnostic/prognostic biomarkers in
clinical practice. Since both markers have several limitations [13], the identification of novel
sensitive and specific biomarkers represents a pivotal clinical challenge. During recent
years, circulating non-coding RNAs have received increasing interest. A lot of studies
analyzed microRNA expression in several specimens, including serum and urine, in an
attempt to identify novel diagnostic/prognostic biomarkers [21,22]. However, neither of
these microRNAs have been introduced in clinical practice.

This study supports the idea that other classes of RNA molecules could represent
useful biomarkers in DKD. Indeed, similarly to microRNAs [23], other RNA transcripts
are resistant to endogenous RNase degradation and easily detectable in biological fluids
through basic molecular biology techniques [18]. Only a few studies analyzed the detection
of messenger RNAs or ncRNA for DKD diagnosis/prognosis. Messenger RNAs have
been mainly detected in urine sediment specimens. Song-Tao Feng et al. reported that the
mRNAs coding for chemokines, more specifically CCL5 and CXCL1 mRNA levels, were
upregulated in the urinary sediment of patients with 91 DN versus 60 controls, and were
negatively correlated with eGFR [24]. Gang Wang demonstrated that in urine sediment
samples, nephrin levels are significantly higher, and WT-1 levels were significantly lower
in 21 diabetic patients than in 9 controls. However, this study failed in determining a
correlation between these podocyte-related biomarkers and kidney function decline as
estimated through eGFR [25]. Similarly, Min Zheng et al. reported that the podocyte-
associated biomarkers podocalyxin, CD2-AP, α-actin4, and podocin were upregulated
in 51 diabetic patients with DKD versus 13 controls. All target molecules were significantly
correlated with urinary albumin, and only podocalyxin was inversely associated with
eGFR [26]. As far as ncRNAs are concerned, few circulating lncRNAs have been reported
to be dysregulated in serum samples of DKD patients. For instance, Chun Zhao reported
that PANDAR is upregulated in diabetic patients and higher in DKD patients with massive
proteinuria than microalbuminuric patients and negatively correlated with eGFR [27]. In
another study, Jujie Gao et al. reported that NR_033515 was significantly increased in the
serum of DKD patients and was related to the different stages of DKD. In addition, this
noncoding RNA was also positively associated with diagnostic markers of DKD (KIM-1
and NGAL) [28].

We used a high-throughput approach for the analysis of the whole transcriptome
expressed in serum samples in order to identify “molecular fingerprints”, useful for a more
accurate definition of DKD diagnosis and prognosis. Through this approach, we identified
33 downregulated transcripts (FDR-corrected p-value < 0.05) in the serum of DKD patients
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in comparison with T2D patients without DKD (n = 12: 6 CKD, 6 T2D). Interestingly,
the computational analysis showed that these transcripts were associated with pathways
consistent with DKD pathogenesis, including inflammatory pathways, mitochondrial
dysfunction, UPR stress and fibrosis. After that, we selected six of the most dysregulated
transcripts (four coding RNAs: MT-ATP8, MT-ATP6, MT-COX3, MT-ND1 and: seysnoy
and skerdo according to the Aceview database) and we validated their downregulation in
a wider independent cohort of diabetic patients grouped according to ACR or eGFR stages.
Identified transcripts were progressively downregulated according to eGFR stages with a
strong statistical significance (n = 24 G1, n = 25 G2, n = 20 G3). In agreement with this data,
we found a correlation between all the transcripts and serum creatinine, BUN and eGFR.
Thus, identified biomarkers correlated with progressive functional kidney decline in the
context of DKD. Furthermore, messenger RNAs had considerable diagnostic power for the
discrimination of G3 versus G2 patients with AUC values above 0.8. The most performant
transcript was ATP6 with AUC values of 0.846 (p-value = 7.8 × 10−5, sensitivity: 90%,
specificity: 76%). Multivariate logistic analysis, performed by combining the expression
data of all the identified transcripts and each possible combination of them, did not improve
the identified biomarker diagnostic performance. This could be due to the problematic
amount of collinearity in transcript expression data. Indeed the variance inflation factor
(VIF) of analysed transcripts was above 5 and 10. In this condition, the redundance of
data does not allow an improvement of the diagnostic performance in multivariate logistic
analysis or potential combinatorial indices.

It is important to highlight that the downregulation of coding RNAs was also main-
tained in G3 versus G2 comparisons inside normoalbuminuria or microalbuminuria groups
considered separately. This is particularly relevant for normoalbuminuric patients because
a substantial proportion of T2D patients with DKD are normoalbuminuric and do not de-
velop microalbuminuria (non-albuminuric phenotype). Hence, eGFR is the only available
biomarker in this subgroup [13].

Interestingly, the four validated coding RNAs are subunits of the mitochondrial respi-
ratory chain encoded by the mitochondrial genome. MT-ATP8 and MT-ATP6 respectively
encode for the Fo subunits eight and six of the mitochondrial ATP synthase (complex V).
MT-CO3 encodes for the subunit three of cytochrome c oxidase (complex III), and MT-ND1
for the subunit one of NADH: Ubiquinone oxidoreductase (complex I).

It is important to highlight that blasting the sequences of seysnoy and skerdo through
BLAT of UCSC browser, these two transcripts actually represent two different regions of the
same mithocondrial transcript, MT-RNR1 mitochondrially encoded 12S ribosomalRNA. As
is widely known, mitochondrial 12S rRNA is a constituent of mitoribosomes, the function
of which are essential for the biogenesis of the oxidative phosphorylation system and for
mitochondrial function in general [29]. Interestingly, Wuping Yang, et al. reported that the
lncRNA NF582-AS1 overexpression induces a decrease of MT-RNR1 expression, followed
by the inhibition of MT-CO2 (mitochondrially encoded cytochrome c oxidase II). On the
contrary, MT-RNR1 overexpression reversed the decreased MT-CO2 expression [30].

It is widely known that mitochondrial dysfunction plays a pivotal role in DKD patho-
genesis. It has been demonstrated that the assembling of Electron Transport Chain ETC
complexes and supercomplexes is impaired in diabetes [31,32]. As far as DKD is concerned,
several studies reported that ETC subunits are downregulated. For instance, through
immunostaining experiments it has been demonstrated that cytochrome c oxidase (com-
plex IV) is reduced in the kidneys of patients with diabetic nephropathy versus control
subjects [33]; furthermore, it has been reported that the complex IV subunit MT-CO2 is
lower in human postmortem glomeruli of T2D patients with eGFR ≤ 30 mL/min/1.73 m2,
with respect to patients with higher eGFR or controls [34]. The alteration of ETC complex
formation and the downregulation of complex subunits are consistent with the reduction
of ETC functional activity. Several studies, indeed, reported that complex I, III, and/or IV
activities are progressively reduced as DKD progresses in animal models [35]. In agreement
with this data, we can hypothesize that the downregulation of RNA molecules coding for
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specific subunits of ETC in serum samples of patients with progressive decreasing eGFR
values mirrors the ETC impairment/downregulation that occurs at the histological level
in DKD.

Since mitochondrial dysfunction is central to DKD pathogenesis, few other studies
suggested the dosage of specific mitochondrial molecules/metabolites in blood or urine
for DKD diagnosis and progression monitoring. In this context, the study conducted by
Kumar Sharma et al. is very relevant. The authors, applying a metabolomics approach,
identified 12 mitochondrial metabolites significantly reduced in diabetic patients with DKD
versus patients without DKD; similarly to our results, this suggested a global suppression
of mitochondrial activity in DKD. The same authors also demonstrated that urine exosome
mitochondrial DNA (mtDNA) was reduced [33] in patients with DKD versus controls.
Similarly, Ghada Al-Kafaji demonstrated that patients with DKD had lower mtDNA than
patients with T2D and healthy controls. Furthermore, mtDNA had a decreasing expression
trend, ranging from normoalbuminuric to microalbuminuric and macroalbuminuric groups
(p < 0.01). mtDNA was also directly correlated with eGFR [36]. Only one study evaluated
mtDNA levels in a longitudinal cohort of 19 patients with a follow-up of 24 months
in supernatant, urinary sediment, or at the intra-renal level. Through univariate Cox
regression analysis, the authors reported that there was no significant relation between
mtDNA levels and renal survival [37].

Our cross-sectional study represents a starting point for the identification of non-
coding RNAs and mRNAs as biomarkers for DKD. However, these data should be con-
firmed in a larger independent external cohort. Furthermore, in order to establish if
identified RNA molecules can have a prognostic value, their downregulation should be
confirmed in longitudinal cohorts, analyzing transcript expression serially and in associ-
ation with the variation of other functional parameters. Although eGFR represents the
main reference biomarker in clinical practice, once further validated in longitudinal cohorts
these data could provide novel additional biomarkers for DKD, especially for patients who
develop DKD and remain in a normoalbuminuric stage. Even with these limitations, this
study offers a new and promising approach to biomarker discovery for DKD.

4. Materials and Methods
4.1. Study Population

Diabetic patients were enrolled by the Internal Medicine Unit of the Garibaldi-Nesima
Hospital, University of Catania.

Diabetes patients presented fasting blood glucose ≥126 mg/dL and HbA1c ≥ 6.5%
(48 mmol/mol) [38]. In order to define the presence of DKD complications, the Albu-
min/Creatinine Ratio (ACR) and eGFR were estimated. Our study included a total of
81 patients.

12 patients represented the discovery cohort: 6 diabetic patients without DKD:
ACR < 30 mg/g (normoalbuminuria), eGFR ≥ 90 mL/min/1.73 m2 (stage G1); 6 diabetic
patients with DKD: ACR between 30 and 299 mg/g (microalbuminuria); eGFR between
30 and 59 mL/min/1.73 m2 (stage G3).

69 patients were included in the validation cohort that was grouped according to
ACR (n = 36 normoalbuminuric subjects, n= 33 microalbuminuric subjects) or eGFR
(n = 23 stage G1: eGFR ≥ 90 mL/min/1.73 m2, stage G2: n = 25 eGFR between 60 and
89 mL/min/1.73 m2, n = 20 stage G3: eGFR between 30 and 59 mL/min/1.73 m2).

We excluded from our study patients with type 1 diabetes mellitus, nondiabetic kidney
disease, hepatic diseases, autoimmune disorders, cancer, and diabetes mellitus complicated
with cardiovascular diseases. For all patients, clinical, biochemical, pharmacological, and
anthropometric data were collected.

4.2. Sample Processing

Blood samples were maintained at room temperature for one hour and subsequently
centrifuged at 3500 rpm at 4 ◦C for 15 min in order to allow serum separation from whole
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blood. Serum was further centrifuged in order to remove eventual cell debris. The upper-
layer supernatant was collected, and aliquots were stored at −80 until analysis.

4.3. RNA Extraction

Total RNA extraction was performed from 400 µL of serum by using the miRNeasy
mini kit (QIAGEN) according to the manufacturer’s instructions. RNA elution was per-
formed in a final volume of 200 µL. RNA concentration and quality assessment was
performed by using the NanoDrop One (Thermo Fisher Scientific) [38–41].

4.4. Microarray Analysis

The high-throughput profiling of coding/non-coding RNAs in serum samples of six
diabetic patients with DKD, and six matched diabetic patients without DKD, was performed
by using Clariom D Pico Assay (Thermo Fisher Scientific, Milan, Italy) technology according
to the manufacturer’s instruction [42,43].

4.5. In Silico Analysis

In order to highlight a potential association between microarray-identified dysregu-
lated transcripts and molecular pathways consistent with DKD pathogenesis, we performed
enrichment pathways analysis by using Transcriptome Analysis Console 4. This retrieves
canonical biological pathways from the WikiPathways (Thermo Fisher Scientific, Santa
Clara, CA, USA) database and returns p-values applying a two-sided Fisher’s Exact Test
(−log p-value ≥ 1.13) [42,43].

4.6. Validation by qPCRs

To validate microarray results, the expression of six candidate transcripts among the
most dysregulated ones (4 mRNAs and 2 “Aceview” reported transcripts) were analyzed in
the serum samples of the validation cohort (n = 69) through Real-Time PCR (Power SYBR
Green RNA-to-CT1-Step Kit (Thermo Fisher Scientific)) [44,45], in a QuantStudio 5 system
(Thermo Fisher Scientific). ACTB was used as reference gene and relative quantification
data were determined through the 2−∆∆Ct method. The sequences of primers used in
qPCRs are reported in Table 5.

Table 5. Primer sequences of transcripts analyzed through qPCRs.

Transcripts Primer Sequences

MT-ATP8 F 5′ ACAGTGAAATGCCCCAACTAAAT 3′

R 5′ AGGGAGGTAGGTGGTAGTTTGTG 3′

MT-ATP6 F 5′ ACCTTCCCTCTACACTTATCATCTT3′

R 5′ CGTGCAGGTAGAGGCTTACT 3′

MT-COX3 F 5′ TTCACCATTTCCGACGGCAT 3′

R 5 GGCGGATGAAGCAGATAGTGA’ 3′

MT-ND1 F 5′ CGGGCTACTACAACCCTTCG 3′

R 5 AGATGTGGCGGGTTTTAGGG 3′

seysnoy F 5′ TACCCCACTATGCTTAGCCCT 3′

R 5′ AGCTGTGGCTCGTAGTGTTC 3′

skerdo F 5′ GGGTTGGTCAATTTCGTGCC 3′

R 5′ ACACTCTTTACGCCGGTTTCT 3′

ACTB2 F 5′ GAGCACAGAGCCTCGCCTTT 3′

R 5′GAGCGCGGCGATATCATCA 3′

4.7. Statistical Analysis

Microarray raw data normalization and the identification of Differentially Expressed
(DE) transcripts were performed through Transcriptome Analysis Console (TAC) v 4. software
according to the following parameters: Analysis Type: Expression Gene, Summarization
Method: Gene Level—RMA, FDR p-Value < 0.05.
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In order to check the normal distribution of clinical and expression data, three different
normality tests were applied: the D’Agostino-Pearson omnibus test, the Shapiro–Wilk
normality test and the Kolmogorov–Smirnov normality test. The unpaired t-test or Mann–
Whitney U-test was used to analyze the statistical significance of expression data for
parametric or no parametric data in normoalbuminuric versus microalbuminuric patient
comparison. The one-way ANOVA or Kruskal–Wallis test was used to analyze the statistical
significance of expression results for normal or no normal data in patients with increasing
stages of eGFR (stages 1, 2 and 3).

We performed linear regression analysis or Spearman correlation (respectively, for
normally or not normally distributed data) in order to identify a potential relationship
between transcript expression values and subject clinical data. The statistical analyses were
performed by using GraphPad Prism 6.0 (GraphPad Software, Inc., San Diego, CA, USA).

ROC curves and AUC were used to assess the diagnostic performance of identified
differentially expressed RNAs for discrimination of eGFR severity grades of DKD. SPSS
PASW Statistics V.27 was used for ROC curve analysis [42,43].

5. Conclusions

This study proposes the dosage of coding and non-coding RNAs as biomarkers of
DKD. An important finding of our work is that addressing the biomarker discovery in
the expression analysis of mitochondrially encoded RNAs could pave the way to the
identification of novel DKD biomarkers.
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