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A B S T R A C T   

Cerebral small vessel disease (SVD) may be associated with an increased risk of depressive 
symptoms. Serum uric acid (SUA), an antioxidant, may be involved in the occurrence and 
development of depressive symptoms, but the mechanism remains unknown. Moreover, the 
relationship between structural brain networks and SUA has not been explored. This study 
examined the relationship between SUA and depressive symptoms in patients with SVD using 
graph theory analysis. We recruited 208 SVD inpatients and collected fasting blood samples upon 
admission. Depressive symptoms were assessed using the 24-item Hamilton Depression Rating 
Scale (HAMD-24). Magnetic resonance imaging was used to evaluate SVD, and diffusion tensor 
images were used to analyze structural brain networks using graph theory. Patients with 
depressive symptoms (n = 34, 25.76%) compared to those without (334.53 vs 381.28 μmol/L, p 
= 0.017) had lower SUA levels. Graph theoretical analyses showed a positive association of SUA 
with betweenness centrality, nodal efficiency, and clustering coefficients and a negative corre
lation with the shortest path length in SVD with depressive symptoms group. HAMD scores were 
significantly associated with nodal network metrics in the right cerebral hemisphere. Our findings 
suggested that lower SUA levels are significantly associated with disrupted structural brain net
works in the right cerebral hemisphere of patients with SVD who have depressive symptoms.   

1. Introduction 

Cerebral small vessel disease (SVD) consists of a series of pathological processes affecting small arteries, arterioles, small veins, and 
capillaries of the brain [1]. While most SVD present with relatively mild symptoms, such as lacunar syndromes, including pure motor 

* Corresponding author. Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, China. 
** Corresponding author. 

E-mail addresses: nagaendran_kandiah@ntu.edu.sg (N. Kandiah), dangchao@mail2.sysu.edu.cn (C. Dang).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e27947 
Received 25 July 2023; Received in revised form 3 March 2024; Accepted 8 March 2024   

mailto:nagaendran_kandiah@ntu.edu.sg
mailto:dangchao@mail2.sysu.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e27947
https://doi.org/10.1016/j.heliyon.2024.e27947
https://doi.org/10.1016/j.heliyon.2024.e27947
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e27947

2

hemiparesis, pure sensory stroke, and dysarthria-clumsy hand syndrome, and may at times even manifest subtly. The overall 
short-term prognosis of SVD is generally more favorable than that of infarcts resulting from other stroke mechanisms. However, the 
long-term prognosis of small vessel diseases may differ. In addition to the corresponding brain structural changes, including lacunar 
infarcts (LI), white matter hyperintensities (WMH) and microbleeds (CMBs) [2,3], SVD is associated with an increased risk of 
depressive symptoms. Approximately 10% of patients with SVD suffer from depressive symptoms [4]. A long-term follow-up study of 
patients with lacunar strokes revealed that depressive symptoms persisted at high levels over the course of 3 years, and individuals 
exhibiting these symptoms experienced more severe cognitive decline, substantially diminishing their quality of life [5]. The primary 
characteristic of depressive symptoms resulting from SVD is characterized by motivational symptoms, encompassing psychomotor 
retardation and a loss of interest [6,7]. It has been shown that SVD may increase the risk of depression through mechanisms such as 
demyelination of brain tissue and white matter damage, disturbances in neural circuits involved in mood regulation and decreased 
levels of neurotransmitters associated with neuromodulation, such as 5-hydroxytryptamine, norepinephrine and dopamine. In addi
tion, oxidative stress may also play an important role [8–10]. However, the pathophysiologic mechanism underlying depressive 
symptoms in SVD is poorly understood. 

It is worth noting that oxidative reactions might be associated with an increased likelihood of experiencing depressive symptoms in 
SVD. Oxidative stress has been linked to an elevated risk of developing depressive symptoms. Serum uric acid (SUA), an important 
antioxidant, is the product of purine metabolism. Previous studies have confirmed that UA could perform neuroprotective functions by 
scavenging free radicals and reactive oxygen species (ROS) [11], yet its role in the mechanism of depressive symptoms in stroke 
patients is still under-researched. Furthermore, the involvement of the antioxidant uric acid in the occurrence and development of 
depression suggests a potential connection between oxidative reactions and the manifestation of depressive symptoms in patients with 
SVD. However, the exact underlying mechanism behind this association remains unknown and requires further investigation. Many 
research studies have demonstrated that lower SUA levels are closely related to depressive symptoms in patients with stroke and older 
individuals [12–14]. However, it is well known that hyperuricemia can cause a range of diseases that can be harmful to human health, 
and the effect of SUA levels on depressive symptoms remains controversial and needs to be further explored. 

The highly heterogeneous clinical manifestations of SVD, sometimes without obvious clinical symptoms, are often diagnosed based 
on radiographic examination. Neuropsychological assessment scales are commonly used to evaluate the severity of depressive 

Table 1 
Clinical and demographic characteristics of SVD patients with and without depressive symptoms groups.  

Variables SVD with depressive symptoms group (n =
34) 

SVD without depressive symptoms group (n =
98) 

pa 

SUA (μmol/L) 334.53 (278.50, 399.25) 381.28 (311.50, 437.75) 0.017* 
Demographic 
Sex (men, %) 20 (59) 55 (66) 0.431 
Age (years, SD) 64.09 (11.69) 64.19 (10.87) 0.963 
Education (years, SD) 9.53(3.38) 10.74 (3.40) 0.076 
Vascular risk factors 
History of ischemic stroke, n (%) 16 (47) 14 (14) <0.001*** 
Index ischemic stroke (years, SD) 5.11 (4.05) 5.07 (4.36) 0.976 
History of coronary artery diseases, n (%) 1 (3) 12 (12) 0.117 
History of hypertension, n (%) 21 (62) 66 (67) 0.554 
History of diabetes, n (%) 7 (21) 32 (33) 0.184 
History of hyperlipidemia, n (%) 4 (12) 16 (16) 0.523 
Smoking, n (%) 11 (32) 41 (42) 0.329 
Alcohol consumption, n (%) 7 (21) 25 (26) 0.564 
Family history of SVD, n (%) 3 (9) 5 (5) 0.433 
Serum biochemicals 
Total cholesterol (mmol/L, Median, IQR) 4.44 (3.93–5.01) 4.39 (3.60–5.00) 0.355 
Triglycerides (mmol/L, Median, IQR) 1.59 (1.08–2.09) 1.77 (1.00–2.27) 0.836 
LDL-C (mmol/L, Median, SD) 2.81 (0.45) 2.75 (0.82) 0.612 
HDL-C (mmol/L, Median, SD) 1.11 (0.22) 1.02 (0.23) 0.066 
Homocysteine (μmol/L, Median, IQR) 12.61 (9.79–15.20) 15.10 (10.29–15.57) 0.320 
Creatinine (μmol/L, Median, IQR) 73.00 (60.00–84.75) 85.85 (63.00–88.25) 0.165 
Urea nitrogen (mmol/L, Median, SD) 4.90 (1.16) 5.35 (1.54) 0.115 
Fasting blood glucose (mmol/L, Median, 

IQR) 
5.41 (4.60–5.68) 5.85 (4.40–6.40) 0.369 

Glycated hemoglobin (%, Median, IQR) 7.76 (5.60–6.98) 6.62 (5.60–7.18) 0.670 
Fibrinogen (g/L, Median, SD) 11.65 (51.13) 3.16 (0.692) 0.340 
D-Dimer (mg/L, Median, IQR) 0.57 (0.22–0.50) 0.82 (0.24–0.59) 0.305 
Psychological assessment 
HAMD (Median, IQR) 13.58 (9.00–15.00) 2.61 (1.00–4.00) <0.001*** 
MMSE (Median, IQR) 24.09 (22.00–29.00) 25.88 (25.00–29.00) 0.088 

Data represent mean ± SD, n of participants (%) or median (IQR). 
HAMD, Hamilton Depression Rating Scale; HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein 
cholesterol; MMSE, Mini-Mental State Examination; SUA, serum uric acid; SVD, cerebral small vessel disease; SD, standard deviation. 

a *p＜0.05; **p＜0.01; ***p＜0.001. 
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symptoms. However, there are no accurate biomarkers to assess the underlying mechanism. Diffusion tensor imaging (DTI), as a 
noninvasive and sensitive magnetic resonance imaging (MRI) technique, can detect microstructural brain damage. Fractional 
anisotropy (FA) is one of the commonly used parameters in DTI [15]. By computing the DTI scalar with suitable postprocessing tools, 
brain networks can be constructed. Graph theory can be used to quantify the topological structures of complex neural networks [16, 
17]. The topological characteristics of structural brain networks have been evaluated using a variety of network metrics, including 
global and nodal metrics. When network connectivity in the brain is compromised, the corresponding network metrics change. 
Postprocessed DTI parameters can be used to evaluate microstructural changes in the brain owing to depression in patients with 
different diseases, such as essential tremor [18], Parkinson’s disease [19], and multiple sclerosis [20]. Several findings have shown 
that altered levels of SUA are associated with cerebral WMH and LI in patients with SVD [21–23]. However, owing to difficulties in 
obtaining tissue samples to determine which genes and proteins are abnormal in SVD patients with depressive symptoms, the path
ophysiological mechanism remains unclear. A difference from previous studies is that our study was conducted in patients with SVD, 
and few studies have examined the correlation between SUA, depressive symptoms, and structural brain networks in patients with 
SVD. 

Hence, we aimed to explore the potential association between SUA and depressive symptoms in patients with SVD, considering the 
universally accepted belief among physicians that SUA contributes to the development of gout and is harmful to organs, particularly 
the kidneys. However, we hypothesized that SUA, due to its potential antioxidant properties, might offer some benefits to patients with 
SVD who experience depressive symptoms. In this study, we investigated the potential relationship between SUA and depressive 
symptoms in patients with SVD and explored the neuroimaging mechanisms through which SUA may potentially ameliorate depressive 
symptoms in patients with SVD. 

2. Results 

2.1. Baseline characteristics of patients with and without depressive symptoms 

All participants underwent various examinations. Among the 208 participants recruited, 33 had incomplete or missing imaging 
data, 15 did not undergo SUA testing, 22 could not complete the neuropsychological assessment, and 6 were excluded because of 
severe cognitive impairment. Thus, 132 participants were included in the final study sample. The clinical and demographic charac
teristics of the groups with and without depressive symptoms are presented in Table 1. 

The mean age was similar in the two groups (64 years). Among the 132 participants, 34 (25.76%) were diagnosed with depressive 
symptoms. The mean SUA level was 334.53 μmol/L in the depressive symptoms group and 381.28 μmol/L in the non-depressive 
symptoms group, and the difference was statistically significant (p = 0.017). Compared with the non-depressive symptoms group, 
the depressive symptoms group had higher incidence rates of ischemic stroke (p < 0.001) and higher 24-item Hamilton Depression 
Rating Scale (HAMD-24) scores (p < 0.001). 

2.2. Global network analysis 

Across all selected thresholds, both the depressive symptoms and non-depressive symptoms groups demonstrated strong small- 
world characteristics. In both groups, the values of γ were approximately equal to 4, σ approximately equal to 2, and γ approxi
mately equal to 1, meeting the criteria for good small-world properties (γ > 1, λ ≈ 1, σ > 1). Global efficiency and global local efficiency 
were not significantly lower in the depressive symptoms group compared with the non-depressive symptoms group (p = 0.279 and 
0.216, respectively) (Table S2). 

Fig. 1. Distributed brain regions with significant differences in nodal metrics between SVD patients with and without depressive symptoms groups 
The size of the nodes indicates the importance of between-group differences. (A) Nodes in purple showed reduced Bc in the depressed group 
compared with the non-depressed group. (B) Nodes in red showed impaired NCp in the depressed group compared with the non-depressed group. 
(C) Nodes in green showed impaired NLe in the depressed group compared with the non-depressed group. Bc, betweenness centrality; NCp, nodal 
clustering coefficient; NLe, nodal local efficiency. L = left; R = right. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

L. Yu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e27947

4

2.3. Nodal network analysis 

Compared with the non-depressive symptoms group, the depressive symptoms group had lower nodal properties of betweenness 
centrality (Bc), nodal clustering coefficient (NCp), and nodal local efficiency (NLe). The superior frontal gyrus, middle (right supra
marginal gyrus), hippocampus, and parahippocampal gyrus in the right cerebral hemisphere all demonstrated significant variations in 
Bc between the two groups (p = 0.034, 0.039, and 0.032, respectively, fasle discovery rate [FDR]-corrected). Impairments in the three 
nodal metrics of Bc, NCp and NLe were found in the same region within the left inferior occipital gyrus (p = 0.039, 0.032, and 0.041, 

Fig. 2. Regions with significant correlations between the nodal metrics and SUA levels in SVD patients with depressive symptoms 
This figure illustrated the results of the correlation analysis between node metrics and SUA levels in SVD patients with depressive symptoms. (A) 
Scatterplots of the correlations between Bc and SUA levels and the corresponding brain regions. (B) Scatterplots of the correlations between NCp and 
SUA levels and the corresponding brain regions. (C) Scatterplots of the correlations between Ne and SUA levels and the corresponding brain regions. 
(D) Scatterplots of the correlations between NLp and SUA levels and the corresponding brain regions. In the axial view, brain network nodes 
exhibiting correlations with SUA levels were overlaid onto the brain surface, predominantly localized in the right cerebral hemisphere. The node 
color signifies the direction of the correlation. Each scatter plot of nodal metrics corresponds to a specific brain region. The orange color indicates a 
positive correlation between the node metric and SUA level, while the blue color indicates a negative correlation. The correlation coefficients and p- 
values of the scatterplot have been labeled in the figure.ANG.L, left angular gyrus; Bc, betweenness centrality; CAL.R, calcarine fissure and sur
rounding cortex; IPL.R, right inferior parietal; MFG.R, right middle frontal gyrus; MTG.R, right middle temporal gyrus; NCp, nodal clustering ef
ficiency; Ne, nodal efficiency; NLp, shortest path length; SUA, serum uric acid.L = left; R = right. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. Regions with significant correlations between the nodal metrics and HAMD scores in SVD patients with depressive symptoms 
This figure illustrated the results of the correlation analysis between node metrics and HAMD scores in SVD patients with depressive symptoms. (A) 
Scatterplots of the correlations between Bc and HAMD scores and the corresponding brain regions. (B) Scatterplots of the correlations between Ne 
and HAMD scores and the corresponding brain regions. (C) Scatterplots of the correlations between NCp and HAMD scores and the corresponding 
brain regions. (D) Scatterplots of the correlations between NLe and HAMD scores and the corresponding brain regions. (E) Scatterplots of the 
correlations between NLp and HAMD scores and the corresponding brain regions. In the axial view, brain network nodes exhibiting correlations with 
HAMD scores were overlaid onto the brain surface, predominantly localized in the right cerebral hemisphere. The node color indicates direction of 
correlation. Each scatter plot of nodal metrics corresponds to a specific brain region. The orange color indicates a positive correlation between the 
node metric and HAMD scores, while the blue color indicates a negative correlation. The correlation coefficients and p-values of the scatterplot have 
been labeled in the figure. ANG.L, left angular gyrus; Bc, betweenness centrality; HAMD, Hamilton Depression Rating Scale; IPL.R, right inferior 
parietal; ITG.R, right inferior temporal gyrus; MTG.R, right middle temporal gyrus; NCp, nodal clustering efficiency; Ne, nodal efficiency; NLe, nodal 
local efficiency; NLp, shortest path length; SMG.R, right supramarginal gyrus; SPG.R, right superior parietal gyrus; STG.R, right superior temporal 
gyrus. L = left; R = right. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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FDR-corrected) (Fig. 1 (A-C), Table S3). 

2.4. Correlations between nodal network metrics and SUA levels 

In patients with SVD with depressive symptoms, SUA was positively associated with Bc, NCp, and nodal efficiency (Ne) and was 
negatively correlated with nodal path length (NLp). The relevant brain regions for Bc were the right inferior parietal lobule (IPL) (R =
0.46, p < 0.01) and right middle frontal gyrus (R = 0.42, p < 0.05). Two nodes of Ne were distributed around the right temporal lobe (p 
< 0.05). The altered nodes of NCp and NLp had the same distribution but had opposite correlation trends with SUA. These brain 
regions were the right IPL, left angular gyrus (ANG), and right middle temporal gyrus (MTG). The results were statistically significant 
(Fig. 2 (A-D), Table S4). 

2.5. Correlations between nodal network metrics and HAMD scores 

In SVD patients with depressive symptoms group, several nodal metrics were significantly associated with HAMD scores, including 
Bc, NCp, Ne, NLe, and NLp, adjusted for age and sex (Fig. 3 (A-E), Table S5). The relevant brain regions that exhibited disrupted nodal 
metrics included the right superior temporal gyrus, supramarginal gyrus, MTG, inferior temporal gyrus, IPL, superior parietal gyrus, 
right ANG, and left ANG, mainly distributed in the right parietal and temporal lobes. 

3. Discussion 

This study investigated the association between SUA and depressive symptoms in patients with SVD and alterations in structural 
brain networks (Fig. 4). We concluded through network analysis that elevated SUA levels may be associated with neuroprotective 
effects against depressive symptoms. Our findings illustrated that lower SUA levels were strongly correlated with more severe 
depressive symptoms in patients with SVD. In addition, SUA was correlated with altered nodal metrics (Bc, NCp, Ne, NLe, and NLp) in 
the parietal and temporal lobes of the right cerebral hemisphere in the depressive symptoms group. Furthermore, compared with those 
of patients in the non-depressive symptoms group, topological structural networks (measured by Bc, NCp, and NLp) in SVD patients 
with depressive symptoms were disrupted and were correlated with the severity of depressive symptoms. The small-world charac
teristics of the structural brain networks were well maintained in all participants. 

In this study, SVD patients with depressive symptoms had lower SUA levels on admission, which is consistent with findings from 
earlier studies [9,11]. However, unlike previous studies, our study focused on patients with SVD. Owing to its highly heterogeneous 
clinical symptoms and less severe morbidity, the complications of SVD are often underappreciated. The pathogenesis of depression 
involves inflammatory responses and oxidative stress [24–26]. The findings of our investigation that elevated SUA is likely to exert 
neuroprotective effects against depressive symptoms can be explained by its antioxidant function in oxidative stress [27,28]. Uric acid 
is an oxidizable substrate for hemoglobin/hydrogen peroxide systems and can be used as an electron donor to prevent oxidative 
damage. An experimental study in older rats was conducted to show that infusion of uric acid 24 h before middle cerebral artery 
occlusion or 1 h after reperfusion dramatically reduced ischemic damage to the cerebral cortex and striatum and improved behavioral 
outcomes [29]. The specific mechanism of protection may involve the attenuation of the deleterious effects of ROS and the suppression 
of lipid peroxidation. Optimal function of neuronal cells relies on adequate antioxidants, such as SUA, to remove ROS and prevent 
oxidative damage to nerve cells. This is due to the fact that neuronal cell membranes have a large surface area, and their main 
component is polyunsaturated fatty acids, while ROS often reacts with lipids. Therefore, patients with SVD with lower SUA levels have 

Fig. 4. Diagram showing the association between cerebral small vessel disease, depression, uric acid, and structural brain network damage 
Depression is a major clinical complication of cerebral small vessel disease (SVD). (a) Oxidative stress is one of the main pathogenic mechanisms of 
cerebral small vessel disease and is also involved in the development of depression. As an antioxidant, serum uric acid (SUA) may exert neuro
protective effects against depression. SVD patients with lower SUA levels have a higher risk of depression. (b) The disruption of structural brain 
networks in patients with SVD can lead to depression. (c) Decreased SUA levels can further deteriorate the damage to the structural brain networks 
and increase the risk of depression. 
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a higher risk of depressive symptoms as their brains are more susceptible to damage from oxidative stress. Earlier studies have 
illustrated the neuroprotective effects of SUA in a multitude of diseases, for example, Alzheimer’s disease and Parkinson’s disease [30], 
providing supporting evidence for our results. 

To the best of our knowledge, there are few studies exploring the correlation between SUA and structural brain networks. Addi
tional studies are required to investigate whether antioxidant substances can influence the effects of SVD on structural brain networks. 
We used DTI and graph theory analysis to examine the association between SUA and structural brain networks in SVD patients with 
depressive symptoms. DTI is a highly sensitive MRI tool that allows the detection of microstructural damage to the brain. A previous 
study indicated that apathy was related to white matter tract dysconnectivity in SVD as measured using whole-brain network analysis 
[31]. Our study found that the structural brain networks of patients with depressive symptoms were disrupted compared to patients 
without these symptoms. The nodal metrics found to be impaired included Bc, NCp, and NLp, and the relevant brain regions were 
distributed in the right superior frontal gyrus, hippocampus and parahippocampal gyrus, and left inferior occipital gyrus. This in
dicates that the impairment was associated with the depressive symptoms, aligning with the findings of a previous study [32]. These 
nodes are distributed in the parietal and temporal lobes of the non-dominant cerebral hemisphere. Some of the regions are involved in 
emotional regulation circuits. The amygdala and hippocampus are important structures for emotion regulation, constituting the 
anatomical foundation for depression [33,34]. Dörfel et al. reported a specific activation in the right supramarginal gyrus for emotion 
regulation [35]. We hypothesized that decreased nodal metrics in the structural networks of many brain regions in patients with 
depressive symptoms might impact connectivity and lead to network alterations and resulting reductions in neuronal signal trans
mission, culminating in emotional dysfunction. This was especially the case in regions of the brain that have close relationships with 
emotion regulation. Reduced connection within the frontoparietal control system may be associated with deficiencies in mood 
regulation, according to a systematic review of resting-state functional connectivity investigations examining network dysfunction in 
individuals with major depressive disorder [36]. Differences in research metrics and network analysis methods might clarify the 
disparities between our and their findings. Disruption of structural brain networks may aid in demonstrating the probable patho
physiology of depressive symptoms in SVD. However, we found no differences in brain network properties in the frontal lobes between 
the two groups. A potential reason is that patients with SVD had a comparable level of prefrontal impairment, and the significance was 
minimized by comparison. Another possible reason is that in our study, we explored structural changes in subcortical white matter 
fiber bundles. Since subcortical white matter fiber bundles are close to the cortex, relatively incoherent and more difficult to identify 
on a microscopic scale, it may fail to follow the true fiber tract trajectory. Thus, the FA values may have errors, affecting the results. 

In addition, we explored the correlation between nodal metrics, SUA, and HAMD scores in SVD patients with depressive symptoms. 
Bc, NCp, and Ne were positively correlated with SUA levels, unlike NLp. The results showed that elevated SUA levels might shorten the 
path length and improve information transmission efficiency in the brain structural connectome. Similar results were found for HAMD 
scores, suggesting that the less efficient the information transfer, the more severe the depressive symptoms. In addition, we noticed 
that these altered nodes were mainly distributed in the right cerebral hemisphere, which can be explained by the fact that the non- 
dominant cerebral hemisphere is primarily associated with emotion regulation [37]. Therefore, these findings provide credence to 
the idea that higher SUA levels could reduce damage to brain microstructures and increase information transmission efficiency, thus 
reducing depressive symptoms. However, statistically significant differences were not found in global properties for all participants, 
indicating that long-range connections between segregated brain structures may function well. 

Our study indicates that SUA levels should not be excessively lowered in SVD patients with depressive symptoms to prevent further 
aggravation of depressive symptoms, which representing a novel approach to patient management. Our findings may also contribute to 
explaining the pathophysiological mechanisms observed in neuroimaging and provide supportive evidence for utilizing peripheral 
blood markers in SVD, another consideration to be integrated into clinical consultations and management. This study was innovative 
and has the potential to be further adopted by guidelines in the future. Our research had some limitations. Firstly, SUA levels can be 
affected by various confounding factors, such as gender, diet, obesity, diabetes, and medications, which were not explicitly excluded in 
this study. Secondly, the relationship between stroke and depressive symptoms has been confirmed in previous studies [38–40]. The 
effects of stroke history on depressive symptoms in SVD patients were not excluded in our study, although there was no statistically 
significant difference in years of previous strokes between the two groups. Thirdly, the effect of dynamic variations in SUA on 
depressive symptoms should be assessed. Fourthly, there are no studies providing a Minimal Clinically Important Difference (MCID) 
for SUA levels in the SVD population, which may limit the clinical application of our findings. Fifthly, the sample size was small, and a 
healthy control group was not included. Sixthly, due to the limitations of the scanning technique, there may be the non-uniformity of 
magnetic field gradients for DTI [41], which may affect the results. 

In conclusion, our findings suggest that elevated SUA levels may be associated with neuroprotective effects, potentially reducing 
the prevalence of depressive symptoms, as indicated by graph theoretical analysis. However, it is important to note that whether the 
relationships are causal is uncertain and needs to be explored in more studies. 

4. Materials and methods 

4.1. Participants 

We prospectively recruited 208 inpatients diagnosed with SVD. The First Affiliated Hospital of Sun Yat-sen University’s Department 
of Neurology served as the recruitment site for all study participants. The inclusion criteria were as follows: 1) age between 18 and 70 
years; 2) patients with ischemic stroke in the presence or absence of clinical symptoms of acute lacunar stroke syndrome combined 
with at least one of the neuroimaging features of SVD, including recent small subcortical infarct, WMH, CMBs, or EPVS [1,42]; and 3) 
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agreement to sign a consent document with full knowledge. The exclusion criteria were as follows: 1) any cause of stroke other than 
SVD, including intracranial or extracranial large artery stenosis >50%, cardioembolic source of stroke according to the Trial of Org 
10172 in Acute Stroke Treatment criteria [43], and large subcortical infarcts (>15 mm maximum diameter) on conventional MRI 
scans; 2) white matter hyperintensities caused by other diseases such as multiple sclerosis or leukodystrophy; 3) history of cerebral 
hemorrhage or major central nervous system disease; 4) history of psychiatric disorders, including depression and anxiety, and de
mentia per DSM-V criteria; 5) history of antidepressant or cognitive enhancer usage prior to study enrollment; 6) inability to complete 
relative scale evaluation; and, 7) contraindications for undergoing MRI. 

All participants signed written informed consent forms. The First Affiliated Hospital of Sun Yat-sen University Research Ethics 
Committee accepted and approved the study protocols. 

4.2. Data collection 

Demographic data included age, sex, years of education, and vascular risk factors, such as hypertension, diabetes mellitus, 
hyperlipidemia, smoking, alcohol consumption, history of stroke, history of heart disease, and family history of SVD. 

Fasting blood samples were collected at admission and analyzed in the clinical laboratory of The First Affiliated Hospital of Sun Yat- 
sen University, including SUA, triacylglycerols, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein 
cholesterol, creatinine, and fasting blood glucose. The level of SUA was measured using the uricase peroxidase method. 

4.3. Neuropsychological assessments 

The evaluations above were performed by three professional neurologists. Depressive symptoms were assessed using the HAMD-24 
because of its reliability, validity, and ease of operation, with a cutoff score of 7 [44]. Higher scores indicate more severe depressive 
symptoms. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) [45] because the accuracy of emotion 
assessment can be affected by cognitive impairment. The cutoff values of MMSE are based on the highest level of education. Patients 
with dementia were excluded. 

Participants were assigned to one of two groups based on established HAMD-24 cut-off scores [44]. The depressed group was 
defined as the participants with a total HAMD score ≥8, and the non-depressed group was defined as the participants with a total 
HAMD score <8. 

4.4. MRI acquisition parameters 

All participants were scanned using a 3.0-T MRI scanner (Siemens Healthineers, Erlangen, Germany). The protocol included a T1- 
weighted 3-dimensional magnetization-prepared rapid gradient echo imaging sequence (slice thickness = 1 mm, repetition time = 8.7 
ms, echo time = 3.2 ms, and flip angle = 12◦), axial T2-fluid-attenuated inversion recovery sequence, and DTI (slice thickness = 2 mm, 
repetition time = 10 000 ms, echo time = 122.2 ms, and flip angle = 90◦). The details of the MRI protocol were listed in Table S1. 

4.5. Image preprocessing 

Preprocessing of DTI data was carried out using the Pipeline for Analyzing Brain Diffusion Images toolkit [46], a MATLAB (The 
Mathworks, Natick, NA, USA) toolbox that utilizes FMRIB Software Library [47], Pipeline System for Octave and MATLAB, Diffusion 
Toolkit, and MRIcron. DTI images and T1 images of all subjects were used in the preprocessing procedure. The preprocessing process 
requires the use of a range of software and self-contained toolkits, as shown in the text. The preprocessing is done in the following steps: 
1) Converting DICOM files into NIfTI images. 2) Estimating the brain mask. 3) Cropping the raw images. 4) Correcting for the 
eddy-current effect. 5) Averaging multiple acquisitions. 6) Calculating diffusion tensor (DT) metrics. After the final step, we will obtain 
the data of DTI metrics, including FA, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Due to the limitations of 
the scanning equipment and methodology, the non-uniformity of magnetic field gradients for DTI is difficult to be corrected for [41]. 
FA may reflect the microstructural integrity of the white matter. We selected FA as the DTI metric for subsequent brain network 
analysis. 

4.6. Network construction 

We constructed the network using deterministic beam characterization. The entire brain was divided into 45 regions for each 
hemisphere using the automated anatomical labeling (AAL) template [48], with each region representing a network node. Cerebellar 
regions were excluded as the study did not involve the cerebellum. Specifically, each participant’s b0 image was co-registered to 
T1-weighted image using a linear affine transformation. Simultaneously, a symmetric diffeomorphic nonlinear transformation was 
used to register the T1-weighted images to Montreal Neurological Institute space [49]. Ultimately, these transformations facilitated the 
registration of the AAL image to each subject’s diffusion image space. The 90 regions of the AAL atlas were used as network nodes, 
forming the basis of participant-specific structural connectivity matrices. The brain network analysis in this study did not involve 
connecting edges. 
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4.7. Network analysis 

The global and nodal topological properties were calculated using the graph theoretical network analysis (GRETNA) toolbox [50]. 
Previous research has determined that the sparsity threshold range is 0.1–0.3 with an interval of 0.01. The global network metrics were 
calculated based on the thresholds of the clustering coefficient (Cp), characteristic path length (Lp), normalized Cp (γ), normalized Lp 
(λ), small-worldness (σ), global efficiency (Eg), and local efficiency (Eloc). The following nodal network metrics, including NCp, NLp, 
nodal efficiency (Ne), NLe, nodal degree centrality (Dc), and nodal Bc were estimated. NCp reflects the degree of aggregation of in
dividual nodes with their surroundings. Ne measures the segregation and specialization within a network. NLp indicates the shortest 
path of a node to transmit information. Bc reflects the network traffic carried by nodes in the network [50]. Statistical testing of global 
and nodal network measures was also performed using the GRETNA toolbox. 

4.8. Visualization of brain network 

After performing statistical analysis, we utilized BrainNet Viewer to visualize these nodes [51]. Initially, we uploaded both the 
brain surface file (BrainMesh_ICBM152_smoothed.nv) and the node file into the software. Following that, we adjusted the figure 
configuration parameters within the options panel, including output layout, background color, surface transparency, node color and 
size, edge color and size, and image resolution. Subsequently, BrainNet Viewer systematically rendered the brain surface and nodes 
and edges, displaying the brain network from various perspectives based on the loaded files. Lastly, the generated figures were 
exported to common image file formats for further use (Figs. 1–3). 

4.9. Statistical analysis 

The demographic data and neuropsychological scores were analyzed using SPSS 25.0 (IBM SPSS Statistics, Armonk, NY, USA). 
Normality of data distribution was tested by Kolmogorov–Smirnov test. Box plots were used for the calculation of outliers. When 
outliers were found, we determined whether the outliers existed or not based on domain knowledge and experience. In this study, we 
removed 5 outliers (1 in MMSE scores of the SVD with depressive symptoms group and 4 in MMSE scores of the SVD without depressive 
symptoms group) to increase the accuracy and reliability of the data. Depending on whether the data were regularly or non-normally 
distributed, data results are given as percentages for categorical variables and medians (interquartile range) or means (standard de
viation) for continuous variables. The Chi-squared and Student’s t-tests were used to compare proportions. For normally distributed 
variables, analysis of variance was utilized, whereas for asymmetrically distributed variables, the Mann-Whitney U test was used. 
Network analysis was performed using the GRETNA toolbox. A two-sample t-test was used to analyze global and nodal properties 
between the groups with and without depressive symptoms, followed by multiple comparison correction procedures with FDR, 
Bonferroni, or network-based statistic methods [52]. Sex and age were added to the statistical analysis as covariates of no interest. All 
tests were two-tailed and the threshold for statistical significance was set at p < 0.05. Correlation analysis was used to explore the 
association of brain network metrics with SUA levels and HAMD scores, which was also performed using the GRETNA toolbox. 
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