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Abstract

Background: Advances in experimental biology have enabled the collection of enormous troves of data on
genomic variation in living organisms. The interpretation of this data to extract actionable information is one of the
keys to developing novel therapeutic strategies to treat complex diseases. Network organization of biological data
overcomes measurement noise in several biological contexts. Does a network approach, combining information
about the linear organization of genomic markers with correlative information on these markers in a Bayesian
formulation, lead to an analytic method with higher power for detecting quantitative trait loci?

Results: Block Network Mapping, combining Similarity Network Fusion (Wang et al,, NM 11:333-337, 2014) with a
Bayesian locus likelihood evaluation, leads to large improvements in area under the receiver operating characteristic
and power over interval mapping with expectation maximization. The method has a monotonically decreasing false
discovery rate as a function of effect size, unlike interval mapping.

Conclusions: Block Network Mapping provides an alternative data-driven approach to mapping quantitative trait

loci that leverages correlations in the sampled genotypes. The evaluation methodology can be combined with
existing approaches such as Interval Mapping. Python scripts are available at http://Ibm.niddk.nih.gov/vipulp/.
Genotype data is available at http://churchill-labjax.org/website/GattiDOQTL.
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Background
Quantitative variations in living organisms result from
environmental factors and multiple segregating genes [1].
The search for genomic markers that are linked to quanti-
tative traits is an important first step towards finding the
gene variants responsible for the observed phenotype, and
is consequential for commercial breeding purposes and
for uncovering the mechanistic underpinnings of patholo-
gies. Linkage between genetic loci and morphological
traits was first demonstrated almost a century ago [2] but
early efforts [3, 4] were difficult due to the sparsity of
known genetic markers across the entire genome.

The mapping problem for quantitative trait loci (QTL)
is, briefly stated, to find the genetic markers that cor-
relate with measured quantitative traits. Single marker
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regression [2, 5] was the traditional approach to map-
ping quantitative trait loci. This one-by-one analysis has
well known drawbacks e.g. effect size is confounded with
marker separation [6]. The availability of dense genetic
linkage maps ushered in modern quantitative genetics
[7-9] and single marker regression has been superseded
by interval mapping (IM) [10—13]. IM allows a more accu-
rate determination of the location and effect size of a QTL
as the likelihood of a QTL can be placed in the context
of its genomic position. It still maps only a single locus
at a time, contradicting the known polygenic character of
quantitative traits.

This led to the formulation of multiple IM methods and
composite IM with the introduction of markers used as
covariates [14—19]. The issue of the selection of the appro-
priate covariates remains an interesting challenge, and the
genomic context of a trait is not as clear as with single IM.
The present paper is directly comparable only to standard
single IM.
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The use of linkage maps, obtained using multi-point
analysis of marker segregation data, is a major advan-
tage of these IM methods compared to single marker
regression, but is considered as a separate preliminary
step before IM. In the present work, we report on a
method, Block Network Mapping (BNM), that incorpo-
rates linkage through an experimental data-driven linkage
network found using Similarity Network Fusion (SNF;
[20]) combined with a new Bayesian approach to locus
selection. Ref. [20] did not suggest this novel application
of SNF.

To develop BNM, we used synthetically generated phe-
notypes paired with real genotypes obtained in a study of
white blood cells [21] in a specific strain of mice, Diversity
Outbred (DO)[22] mice. These were developed to over-
come the low mapping resolution of conventional mouse
crosses. As an example, [23] demonstrated that behavioral
traits could be mapped with high precision with even a
modest number of animals.

We investigated the effect size and population size
dependence of the false discovery rate (FDR), the power,
and the receiver operating characteristic (ROC) obtained
using our method, BNM, compared to the standard expec-
tation maximization (EM) implementation of IM imple-
mented in the R/qtl package [24].

Methods

The BNM algorithm can be divided into three major
parts outlined in Fig. 1. For any finite sample of geno-
types, there are correlations between genotype markers
due to the finite amount recombination that could have
occurred. Our approach is to first find contiguous blocks
of markers in a data-driven but phenotype-independent
manner, which we term haplotype blocks. The idea
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of looking for such blocks is inspired by multiple IM
[14-19] though our approach to finding these blocks is
based on ideas from [20]. They are defined by cluster-
ing the SNPs based on similarity matrices constructed
from the information obtained from the genotypes of the
N subjects being studied (Section “Obtaining the haplo-
type blocks”). Second, we compute the likelihood of each
block, i.e., the likelihood that there is at least one marker
in this block that is contributing to the overall phenotypic
effect (Section “Obtaining the block likelihoods”). Third,
using the similarity matrices and likelihoods obtained
in the first two parts, we calculate the empirical likeli-
hood, of each marker via a Bayesian approach (Section
“Obtaining the SNP empirical pseudo-probabilities”),
considering each marker as a possible ‘model’ of the phe-
notype data.

Genotype data

The real genotype data [21] in a specific strain of mice,
Diversity Outbred (DO)[22] mice, underlying the sim-
ulated phenotypes that were used to develop and test
our approach is available at http://churchill-lab.jax.org/
website/GattiDOQTL.

Obtaining the haplotype blocks

We first represent each sequence of SNP pairs as a
sequence of four numbers: 0 (when the SNP is composed
of two dominant alleles), 1 (when the SNP is composed of
one dominant and one recessive allele), 2 (when the SNP is
composed of two recessive alleles), and 3 (when the value
of the SNP is missing). We remove SNPs missing values
on more than half of the mice and then use SNF to cluster
the remaining SNPs based on both their distance matrix
D, and the mutual information matrix /.

mice

Genotypes of the N

l

Construct similarity matrices for the
SNPs of each chromosome

|

blocks

Use the similarity matrices to divide
each chromosome into haplotype

|

Obtain the likelihood of each block
via regressions/predictions tests mice

Phenotypes of the N

Given the similarity matrix in a chromosome
and the likelihoods of each block in this
chromosome, we obtain the pseudo probability
of each SNP via a Bayesian approach

Fig. 1 Flowchart outlining the major parts of the BNM algorithm
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Distance matrix
We define a distance matrix Dsy between SNPs s and s” by
using the genetic distance between the SNPs, measured in
centiMorgans:

Dy = |cM location of SNP s — cM location of SNP s'|
(1)

We also tried using the actual base position index along
a chromosome to define the distance matrix, but the final
results were not much different.

Mutual information matrix

We suppose that the phenotypes measured have been
transformed into positive values by exponentiating. If w,,
is the phenotype of mouse m, we define a normalized
phenotype oy by o = Wm/Y., s War. By definition,
> Pm = 1. With the possible values of any SNP s tak-
ing values @ = 0,1, or 2, the phenotype-weighted mutual
information between two SNPs s and s is defined as

v Py
Ly = ZPsas’ﬁ 10g |:P Sa;ﬂ i| (2)
B sal’s'B
where Psas’ﬁ = Zm mem,squm,s;;, Py, = Zs’ﬂ Psots/ﬂ =

Zm ,OmO'm,sa ’ and

3)

o _ ] 1 when SNP s of mouse m is in state «,
Sa 0 otherwise.

Note that Y s Pswusp = D Om Dogp Omsa Oms, =
> Pm = 1. When the value of the SNP is missing (i.e.,
when it is in state ‘3’), it is randomly assigned a state 0, 1, or
2 with a probability equal to the distribution of each state
for this SNP among the subjects with available data. We
want a sample-driven measure of the mutual information
between SNPs that is independent of the phenotype. We
could, of course, simply take the phenotype to be unity for
all m, but in order to avoid bias due to the empirical distri-
bution of phenotype values, we permute the phenotypes
to obtain a phenotype-independent mutual information
by averaging I over a large number of permutations over
the phenotype values of the subjects,

Ly = Z jf;rm /Nperm (4)

perm

where p?" is a permutation of p,jspfrm is the same as Iy
but with o™ replacing p, and Ny is the total number
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of permutations. Note that with every permutation, the
missing values of SNPs are randomly assigned a state inde-
pendent of the previous permutation. In this way, our
empirical / is independent of the actual phenotypes, but
may possibly depend on the distribution of phenotype val-
ues. In more detail, suppose that the samples are drawn
with unknown bias. Then, a uniformly weighted mutual
information between SNPs would be a biased estimator of
SNP-SNP mutual information, due to the unknown sam-
pling bias in the observed samples. For example, if the
phenotype values are skewed due to sampling bias, our
empirical permutation formulation of I will maintain the
skewed distribution, while reducing the effect of biased
sampling on the estimated SNP-SNP mutual information.
This may reduce the power to detect correlations, but
it will not enhance correlations due to biased sampling,
so this is a conservative approach. Permutation tests are
often used in similar settings in QTL analysis [25].

Similarity matrix

The matrices I and D defined in this manner are
sample-dependent and sample-independent, respectively.
Moreover, the mutual information similarity is in no
way constrained by contiguity on the chromosome, and
indeed, the two similarity measures are defined in units
that are not directly comparable. We want to find a prin-
cipled approach to combining these similarity measures
into a single unified similarity matrix. The Similarity
Network Fusion (SNF) approach [20] is a recently pub-
lished algorithm that solves exactly this problem, by trans-
lating each independent similarity measure separately
into a network, and then fusing these networks into a
combined single network. An important point empha-
sized in Ref. [20] is that SNF is an algorithm for fusing
network information obtained from many different data
types characterizing a group of subjects into a combined
similarity network, even for data types as different as
methylation data and expression data. For example, the
similarity metric suggested in Ref. [20] (Online Meth-
ods Section) is chi-squared distance for discrete variables
and agreement-based measure for binary variables, com-
pared to Euclidean distance for continuous variables. This
versatility makes SNF particularly well-suited to our appli-
cation. Thus, for each chromosome with SNF, we obtain a
similarity matrix of SNPs which is defined by a fusion of
the distance matrix D and the mutual information matrix
I. Fusion using the SNF algorithm requires specifying two
parameters: the number of neighbors « and hyperparam-
eter 1. We elaborate on the choice of these parameters in
the next subsection.

Hierarchical clustering
Given the fused similarity matrix, we use it to find
blocks of SNPs that are correlated in the available dataset
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independent of the phenotype and, due to the use of the
genetic distance matrix D, contiguous on the chromo-
some. A clustering method must be chosen to carry out
this block decomposition based on the fused similarity
matrix. We implemented a version of hierarchical cluster-
ing, and as in most approaches to defining clusters with
hierarchical clustering, we must specify how the tree is
used to define the final clusters.

We separate the SNPs into different clusters based on
their fused similarity matrix in the following manner. We
perform hierarchical clustering where we iteratively divide
a cluster into two clusters, or more if the binary split
did not satisfy the conditions described below (see Fig. 2.
This will form an n-ary tree (i.e., with # branches ema-
nating from the end of each parent branch) where the
end branches are the final clusters to be used. This turns
out to be mostly a binary tree for the present dataset. At
each iteration, the splitting process is repeated for every
“open” branch. An open branch is one that did not meet
the stopping conditions. If a branch meets all the stopping
conditions then the branch will be considered “closed”.
For each open branch/cluster k, we first check if the size
of cluster k, Sy, is smaller than «. If it is, then branch
k ends, i.e. cluster k is now closed. Otherwise, the split-
ting process starts: first, the similarity matrix for cluster
k is constructed. Then, starting with setting the number
of clusters n to n = 2, cluster k is split into # new clus-
ters via spectral clustering. If all the new clusters have
contiguous members and none of them is smaller than a
minimum size, Sy, (here S,;;; = 2), then the new clus-
ters are accepted and considered open, i.e., they move on
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to the next iteration. If these conditions are not met, we
incrementally increase # and repeat the splitting test until
either the new clusters are accepted or # reaches a max-
imum number #,,,, in which case the new clusters are
rejected and branch k ends. This process is illustrated in
Fig. 2. Note that 7,,,, depends on the size of the cluster
being split, #,,5x = mMin(Sk/Smin> tnax) Where ty,,, is the
maximum number of iterations allowed. The iterations
stop when either all branches are closed or the maximum
number of iterations is reached.

We still need to decide the values of ¥ and n, as the
final clustering results will differ depending on these val-
ues. Therefore, we perform the above hierarchical clus-
tering algorithm with different values of «,n pairs (x =
10,11,...15 and n = 0.3,0.4,...0.7). The optimal «, n
pair is the one that leads to the smallest cluster sizes,
as we wanted to obtain higher resolution for the correct
SNP. Note that in some examples where we selected for
larger clusters, we found a tradeoff between SNP localiza-
tion and phenotype prediction accuracy. As we focus in
this paper on the SNP mapping problem, we chose smaller
cluster sizes. In particular, we look at the biggest cluster at
the end branches and choose the «, 1 pair with the small-
est biggest cluster (the minimax criterion in this context).
If the size of these smallest biggest clusters is the same
then we compare the number of big versus small clusters.

Obtaining the block likelihoods

The likelihood of a block is the likelihood that at least
one SNP in this block contributes to the overall pheno-
type value. If a block has an effect on the phenotype,

Repeat for each
open cluster &

I ———

No
12

HYCS Size of cluster & < x?
I

Construct the similarity matrix
Set number of clusters, n =2

l
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Split cluster & into

l
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——Yes

T
No

n=Npa?

Yes
¥

Reject the n

closed

Fig. 2 Flowchart outlining the Hierarchical Clustering algorithm
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then a regression model on this block should have a good
predictive power relative to a null model (see Section
“The relative predictive powers of the blocks” below). If
we assume that only one block in each chromosome con-
tributes to the overall phenotype value, then the likelihood
of a block should be obtained by comparing the relative
predictive power of all the blocks in the chromosome in
which the block resides (see Section “The likelihoods of
the blocks” below).

The relative predictive powers of the blocks
For each block &, we perform Ny, trials (Ny, = 1000)
of regression/ testing simulations. For each trial £ we ran-
domly divide the data points into two equal halves, a
training and a testing set. A data point is composed of a
subject’s phenotype value and its block k genotype, i.e., its
sequence of SNP states composing block k. Then, we test
two models, one to obtain the predictive power of block k
for trial ¢ and another to serve as the null model for block
k and trial ¢£. For both models, we use the sequence pheno-
type inference approach described in [26]. This approach
allows the investigation of possible nonlinear dependence
of the phenotype on allele frequency.

For the first model, we train its parameters on the data
points in the training set and then use it to predict the
phenotypes of the subjects in the test set. Comparing our

predicted phenotypes, W,ir:d, to the actual values of the

test

phenotypes in the test set, w;**, we obtain the Pearson

correlation ¢, between log(wirted) and log(w®") for trial
t, block k. The sign of the SNP’s effect on the phenotype
never appears in these calculations because we are always
comparing the predicted phenotype values with the test
set phenotype values. If the prediction is correct, whether
the SNP enhances or decreases a phenotype, the value of
1k will be positive.

For the second (null) model, we perform N, permuta-
tion trials [25]. For each permutation trial p, we permute
the phenotypes of the data points in the training set
before training the model parameters. Then, similar to
the first model, we predict the phenotypes of the sub-
jects in the test set to obtain the Pearson correlation rf: .

between log(w’,;r:d’p ) and log(w/®*), where m’,;’r:d’p is the
set of predicted phenotypes using the training model for
block k, from trial £ and permutation trial p. The relative
predictive power of block & for trial £ can now be defined
via the ratio

exp (i) '
Zp exp (rit)

This algorithm is outlined in Fig. 3. Notice that the expo-
nentiation of the Pearson correlations here implies that
possible negative values of ¢ or rf , lead to lower values,
as is appropriate.

(5)

Ryy =
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The likelihoods of the blocks
We can finally define the likelihood L of block k as the
fraction of trials where Ry ; > Ry, for all k' # k.

Obtaining the SNP empirical pseudo-probabilities

In formulating our approach in a Bayesian setting, we con-
sider each SNP as a possible model for the observed phe-
notype. In particular, we assume that each chromosome
has only one possible ‘true’ SNP. Our prior probability is
that every SNP is equally likely to be causative. It remains
then to define the likelihood of the ‘data given the model’
part of the Bayes computation, which in our context cor-
responds to ‘the phenotypes observed given the causative
SNP s, to find the probability of the SNP s as the model
given the phenotype data, as is standard in applications of
Bayes’ theorem.

To motivate our likelihood function for the data given
the model, we first note that a higher likelihood value of
a block k&, L, suggests that at least one SNP in block & is
contributing to the quantitative phenotype. As discussed
above, these blocks are chosen such that SNPs in the same
block are more correlated to each other than to SNPs
in a different block. However, there are still correlations
between SNPs from different blocks, albeit not strong
enough to be included in the same block. Because of these
inter-block correlations, we expect that even blocks that
do not contain the causative SNP could have a high like-
lihood as well simply due to correlations that exist in
the finite set of sampled genotypes, and we can quantify
this as follows. Assuming that there is only one causative
SNP on each chromosome, if SNP s is the one then the
likelihood that a block b will show an effect should be pro-
portional to the odds ratio, Lg , of the correlation between
SNP s and block b compared to its correlation to all other
blocks in the same chromosome. We define

Lgb = Qs,b/ Z Qs,b” (6)

b'#b

where Qy, = maxycpyss My, and M is the similarity
matrix for the corresponding chromosome obtained by
fusing its distance and information matrices as described
in Section “Hierarchical clustering” using the optimal «, n
pair values obtained while performing the hierarchical
clustering.

Note that Lgb is phenotype independent (as we per-
muted the phenotypes in computing /) and is simply a
measure of the correlation between SNP s and block b
based on the finite amount of data available. We also
tried using L° defined in terms of the mean instead of
the maximum of M, but this did not materially affect the
results.

Using the Pearson correlation again but in a com-
pletely different context, we use our definition of Lg,b
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Fig. 3 Flowchart outlining the algorithm steps to obtain the ratio in Eq. 5

to define the empirical likelihood of a SNP s given the
data as the Pearson correlation, r, between the sequence
of phenotype-independent likelihoods Lgl,ng,...Lch
and the sequence of phenotype-dependent likelihoods
(section “The likelihoods of the blocks”) Li,Ls,...Lx,,
where N, is the number of blocks in chromosome ¢ which
contains the SNP s. If this Pearson correlation r; is nega-
tive, we define ry = 0. It should be emphasized here that
rs < 0 does not correspond to a SNP that has a negative
correlation with the phenotype. What is being compared
here is the correlation pattern between likelihoods of SNP
blocks, phenotype-independent (which indicates genetic
linkage independent of phenotype considered) and
phenotype-dependent (which indicates linkage weighted
by phenotype). A negative correlation s < 0 occurs when
the genetic linkage of SNP blocks is exactly the oppo-
site of the linkage suggested by the phenotype weighting.
For small sample sizes, such negative correlations can
appear by chance, but just as in the definition of r; in
Section “The relative predictive powers of the blocks’,
they are not related to the sign of the effect of the SNP
block on the phenotype. We call this empirical likelihood,
rs, the pseudo-probability of s because it takes values
between 0 and 1 as defined, with the ‘pseudo-’ prefix to
emphasize that it is not, in fact, a probability. We will use

R(s) = 1 — r, in our calculations of power, false discovery
rate and other measures of our methodology.

Summary

As we have given several definitions in the preceding
Method subsections, we summarize the relevant informa-
tion to make the “Results” Section clearer in conjunction
with 1.

® [ : The likelihood that a block k contains a SNP
which has an effect on the phenotype, calculated
using training/testing splits of the data and null trials
with permuted training phenotypes.

. Lgk : The phenotype-independent likelihood that a
SNP s is correlated with a block k, calculated from
the SNF fused similarity matrix.

® 1, : The Pearson correlation coefficient over all blocks
k between L and L?,k‘

® R :Foreach SNPs, R(s) = 1 —max(0,rs). R is defined
like this so that increasing FDR P-value thresholds
correspond to increasing R-value thresholds.

Results
We demonstrate our method by applying it to simulated
data with 742 genotypic sequences of Diversity Outbred
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(DO) Mice and 1000 phenotypes. We simulated pheno-
types on the 19 autosomes and did not add a sex effect. We
selected 19 genomic locations, one on each autosome, and
generated 19 QTL effect sizes from an exponential distri-
bution. Using the genotypes at each location, we created
the QTL effects and scaled the variance to be 1. Then we
added N(0,1) noise and the QTL effects together.

We compare our results to that of simulations using
Interval Mapping (IM) with expectation maximization
from the R/qtl package. For the R/qtl simulations, we use
scanone with the default settings and calc.genoprob with
step = 0 and error.prob = 0. For the P-values calcula-
tions we run scanone with 1000 permutations (n.perm =
1000). The simulated data are obtained by choosing only
one SNP that influences a particular phenotype on each
of the 19 autosomes with varying effect sizes. These effect
sizes range between 1.65 x 10~ and 10.03 (see Additional
file 1: Figure S1). We compare the power [5, 27, 28] of
our method with that of IM for different effect sizes. With
1000 phenotypes, 19 autosomes, and 1 “true signal” on
each autosome, we have 19,000 effect size data points. We
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arrange them in order of increasing effect size and then
divide them into 76 groups of 4000 data points with 200
points offset. For example, the first group is composed of
the first 4000 data points with the lowest effect sizes, and
then the second group is composed of data points 200 to
4200, and so on. Then the power and false discovery rate
(FDR) are calculated within each group separately (Fig. 4).
While the R/qtl scanone implementation of IM assigns
a P-value for each SNP, BNM assigns a empirical likeli-
hood 7, (as described in the “Methods” Section) and thus
an R-value = 1 — r5. To compare the power of the two
methods at matching thresholds, we choose a P-value for
IM and look for the BNM R-value with comparable aver-
age FDR over the 76 groups (Additional file 1: Figure S2).
We compare the power of our method with that of IM
at 3 different P-value thresholds (P-value = 0.001, 0.03,
0.05) and their FDR-matching BNM R-values (R-value =
0.146, 0.322, 0.383). In all cases BNM has a higher power
(Fig. 4a—c). This is more prominent at higher effect sizes
even though BNM has a monotonically decreasing FDR
with increasing effect size (Fig. 4d—f).

a 0.08 Pvalue = 0.001, Rvalue = 0.146 bo 20 Pvalue = 0.03, Rvalue = 0.322 co 5 Pvalue = 0.05, Rvalue = 0.383
o—o |M o—o |IM o—o M
0.07r| e—e BNM 1 0.35f e—e BNM
0.4
0.30}
0.25} 0.3
g 0.20}
I
015} 02
o0.10}
0.1
0.05}
0.00 : 0.0 L= : : :
2.5 0.0 0.5 1.0 15 2.0 2.5
d e f
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Fig. 4 Power and FDR as a function of Effect Size. Power and FDR of the BNM algorithm (blue) and IM from the R/qtl package (red) with increasing
effect sizes. Each point corresponds to the Power (a-c) or FDR (d-f) within a group of 4000 data points with an average effect size in the x-axis. We
show the power and FDR at three P-value (for IM) and R-value (for BNM) thresholds: 0.001 and 0.146 (a, d), 0.03 and 0.322 (b, e), and 0.05 and 0.383
(c, ). These P-value, R-value pairs are matched so that they have the same FDR averaged over all points (see Additional file 1: Figure S2)
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We also compare the ROC curves in 6 different effect
size ranges (Fig. 5). In this case the data points are divided
into 6 groups of 3800 data points each with an offset of
3100 points. BNM outperforms IM at moderate and high
effect sizes. At very low effect sizes, both IM and BNM do
not have much predictive power.

In all of the above results, the power and FDR calcula-
tions are based on the precise location of the true SNP.
In other words, even if the method predicts a signal (at
a specified threshold) in the neighborhood of the “true
signal’} it is considered a false positive. This is more strin-
gent than the usual expectation of QTL mapping [29] so

Page 8 0of 13

we repeated the above analysis after uniformly dividing
each autosome into blocks of SNPs within d Mb from each
other. For example, if one or more signals are obtained
in a particular block, this counts as 1 true positive (if the
true signal is in this block) or 1 false positive (if the true
signal is not in this block). We did the analysis at three
different block sizes, d = 2 (Additional file 1: Figures S3,
S4 and S5), d = 3 (Additional file 1: Figures S6, S7 and
S8), and d = 4 (Additional file 1: Figures S9, S10 and
S11). BNM still shows a higher power than IM at all block
sizes and (P-value, R-value) thresholds, despite the fact
that adding this freedom improves the IM R/qtl results
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1.0
0.8}
0.6}
0.4}
0.002
0.2+
e—e |M AUC_ROC = 0.4996
e—e BNM AUC_ROC = 0.5119
0.0 - - - -
0.0 0.2 0.4 0.6 0.8 1.0
1.0 average Effect size = 0.555+0.101
0.8}
8
2 06} 0.015
(]
2
£ 0.010
I
o 04f 0.005
=
=
0.000
0.000 0.002 0.004
0.2t ]
e—e |M AUC_ROC = 0.5029
e—e BNM AUC_ROC = 0.5689
0.0 - - . -
0.0 0.2 0.4 0.6 0.8 1.0
1.0 average Effect size = 1.403+0.239
0.8}
0.6} 0.15
0.10
0.4} 0.05
0.00
0.000 0.005 0.010
0.2} i
e—e |M AUC_ROC = 0.5320
e—e BNM AUC_ROC = 0.7501
0'%.0 02 04 0.6 0.8 1.0

average Effect size = 0.309+0.077

1.0
0.8
0.6 0.006
0.004
0.4 0.002}
0.000 -
0.000 0.002
0.2
e—e |M AUC_ROC = 0.4997
e—e BNM AUC_ROC = 0.5184
0.0 - - - -
0.0 0.2 0.4 0.6 0.8 1.0
1.0 average Effect size = 0.892 +0.140
0.8
0.6 0.05
0.04
0.03
0.4 0.02
0.01f
0.00 -
0.000 0.005
0.2
e—e |M AUC_ROC = 0.5095
e—e BNM AUC_ROC = 0.6558
0.0 - . - .
0.0 0.2 0.4 0.6 0.8 1.0
1.0 average Effect size = 2.582 +1.001
0.8
0.6 0.4
0.3
0.2
0.4 ]
01} '/"M
0.0
0.00 0.02
0.2
e—e |M AUC_ROC = 0.5853
e—e BNM AUC_ROC = 0.8427
0'%,0 0.2 0.4 06 08 1.0

False Positive Rate

Fig. 5 ROC curves as a function of Effect Size. ROC curves for IM (blue) and BNM (red) within 6 groups of 3800 data points with average effect sizes
0.108 & 0.065,0.309 £ 0.077,0.555 £ 0.101,0.892 4 0.140, 1.403 £ 0.239 and 2.582 + 1.00




Shreif et al. BMC Bioinformatics (2016) 17:544

much more than it does the results from BNM. Even with
the use of blocks of varying sizes, IM shows a decreasing
and then increasing FDR as effect sizes are increased while
the BNM FDR continues to be a monotonically decreas-
ing function of effect size (Additional file 1: Figures S3, S6
and S9).

Next we examine how the power and false discovery
rates change with the choice of different samples of phe-
notypes and with decreasing number of mice (Fig. 6).
To examine the variation with choice of phenotype sets,
we use three samples of 500 phenotypes. In two samples
we randomly select 500 of the 1000 phenotypes and in
the third we select the 500 phenotypes with the highest
average effect sizer over the 19 autosomes. As above, we
arrange the data points in order of increasing effect size
and then divide them into 76 groups of 2000 data points
with 100 points offset. Then the power and FDR are cal-
culated within each group separately (Fig. 6a, d). At low
threshold values we see high variation in the average FDR
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between the samples (Fig. 7a) which is due to the low
number of predicted signals, making for larger statistical
uncertainties. Except for the lowest threshold, this varia-
tion decreases when the analysis is repeated after setting
blocks of size 2 Mb (Additional file 1: Figure S13a), 3 Mb
(Additional file 1: Figure S15a), and 4 Mb (Additional
file 1: Figure S17a).

The effect of population size on QTL detection has been
demonstrated [30, 31], so we investigated the performance
of BNM with a change in the number of mice. To examine
the change and variation in FDR as we decrease the num-
ber of mice, we randomly select three samples of 600 mice
and three samples of 400 mice out of the total number
of 742 mice. For all of the 6 samples we used the 500
phenotypes with the highest average effect size over the
19 autosomes. Choosing the phenotypes in this manner
slightly increases the fraction of high effect signals which
will allow us to go to slightly higher average effect sizes in
the 76 groups of data points.
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Fig. 6 Power and FDR as a function of Sample Size. Power and FDR of the BNM algorithm (blue) and IM from the R/qtl package (red) with increasing
effect sizes. Each point corresponds to the Power (a-c) or FDR (d-f) within a group of 2000 data points with an average effect size in the x-axis. We
show the power and FDR at P-value = 0.05 (for IM) and the matching BNM R-value such that IM and BNM have the same FDR averaged over all points
(see Fig. 7). In (a,d) we use all the mice (Nmice = 742) and three samples of 500 phenotypes from the 1000 simulated phenotypes; the FDR matching
R-value = 0.362 (see Fig. 7a). In (b, ) we use three samples of randomly selected 600 mice out of the 742 mice available; the FDR matching R-value =
0.492 (see Fig. 7b). In (c, f) we use three samples of randomly selected 400 mice out of the 742 mice available; the FDR matching R-value = 0.281 (see
Fig. 7). The plots are the means over the three samples in each case, and the errorbars are the standard deviations from the mean in each case
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As the number of mice decreases, we see more variation
in the FDR between the three samples (Figs. 6d—f), partic-
ularly for IM at low P-values (Fig. 7e). As is to be expected,
the FDR increases as the number of mice decreases for
both IM (Fig. 7e) and BNM (Fig. 7d). For each of the
742 (all mice), 600 and 400 mice samples, we match the
IM P-values to R-values of comparable average FDRs and
compare the powers at P-value = 0.05 (Fig. 6). In all cases,
BNM shows higher power and less variation in FDR than
IM. Applying the block analysis with d = 2, 3,4 improves
the IM FDR and removes the effect of the lower num-
ber of mice but this is not as much the case for the BNM
FDR (Additional file 1: Figures S13, S15 and S17). In fact,
for the block analysis, BNM’s FDR increases with smaller
numbers of mice while IM’s FDR is relatively insensi-
tive, making the matching BNM R-value much lower at
the chosen IM P-value. Now when we lower the num-
ber of mice to 400, BNM shows less power (Additional
file 1: Figures S12, S14 and S16). Overall, however, BNM
shows better ROC curves in all cases with and without the

block analysis (see Additional file 1: Figures S18, S19, 520
and S21).

Finally, we use the same 742 DO mice to map neu-
trophil counts in whole blood obtained from [21]. We
set our R-value threshold to 0.383 since this is the FDR-
matching R-value to P-value = 0.05 in our simulated data.
We found signals on loci in chromosomes 1, 11, 12, 15,
16, 17, and 19 (Fig. 8). The loci we found on chromosome
1 are between 123.301336 Mb and 132.515233 Mb. This
interval included Cxcr4 which is involved in neutrophil
trafficking [32].

Discussion

We formulated an integrated data-driven approach, Block
Network Mapping (BNM), to linkage mapping and
phenotype regression using Similarity Network Fusion
[20] to define haplotype blocks of SNPs that were then
used for phenotype regression. The importance of using
SNF or similar network methods is that multiple similar-
ity measures with disparate underpinnings (in our case,
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genetic distance and empirical mutual information) can
be combined using a common graph-theoretic framework
which is noise-tolerant. We chose SNF [20] because it is
very recent and has proven efficacy. We combined the
results obtained from this block-by-block regression with
the known inter-block correlations between SNPs using
Bayes’ theorem to obtain a final measure of the associa-
tion of a SNP with the phenotype. Changing S, to higher
values, i.e., using bigger smallest possible clusters did not
materially affect our results. However, uniformly segment-
ing the chromosome into clusters of equal size gave worse
results.

QTL locations and effects are specific to populations,
and can only be detected when the population is poly-
morphic at the relevant loci. In light of this, BNM uses no
information beyond the genotypes and phenotypes mea-
sured in the sample, besides the genetic distance. We did
not find much difference between using the genetic dis-
tance and the distance measured in base pairs between
markers.

We found that the area under the receiver operating
characteristic curve (AUROC) exceeded that of IM for all
effect sizes, all allowed genome interval sizes (0, 2, 3, 4Mb)
and all chosen numbers of mice (742, 600 or 400 total

mice). The power of our approach was considerably higher
than that of IM in all circumstances, except when we
allowed for some genomic distance between the true and
predicted SNPs and simultaneously decreased the number
of mice to 400. It is known [30, 31] that for QTLs com-
mon to two populations, the IM estimate of effect size was
reduced in the larger population, supporting the notion
that IM overestimates the magnitude of QTL effects in
small populations, which may also explain the increase in
FDR for IM as sample size is decreased. Power graphs do
not directly exhibit the FDR, but the ROC curves show
that the predictions made using BNM are more likely to be
correct in all circumstances compared to IM. We note that
the False Discovery Rates are quite high for this simulated
dataset, both for IM and for BNM. As we are presenting
our methodology here, it is the relative performance that
is of interest.

As our approach works block-by-block, it is somewhat
similar to composite IM [14—19] but with a definite pre-
scription for the selection of covariates in the form of
SNF clusters. As such, the genomic position of the trait
locus is interpretable. Note that accounting for inter-block
correlations was crucial for suppressing spurious SNP-
phenotype correlations in our approach. However, we
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have compared our results to IM alone in this paper
because composite IM also addresses the presence of
multiple loci by partial regression with selected covari-
ate SNPs. A standard approach to composite IM is to add
known QTL to the model iteratively, and we can carry this
out iteratively as well in BNM, with the QTL uncovered
in a first pass with simple IM. However, we are investi-
gating whether a more natural extension of BNM can be
developed using the SNF framework.

Our work does not improve on simple IM with respect
to effects of opposing sign associated with linked SNPs. It
is not clear that our method could be modified to over-
come this limitation, though our approach can detect non-
linear dependence on allele dosage. In its present form, we
also made the assumption that only one block in a chro-
mosome contributes to the phenotype. This is, of course,
an external assumption from the viewpoint of the under-
lying mathematics. It can be relaxed by using only con-
tiguous parts of chromosomes in the analysis, but these
parts will have smaller numbers of blocks, which in turn
will lead to lower power. In other words, multiple effects
on a chromosome could be detected with BNM albeit
with a worse AUROC. It would be more appropriate to
investigate better approaches to solving the multiple locus
problem [18] within a network paradigm. We are work-
ing on extending BNM to account for multiple related
phenotypes.

Conclusions

In this study, we have presented a network approach to
QTL analysis that uses sample genotype data to define
covariates in a systematic and interpretable manner. Using
the network of correlations between SNPs through SNF
for finding covariate blocks was a central feature of our
approach, along with a Bayesian approach to finding the
likely SNPs within blocks using inter-block correlations.
Network approaches may be more noise-tolerant and may
scale well to larger sets of measured markers.

Additional file

Additional file 1: Block_Network_Mapping_Supplementary Figures. All
supplementary figures referenced in the text, Figures S1-521.
(PDF 35430 kb)
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