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Cancer tissue consists of heterogenous cell types, and cancer stem cells (CSCs) are
a subpopulation of the tissue which possess therapy resistance, tumor reconstruction
capability, and are responsible for metastasis. Intrahepatic cholangiocarcinoma (iCCA)
is one of the most common type of liver cancer that is highly aggressive with poor
prognosis. Since no target therapy is efficient in improving patient outcomes, new
therapeutic approaches need to be developed. CSC is thought to be a promising
therapeutic target because of its resistance to therapy. Accumulating evidences
suggests that there are many factors (surface marker, stemness-related genes, etc.)
and mechanisms (epithelial-mesenchymal transition, mitochondria activity, etc.) which
are linked to CSC-like phenotypes. Nevertheless, limited studies are reported about
the application of therapy using these mechanisms, suggesting that more precise
understandings are still needed. In this review, we overview the molecular mechanisms
which modulate CSC-like phenotypes, and discuss the future perspective for targeting
CSC in iCCA.

Keywords: intrahepatic cholangiocarcinoma, cancer stem cells, mitochondria, dormant, epithelial-mesenchymal
transition

INTRODUCTION

The molecular mechanisms leading to cancer heterogeneity are still largely unknown, especially
in cholangiocarcinoma, although its heterogeneity is known and was analyzed decades ago (Gray
and Pierce, 1964; Fidler, 1978). A while back, a study regarding repopulating leukemia cells in
NOD/SCID mice was published (Bonnet and Dick, 1997). Since then, there have been many
papers about these repopulating cells, namely cancer stem cells (CSCs). A key concept in the field,
that tumor tissue consists of several subpopulations, where each subpopulation has plasticity to
transform the other, and removing a specific population can lead to shrinking of the whole tumor,
significantly changes our understanding of cancer. Currently, CSCs are characterized by dormancy,
chemotherapy resistance, altered mitochondrial activity, high proliferation, asymmetric division,
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in addition to self-renewal and differentiation capacity, which
are common features observed in normal stem cells. Thus, the
term CSC does not define a specific type of cell, but rather is a
general term for therapy-resistant subpopulations of heterogenic
cancer cells. These cells should be analyzed by focusing on specific
phenotypes and underlying molecular mechanisms.

Intrahepatic cholangiocarcinoma (iCCA) is characterized as
cholangiocarcinoma proximal to the second order bile ducts
(Blechacz et al., 2011). Clinically, iCCA presents with unspecific
symptoms and infiltrates easily into surrounding interstitial
connective tissue, resulting in progressive disease and the loss of
a chance to undergo surgery at the time of detection. Systemic
therapy has been investigated and tried, but it is not easy to
improve the patient’s prognosis.

POSSIBLE PRESENCE OF STEM CELLS
IN INTRAHEPATIC
CHOLANGIOCARCINOMA

It is widely accepted that the subset of cells with stem and
progenitor characteristics in normal tissues are particularly
susceptible to oncogenic transformation (Lytle et al., 2018).
Tomasetti and Vogelstein (2015) reported that the lifetime
risk of cancers is strongly correlated with the total number
of divisions of the normal self-renewing cells maintaining that
tissue’s homeostasis, indicating that cancer cells originate from
normal stem cells. The cell of origin for cancers is known
to be closely associated with the nature of the cancer (Lytle
et al., 2018). For example, while BCR-ABL rapidly triggered
chronic myeloid leukemia (CML) when introduced into stem
cells, it triggered B cell acute lymphocytic leukemia (ALL) when
expressed in progenitor cells. In iCCA, there are two main
different histological subtypes which originated from different
cell types (Bragazzi et al., 2018). The large bile duct (mucinous)
type iCCAs arise in larger intrahepatic bile ducts, and the small
bile duct (mixed) type iCCAs show a profile similar to mucin-
negative cuboidal cholangiocytes that line the smaller bile duct
(interlobular bile duct and bile ductules).

In the normal liver, intrahepatic biliary epithelium can
proliferate in a liver injury model, but proliferative biliary
epithelial cells depend on a stochastically maintained progenitor
population (Kamimoto et al., 2016). In cholangiocarcinoma,
the presence of CSCs has been speculated in pathological
observations made decades ago. In a choline-deficient and
acetylaminofluorene fed rats, oval cells (stem cells of liver)
proliferate and cholangiocarcinoma was observed (Sell and
Dunsford, 1989). Ishikawa et al. reported a case of iCCA
producing α-fetoprotein (AFP), which is usually produced in
liver cancer and normal fetal liver (Ishikawa et al., 2007).
In immunohistochemistry, AFP, cytokeratin (CK)7 (biliary
epithelial marker), CK14 (a liver stem cell marker), and CD133
(hematopoietic and CSC marker) were colocalized, and the
authors concluded that the tumor was derived from a normal
liver stem cell. Transcriptomic profiling of clinical tissues
suggested that gene expression signatures of iCCA shared the
signatures of hepatocellular carcinoma (HCC) with stem cell gene

expression traits (Oishi et al., 2012). These data indicate that
iCCA arise from liver stem cells and exhibit stem-like capacity.
However, whether stem cells in cancer initiation stage and CSCs
in the cancer progression stage are the same subset of cells is still
under discussion.

SURFACE MARKERS SPECIFIC FOR
CANCER STEM CELLS

Since the CSCs are identified as CD34+CD38− population
(Bonnet and Dick, 1997), cell surface proteins have been
intensively explored as CSCs marker (Najafi et al., 2019). Many
of CSCs markers are also known as normal stem cell markers
[CD133 (Barzegar Behrooz et al., 2019), CD44 (Morath et al.,
2016), LGR5 (Shimokawa et al., 2017), etc.]. In iCCA, CD133, and
CD44 are suggested to be CSC markers since they were correlated
with the CSC like features as described below.

CD133, known as prominin-1 (a transmembrane
glycoprotein), is widely acknowledged as a CSC marker
(Barzegar Behrooz et al., 2019). CD133-positive cases are related
to a poor prognosis in iCCA (Shimada et al., 2010). CD133 also
correlates with poor prognosis in extrahepatic bile duct cancer
(Mizukami et al., 2018). Although CD133 in cholangiocarcinoma
correlates with tumor malignancy, the pathophysiological roles
of CD133 are still unknown. In Caco-2 (colorectal cancer)
and OVCAR-8 (ovarian cancer) cells, CD133 binds Histone
Deacetylase 6 (HDAC6) and CD133 is degraded by lysosomes
(Mak et al., 2012). CD133/HDAC6/β-catenin complex is stable
and increases cell proliferation and in vivo tumorigenicity.

CD44 belongs to the family of non-kinase, single span,
transmembrane glycoproteins expressed on embryonic stem
cells (Chen et al., 2018). Many isoforms with slightly different
functions are transcribed from the CD44 gene. In gastric cancers,
CD44v8-10 interacts with glutamate-cysteine transporter xCT
and increases cystine transport and GSH synthesis, resulting in
suppression of reactive oxygen species (ROS) and p38 activation
(Ishimoto et al., 2011), indicating that CD44 variants are involved
in supporting the functions of CSC’s in gastric cancer. Knock
down of CD44v9 in an iCCA cell line caused the decrease of
tumor growth in vivo and in epithelial mesenchymal transition
(EMT). Sulfasalazine is a xCT inhibitor (Liu et al., 2020) which
inhibits cell proliferation and induces cell death through decrease
of glutathione and increase of ROS, indicating the possibility of
iCCA therapy (Thanee et al., 2016).

EPITHELIAL MESENCHYMAL
TRANSITION IN CANCER STEM CELLS

Epithelial mesenchymal transition has been recognized as an
indispensable mechanism during embryogenesis (Nieto et al.,
2016). The EMT process also confers malignant traits, such as
motility, invasiveness, and resistance to apoptosis in neoplastic
cells (Peinado et al., 2007). In addition, EMT induces stem cell
properties in epithelial neoplasms (Mani et al., 2008). ZEB1 is
a transcription factor that promotes metastatic and stem cell
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features (Oishi et al., 2012; Pastushenko and Blanpain, 2019).
ZEB1 induces pluripotent factors such as SOX2, NANOG, and
OCT4 through miR-200 in prostate cancer cells (Kong et al.,
2010). In iCCA, ZEB1 is expressed both in tumor and stroma,
and plays a key role in the induction of EMT in tumor cells (Lobe
et al., 2021). Expression of ZEB1 in tumor cells leads to induction
of EMT and stemness, and functions at both sides of the tumor-
stroma interface by regulating the production of connective tissue
growth factor (CTGF), hepatocyte growth factor (HGF), and
interleukin 6 (IL6), to boost tumor progression. TGF-β is a strong
EMT inducer and caused increase aldehyde dehydrogenase
(ALDH) activity and resistance to 5-FU treatment in a iCCA cell
line (Shuang et al., 2014); thus, suggesting a close relationship
between EMT and CSC.

DORMANT CANCER STEM CELLS IN
INTRAHEPATIC
CHOLANGIOCARCINOMA

Cancer stem cells are recognized as therapy-resistant cells,
especially the resistance to chemotherapy or radiation (Batlle
and Clevers, 2017). These therapies are more effective against
proliferative cells. Thus, CSCs might be dormant or quiescent.
Dormant cancer cells are in pathological state when compared
with quiescent cells, and can be in a state of temporary
mitotic arrest over prolonged periods (Hadfield, 1954; Phan
and Croucher, 2020). Dormant cancer cells are recognized as
therapy-resistance cells and as a cause for long-term recurrence
of cancer. Continued exploration into the underlying biology
of tumor dormancy is critical to advance the development of
more effective therapies that prevent and/or treat metastasis to
ultimately improve patient survival.

Tumor dormancy and its regulators have been investigated
in some types of cancers. DYRK1B is a kinase which regulates
G0/G1-S phase transition in cancer (Becker, 2018). Knockdown
of DYRK1B reduced quiescent cells and increased gemcitabine
sensitivity in pancreatic cancer cell lines (Ewton et al., 2011). In a
mouse model of CML, ablation of Fbxw7 induced long-term stem
cells to enter the cell cycle, and Fbxw7-deficient leukemia stem
cells were sensitized to Ara-C and imatinib (Takeishi et al., 2013).

In liver cancer, several studies exploring dormant CSCs have
been reported. CD13, also known as aminopeptidase N, is a
ubiquitous transmembrane ectoenzyme (Amin et al., 2018). It
is found mainly in the liver, brush border of the kidneys,
small intestine, and placenta. In HCC, CD13 is a marker for
semiquiescent CSCs (Haraguchi et al., 2010). CD13+CD90−
CSCs are dormant and exhibit reduced intracellular ROS
levels, whereas CD13−CD90+ CSCs actively proliferate and are
sensitive to therapy. In cholangiocarcinoma, CD274low (also
known as PD-L1) cancer cells are dormant and possess high
tumorigenicity (Tamai et al., 2014). In CD274low cells, brain
expressed gene 2 (BEX2) is highly expressed, and BEX2high cells
are dormant CSCs in iCCA and HCC (Tamai et al., 2020; Fukushi
et al., 2021). Knockdown of BEX2 induced a proliferating phase
in the cell cycle in iCCA cell lines. BEX2 was also highly expressed

in hepatoblasts and decreased in normal bile ducts of mice,
suggesting the crucial role in normal stem cells.

MITOCHONDRIA IN CANCER STEM
CELLS

Mitochondria perform an essential function in cells by
coordinating both the production and distribution of energy
by oxidative phosphorylation based on oxygen and substrate
availability. In recent years, mitochondria have been shown to
be key players in the maintenance of stem cells. The selective
degradation of mitochondria, or mitophagy, has been directly
implicated in stem cell self-renewal (Katajisto et al., 2015). In
hematopoietic stem cells, low mitochondrial membrane potential
marks self-renewing hematopoietic stem cells (Sukumar
et al., 2016). In mice models of pancreatic cancer, inhibition
of PGC1A, a master regulator of mitochondrial biogenesis,
reduced organoid growth (Nimmakayala et al., 2021). In hepatic
CSCs, mitophagy is also a critical step to maintain cancer
stemness through p53 phosphorylation and NANOG expression
(Liu et al., 2017). Degradation of mitochondria leads to the
reduction of mitochondrial mass and respiration, which are
proposed to contribute to the quiescent state of stem cells, and
the maintenance of the quality of mitochondria. Contrarily,
increased mitochondrial biogenesis is usually connected with a
higher tumorigenic rate, which is a hallmark of CSC’s phenotype
(Farnie et al., 2015). In iCCA, oxygen consumption ratio was
increased in spheroid culture than monolayer culture (Raggi
et al., 2021). Knockdown of PGC1A caused the reduction of
spheroid formation. BEX2 suppresses mitochondrial activity
through mitochondrial protein TUFM, resulting in the induction
of dormant phase because of the reduction of mitochondrial
respiration and increase tumorigenicity (Tamai et al., 2020). It
would be important to distinguish the characters of dormancy
and tumorigenicity, both of which are known as characteristics
of CSC’s, and analyze the underlying pathways.

TABLE 1 | Important proteins for the functioning of the cancer stem cells (CSCs)
of intrahepatic cholangiocarcinoma (iCCA).

Molecule Function References

CD133 Binds HDAC6, but function almost
unknown

Shimada et al., 2010

CD44 Binds xCT and increases cystine
transport and GSH synthesis

Ishimoto et al., 2011;
Thanee et al., 2016

ZEB1 Induces EMT and stemness Lobe et al., 2021

TGF-β EMT inducer; increases ALDH activity
and resistance to 5-FU

Shuang et al., 2014

BEX2 Induces dormancy Tamai et al., 2020

PGC-1a Regulator of mitochondrial biogenesis Raggi et al., 2021

DCLK1 Catalyzes microtubule polymerization Lorenzo et al., 2021

YAP Increases sphere formation and
tumorigenicity

Sugiura et al., 2019

SHH Increases invasiveness under hypoxic
condition

Bhuria et al., 2019
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APPLICATION TO DIAGNOSIS AND
TREATMENT

Several anti-cancer therapies targeting CSCs were proposed and
initiated by pharmaceutical companies to treat various types of
cancers (Batlle and Clevers, 2017). However, studies on potential
inhibitors against CSCs to effectively treat iCCA have been
extremely limited.

Doublecortin-like kinase 1 (DCLK1) is a protein associated
with microtubules in cytoplasm which catalyzes the
polymerization of microtubules (Westphalen et al., 2017).
DCLK1 was found in CSCs of gastrointestinal tract tumors such
as colon (Chandrakesan et al., 2017), pancreas (Westphalen
et al., 2016), and hepatocarcinoma (Ali et al., 2015). Serum
concentration of DCLK1 was higher in iCCA and perihilar CCA
(pCCA), and lower in healthy and primary sclerosing cholangitis
(PSC) patients (Lorenzo et al., 2021). This is the first study of
diagnostic tools using a CSC marker, although the mechanism
of DCLK1 secretion specific to CCA have not been described.
Recently, several micorRNAs and long non-coding RNAs have
been reported to be useful for iCCA diagnosis (Zheng et al.,
2017), and the role of non-coding RNAs in the stemness of
cholangiocarcinoma gradually become evident (Gao et al., 2020;
Lu et al., 2021).

In cholangiocarcinoma cell lines, gemcitabine-resistant cells
show CSC-like phenotype, such as high ALDH activity and
high CD44 expression (Kawamoto et al., 2018). Metronidazole
is effective for gemcitabine-resistant cells but not normal cells,
although the underlying mechanism is not clear.

Yes-associated protein (YAP) is a major downstream effector
of the Hippo signaling pathway and maintains CSC-like property.
YAP-positive cases demonstrated poor prognosis in iCCA
(Sugiura et al., 2019). The knockdown of YAP decreases the
CD133 expression and verteporfin, a YAP inhibitor decreased
sphere formation and tumorigenicity.

The Sonic Hedgehog (SHH) pathway plays a pivotal role
in various human malignant neoplasms. Under a hypoxic

environment, the SHH pathway was promoted in iCCA cell lines
and the CSC-related genes including NANOG, Oct4, SOX2, and
CD133 were upregulated (Bhuria et al., 2019). Cyclopamine, a
SHH inhibitor, suppressed a hypoxia induced SHH pathway and
decreased invasion capacity.

Brain expressed gene 2, described above, is a key player
of dormant CSCs in liver cancer, and a small compound 1,3-
Benzenediol, 4-[4-(4-methoxyphenyl)-1H-pyrazol-3-yl] (BMPP)
can promote BEX2 degradation, and the treatment with BMPP
induces cell proliferation (Saijoh et al., 2021). Under BMPP
treatment, cisplatin and gemcitabine sensitivity are increased in
hepatocellular and cholangiocarcinoma cell lines.

CONCLUSION

In this work, we review the recent progress of CSC research
in iCCA (Table 1). The therapeutic approach against dormant
cancer cells in cholangiocarcinoma is promising, but a specific
inhibitor against CSCs is hard to develop at present. Even though
iCCA exhibits aggressive malignancy, the detailed underlying
mechanisms are not yet fully understood. Going forward, the
crosstalk between immune cells and CSCs, and alternative
metabolic pathway in CSCs should be investigated.
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