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ABSTRACT Trichoderma sp. is a globally occurring fungal ascomycete. The genus
Trichoderma belongs to the order of Hypocreales in the class of Sordariomycetes.
Due to its importance as a mycoparasite and biocontrol fungus that antagonizes
phytopathogenic and mycotoxin-producing fungi, the genome of the Trichoderma
afroharzianum strain BFE349 from the fungal strain collection of the Max Rubner-
Institut was sequenced and analyzed.

T richoderma spp. colonize plant roots, and some species are rhizosphere competent
so they grow directly on roots and support the vitality and root growth of plants while

inducing their systemic resistance to phytopathogens (1, 2). As an important mycoparasite
and biocontrol fungus, Trichoderma afroharzianum feeds on fungal material and actively
attacks and parasitizes other fungi (3). It is known that Trichoderma spp. combat most
pathogenic fungi, such as Fusarium and Alternaria members, but also saprophytic species,
such as those from Penicillium and Aspergillus (4, 5). However, Trichoderma spp. are also a
major source of contamination and crop loss in mushroom farms (6, 7). Trichoderma afro-
harzianum BFE349 was isolated from field soil in South Germany, which is a common habi-
tat for this species of fungi. For isolation of genomic DNA, the strain was grown 7days at
25°C in yeast extract-saccharose (YES) broth (20 g/liter yeast extract and 150 g/liter saccha-
rose). Genomic DNA of T. afroharzianum BFE349 was extracted from a pure culture using
the NucleoSpin plant II kit (Macherey-Nagel) and quantified and quality checked using a
NanoDrop 1000 instrument (VWR International) and Qubit 3.0 photometer, respectively.
Genome sequencing was carried out on the MiSeq platform (Illumina) as follows: the
sequencing library was built using the Illumina Nextera DNA XT kit and quality checked
using Experion DNA 1k analysis (Bio-Rad Laboratories). Raw reads (read length of 2� 300
bp) were processed with the FASTQ preprocessing toolkit (Blast2Go Pro V5.2). De novo as-
sembly was carried out with SeqMan NGen V17.2 (Lasergene). Default parameters were
used except where otherwise noted; sequencing adapters, PhiX control, contigs of ,200
nucleotides (nt), and mitochondrial sequences were removed. The assembly size was
38,392,485bp with 60� coverage which contained 962 genomic scaffolds/contigs; the N50

value was 77,771 kb, the L50 value was 147 kb, and the G1C content was 49.6%. The pre-
diction of biosynthetic gene clusters (BGCs) was carried out with antiSMASH fungal V6.0
alpha using the cluster finder algorithm for BGC border prediction with standard settings
(8, 9).

Within the genome sequence of T. afroharzianum BFE349, a total of 56 BGCs were
predicted, as follows: 16 T1PKS clusters, 18 NRPS clusters, 7 PKS-NRPS hybrid clusters, 1
fungal-RIPP cluster, 5 saccharide clusters, 2 fatty acid clusters, and 7 terpene clusters.
The predicted BGCs show similarity to known BGCs; one predicted BGC shows a gene
sequence similarity (gss) of 33% to the depudecin gene cluster. Depudecin is a deace-
tylase inhibitor and virulence factor described in Alternaria brassicicola (10). In addition,
one predicted BGC shows a gss of 75% to the gene cluster for tricholignan A biosyn-
thesis. Tricholignan is used by the producing fungus to facilitate reductive iron
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assimilation in plants (11). Other predicted BGCs show gene sequence similarities to
chaetoviridin, which is an azaphilone antibiotic (gss of 27%) (12); the cytotoxic beta-
lactone aspyridone A (gss of 33%) (13); curvupallide (gss of 22%) (14); the pigment
naphthopyrone (gss of 100%) (15); squalestin S1 (gss of 40%) (16); the xanthone heter-
odimer neosartorin (gss of 15%) (17); the siderophore dimethylcoprogen (gss of 100%)
(18); the tetracyclic diterpene fungal antibiotic sordarin (gss of 26%) (19), and last but
not least the terpene copalyl diphosphate (gss of 28%) (20). Future analyses of the
above-mentioned interesting secondary metabolites and molecular characterization of
the respective gene clusters expressed in Trichoderma spp. will allow conclusions to be
drawn about their importance for the mycoparasitic state, for the ability to complex
and assimilate iron, and to support plants in their growth.

Data availability. This whole-genome shotgun project has been deposited in NCBI/
SRA GenBank under accession no. JAEKOX000000000.1 and PRJNA682927.
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