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Abstract: Glioblastoma (GBM) remains the most devastating primary central nervous system
malignancy with a median survival of around 15 months. The past decades of research have
not yielded significant advancements in the treatment of GBM. In that same time, a novel class
of molecules, long non-coding RNAs (lncRNAs), has been found to play a multitude of roles in
cancer and normal biology. The increased accessibility of next generation sequencing technologies
and the advent of lncRNA-specific microarrays have facilitated the study of lncRNA etiology.
Molecular and computational methods can be applied to predict lncRNA function. LncRNAs can
serve as molecular decoys, scaffolds, super-enhancers, or repressors. These molecules can serve as
phenotypic switches for GBM cells at the expression and/or epigenetic levels. LncRNAs can affect
stemness/differentiation, proliferation, invasion, survival, DNA damage response, and chromatin
dynamics. Aberrant expression of these transcripts may facilitate therapy resistance, leading to
tumor recurrence. LncRNAs could serve as novel theragnostic or prognostic biomarkers in GBM and
other cancers. RNA-based therapeutics may also be employed to target lncRNAs as a novel route of
treatment for primary or recurrent GBM. In this review, we explore the roles of lncRNAs in GBM
pathophysiology and posit their novel therapeutic potential for GBM.
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1. Introduction

The vast majority of the human genome is transcribed, however, less than 3% of all transcribed
genes are protein-coding. For decades, speculation over the roles of non-coding RNA (ncRNA) has
ranged from junk transcripts to master epigenetic regulators. The majority of prior ncRNA research has
emphasized the roles of small ncRNAs such as micro RNAs (miRNA). A particular class of ncRNAs,
long non-coding RNAs (lncRNAs), have been increasingly recognized as playing large regulatory
roles in normal function and in disease etiology [1–4]. LncRNAs are versatile transcripts that play
important roles in subcellular localization, transcriptional regulation, and epigenetic remodeling.
As such, they can have broad phenotypic influences. There has been an exponential increase in the
number of lncRNA publications in the past decade with more than 90% of all lncRNA publications
coming since 2010. This is an area of research that is rapidly evolving and there are many opportunities
for breakthrough discoveries across multiple disciplines.

Gliomas are tumors originating from glial cells in the central nervous system (CNS). The most
aggressive form of gliomas is glioblastoma (GBM), the most common primary CNS malignancy in
adults. GBMs can either be primary or arise from low grade glioma (LGG) with drastic differences in
etiology dependent on primary or secondary malignancy. Secondary GBM tend to be IDH1 mutants
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with or without 1p/19q co-deletion [5]. Primary GBM tend to be IDH1 WT, have greater diversity,
and bear poorer prognosis. The current standard of care for GBM is maximal safe surgical resection
followed by adjuvant temozolomide (TMZ) chemotherapy and radiation therapy [6]. With the standard
of care, median survival is roughly 15 months [7,8]. GBMs are almost universally fatal and invariably
recur following therapy [9]. The roles of lncRNAs in GBM have gone unstudied until very recently,
and now there is evidence that these transcripts may have prognostic or even therapeutic applications.
In this review, we explore what is known about lncRNA function and how it might be applied to future
therapeutic strategies in the treatment of GBM.

2. Categorization and Structure of lncRNAs

LncRNAs are characterized primarily by length (>200 nucleotides) and lack of coding potential.
In some cases, however, lncRNAs can contain short open reading frames for small peptides [10].
LncRNAs can be poly-adenylated, spliced, and 5′ 7-methyl guanosine capped. They also can be
unprocessed. This can make lncRNA transcripts difficult to detect in standard poly-A selected
sequencing libraries. Adding to the difficulty, lncRNAs exhibit roughly 10× lower abundance in cells
than coding genes. These transcripts can be exceptionally long (up to 400kb) such as in the case of
asynchronously replicating autosomal RNAs (ASARs) [11]. These transcripts often contain secondary
and tertiary structures. Often, lncRNAs contain 3′ or 5′ hairpin structures that aid in transcript stability
and can serve as docking sites for enzymes or other proteins. In some cases, lncRNAs are circularized,
greatly increasing their stability. The greater stability of lncRNA transcripts often means they can play
a greater physiological role despite their lower abundance. The higher order, complex structures of
RNAs confer capacities for protein, DNA, or RNA interactions. LncRNAs functions can broadly be
divided into 3 categories: sponges, scaffolds, or signals (Figure 1).
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Figure 1. Archetypes of long non-coding RNAs (lncRNAs). LncRNAs can act as signals or guides
directing the initiation or repression of transcription. LncRNAs can act as molecular sponges binding
miRNAs or transcription factors/proteins. LncRNAs can act as scaffolds to form enhancer loops
or as structural components of ribonucleoprotein complexes. DNMT–DNA methyltransferase,
HDAC–histone deacetylase, Me–Methyl group, AC–Acetyl group, TF–transcription factor, PD–protein
domain. Created with BioRender.com.

3. LncRNA Molecular Functions

The diversity of lncRNAs in form lead to a vast variety of molecular functional roles in normal
and aberrant biology. Owing to the size of the non-coding transcriptome, a complex regulatory
system governing lncRNA expression has evolved. Developmental regulation of lncRNAs mean
that lncRNA expression is cell-specific and temporally regulated. Tissue-specific expression of
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lncRNAs can contribute to the maintenance of differentiation and phenotype. Many EZH2-associated
lncRNAs have been shown to have tissue-specific binding potential suggesting a tissue-specific role
for lncRNAs in chromatin remodeling and cellular imprinting [12]. This can be accomplished by
regulation of transcriptional programs globally through chromatin remodeling or transcriptional
repression/activation. Temporal regulation of lncRNA expression may serve to guide differentiation
and cell fate again as global regulators of transcription directly or epigenetically. In addition to temporal
regulation, lncRNAs can contain localization signals, specifically in their 3′ UTRs which lead to spatial
regulation or subcellular localization of lncRNA transcripts. This subcellular localization of transcripts
is seen particularly in the nervous system, where cell morphology is complex [13]. Transcriptional
regulation by lncRNAs can be accomplished on multiple levels (Figure 1). LncRNAs can bind DNA
and recruit proteins to initiate DNA looping resulting in super-enhancer activity either in cis or in
trans. UCA1 and HCCL5 are lncRNAs associated with super-enhancer activation of YAP genes and
epithelial-to-mesenchymal transition in ovarian and hepatocellular carcinoma respectively [14,15].
The DNA binding potential of lncRNAs also means they can bind to promoter proximal regions and
can directly or indirectly be repressive or activating. LncRNAs can recruit transcriptional machinery
or DNA methyl-transferases (DNMTs). Antisense binding of lncRNAs can be directly suppressive
of transcription by blocking transcriptional machinery from binding. LncRNA transcripts can act as
molecular sponges, sequestering transcription factors or miRNAs. As endogenous competing RNAs,
these transcripts can either titrate proteins/enzymes, or small RNA transcripts to inhibit their normal
activity. Alternatively, these transcripts may be utilized to deliver their binding targets to subcellular
locations where their action has a physiological response. This could again be seen in neurons where
complex regulation distal to the nucleus is required. LncRNAs can affect mRNA stability either
through the sequestration of miRNAs or by binding them directly. Direct RNA binding can lead to
subcellular localization, enhanced transcript stability, suppression, or alternative processing. LncRNAs
may direct differential splicing in other transcripts or contribute to post-transcriptional modifications.
The complex structures and size of lncRNA transcripts make them ideal subunits of ribonucleoprotein
(RNP) complexes. LncRNAs play both a structural role in RNP complexes and a functional role in
guiding these complexes to specific binding sites. RNPs formed by lncRNAs include interactions with
polycomb repressive complex, histone deacetylases (HDACs), histone acetyl transferases, (HATs),
etc. In this way, lncRNAs are important contributors to chromatin stability and heterochromatin
or euchromatin formation. One important example of broad scale chromatin remodeling is cellular
imprinting via the lncRNA Xist, which is responsible for X-chromosome inactivation in females. This is
one example of sex-specific lncRNA expression [16]. It is now believed that some lncRNAs may lead
to heritable effects through epigenetic modifications [17].

4. LncRNAs in Cancer

The versatility and persistence of lncRNAs lead to dramatic phenotypic control over cells. When
applied in the context of malignancy, lncRNAs can begin to appear as master regulators of tumorigenic
potential. Many lncRNAs have regulatory potential encompassing multiple intracellular or phenotypic
processes. LncRNA activity can be seen across the spectrum of canonical cancer hallmarks (Figure 2).
However, there are very few mechanistic studies of lncRNAs in the disease context of GBM. In this
section, we highlight the known roles of lncRNAs in all cancers to highlight the untapped potential
that additional study of lncRNAs in the context of GBM may yield.
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Figure 2. Hallmark characteristics of cancer are regulated by lncRNAs. Colored boxes contain lncRNAs
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recruitment or association with stromal cells. LncRNAs with known association to gliomas are
highlighted in bold (Discussed in Section 5).

4.1. Proliferation

Sustained proliferation and avoidance of growth suppressors is one of the key hallmarks of
malignant cells. The lncRNA CASC11 has been shown to promote proliferation in bladder cancer
through binding of miR-150 [18]. The lncRNA CCAT1, named for its association with colorectal cancer
(CRC), has not only been found to promote proliferation in bladder cancer, but also promotes migration
and invasion [19]. Also in bladder cancer, the lncRNA GClnc1 promotes proliferation as well as
invasion through the activation of proto-oncogene MYC [20]. In cervical cancer, antisense lncRNA
DLG1-AS1 promotes proliferation through titration of miR-107 leading to upregulation of ZHX1 [21].
A relatively well studied lncRNA transcript Nuclear Enriched Abundant Transcript 1 (NEAT1) has
been found to promote proliferation and epithelial to mesenchymal transition (EMT) pathways in
breast cancer [22]. Also in breast cancer, lncRNA SNHG6 plays a role in proliferation and invasion via
the miR-26a/VASP signaling axis [23]. Similarly, lncRNA PSMG3-AS1 functions to titrate miR-143-3p
leading to increased proliferation and migration in breast cancer [24]. The downregulation of lncRNA
TUG1 by another lncRNA GATA6-AS results in enhanced proliferation and inhibition of apoptosis in
glioma [25].
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4.2. Immune Evasion

Cancer cells frequently develop immune evasion mechanisms or even hijack normal immune
cells. Tumors can induce pro-tumor inflammatory responses. LncRNAs have been shown to play a
role in cancer cell programming related to immunity. The lncRNA SATB2-AS1 is normally expressed in
colorectal tissues and is downregulated in CRC leading to an inverse relationship between expression
and prognosis. SATB2-AS1 mediates H3 lysine 4 tri-methylation (H3K4me3) deposition and promoter
methylation of SATB2, regulating TH1-type chemokine expression and immune cell density [26].
A novel lncRNA LINK-A has been found to suppress tumor antigenicity and immune–related
tumor suppression through signaling related to TRIM71 in triple-negative breast cancer (TNBC) [27].
NF-κB-interacting lncRNA (NKILA) has been shown to promote activation-induced cell death in
cytotoxic T lymphocytes resulting in immune evasion in breast and lung cancer [28]. Also in breast
cancer, SNHG1 mediates the differentiation state of T regulatory cells affecting immune escape via the
miR-448/IDO axis [29]. Tumors can also recruit immune cells such as tumor-associated macrophages
(TAMs) to aid in their growth and survival. HIF-1α-stabilizing lncRNA (HISLA) is released from TAMs
in extracellular vesicles, promoting glycolysis and survival in breast cancer [30]. The lncRNA DGCR5
is related to immune-related biological processes and simultaneously strongly negatively correlated
with WHO grade of malignancy in glioma suggesting a role in inflammatory activities or immune
checkpoints in glioma [31].

4.3. Metastasis/Tumorigenesis

Many cancers possess metastatic potential, typically developed in a subpopulation of perivascular
cells. Metastatic cells must migrate into the blood stream of lymphatic system, exit, and establish
a new tumor at a distal site. There is evidence that lncRNAs may confer metastatic potential
in these highly specialized cells. The novel lncRNA XLOC_006390 has been shown to facilitate
tumorigenesis and metastasis in cervical cancer cells by serving as molecular sponges for miR-331-30
and miR-338-3p [32]. LncRNA BX111 is induced under hypoxic conditions and promotes metastasis
in pancreatic cancer by activating epithelia-mesenchymal transition (EMT) via induction of ZEB1
transcription [33]. The lncRNA PTAR also promotes EMT and metastasis in ovarian cancer by
disinhibiting ZEB1 expression by competitively binding miR-101-3p [34]. The roles of lncRNAs are
not always clear cut. MALAT1 has been described as conferring metastatic potential, particularly in
lung to brain metastasis through EMT regulation [35,36]. However, in breast cancer, MALAT1 has
been found to inactivate pro-metastatic transcription factor TEAD, reducing metastatic potential in
these cells [37]. LINC01133 also inhibits breast cancer metastasis through EZH2-mediated regulation
of SOX4 expression [38]. Meanwhile, LINC02273 drives metastasis in breast cancer by stabilizing
hnRNPL, resulting in activation of AGR2 transcription [39].

4.4. Replicative Immortality

Cancer cells characteristically undergo uncontrolled cell division. A hallmark of many cancer cells
is their ability to overcome replicative senescence and acquire replicative immortality via enhanced
stability of chromosomes often through telomere lengthening [40]. The primary lncRNA related to
telomere maintenance is telomeric repeat-containing RNA (TERRA) [41]. TERRA expression has been
associated with elongated telomeres in human placenta [42]. Elevated expression of TERRA has been
detected in various human cancer cell lines [43]. SENEBLOC is a lncRNA which suppresses senescence
through p53 related mechanisms [44]. Similarly, Linc-ASEN represses senescence by reducing p21
expression allowing for uncontrolled cell cycle progression [45].

4.5. Invasion/Migration

Related to but separate from metastasis, cancer cell migration and stromal invasion have major
implications in the progression and treatment of disease. GBM for example, is considered a whole
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organ disease as tumor cells are highly invasive/migratory and yet, GBM metastasis outside of the
CNS is exceedingly rare [46]. Highly infiltrative tumors complicate surgical resection and can lead to
disease recurrence. Many lncRNAs are associated with invasive/migratory potential of cancer cells,
both promoting and inhibiting. Expression of lncRNA RHPN1-AS1 promotes invasion and migration
in cervical cancer by modulating the miR-299-3p/FGF2 axis [47]. Overexpression of PTCSC3on the
other hand, inhibits invasion and migration of cervical cancer cells by sequestering miR-574-5p [48].
NEAT1 which as noted earlier promotes EMT and proliferation in breast cancer, additionally promotes
migration and invasion in endometrial cancer through regulation of the miR-144-3p/EZH2 axis [49].
In colon cancer, NEAT1 also promotes migration and invasion, in this case through the miR-185-5p/IGF2
axis [50]. Meanwhile, the expression of lncRNAs EZR-AS1, LINC00261, and LINC01082 all suppress
migration in colon cancer cells through various signaling pathways [51–53]. In glioma, EGFR-AS1 is
associated with migration and invasion through the mir-133b/RACK1 axis [54].

4.6. Angiogenesis

Solid tumors have increased need for gas and nutrient exchange owing to their rapid growth.
Tumor-associated blood vessels are also important in metastasis. Cancer cells frequently have the
capacity to promote angiogenesis or can even differentiate into endothelial cells to form new vessels [55].
A novel lncRNA HIF-1α inhibitor at translation level (HITT) is frequently downregulated in human
cancers, resulting in increased angiogenesis and tumor growth via HIF-1α expression [56]. HITT
accomplishes this repression by coordinating with EZH2 to epigenetically suppress HIF-1α [57].
Another hypoxia-induced lncRNA RAB11B-AS1 promotes angiogenesis and metastasis in breast
cancer [58]. The lncRNA NR2F1-AS1 promotes angiogenesis in breast cancer through IGF-1/ERK
signaling regulation [59]. NKILA which regulates cancer-immune interactions also regulates
angiogenesis in breast cancer through NF-κB/IL-6 signaling pathway modulation [60]. LINC00284
inhibits MEST expression in an NF-κB dependent manner leading to increased angiogenesis in ovarian
cancer cells [61]. Differentiation antagonizing non-protein-coding RNA (DANCR) also promotes tumor
angiogenesis through the miR-145/VEGF axis in ovarian cancer [62]. The lncRNA H19 promotes
angiogenesis in glioma via the miR-138/HIF1α/VEGF axis [63].

4.7. Genome Instability and Mutation

Cancer cells classically acquire very high mutation loads owing to their numerous cellular
divisions and to genomic instability. This instability can lead to the deletion of tumor suppressors
or the amplification of oncogenes. One example of this is PTEN loss in GBM. LncRNA transcripts
are emerging as regulators of genomic instability. We have already mentioned how the lncRNA
TERRA is associated with telomeres and replicative immortality, but through its roles in chromosome
binding, TERRA also plays a role in genomic stability [41]. Another lncRNA associated with cellular
division and genomic stability is MANCR (LINC00704), which is upregulated in highly mitotic cells in
TNBC [64]. Noncoding RNA activated by DNA damage (NORAD) is a lncRNA which acts as a scaffold
for the assembly of topoisomerase complexes critical for maintaining genomic stability [65]. NORAD
also promotes genomic stability through the sequestration of destabilizing PUMILIO proteins [66].
Loss of NORAD in some cancers could lead to genomic instability and higher copy number variants
(CNV) or mutational loads. Colon cancer associated transcript 2 (CCAT2) has been found to induce
chromosomal instability through Bop1 and AURKB signaling pathways [67].

4.8. Resisting Cell Death

A hallmark of cancer cells related to replicative immortality, is their ability to avoid regulated,
programmed cell death mechanisms. Several lncRNAs have been associated with this hallmark
both positively and negatively regulating apoptosis. The well-characterized HOTAIR lncRNA has
been found to suppress apoptosis in breast cancer cells through the miR-20a-5p/HMGA2 axis [68].
Similarly, PART1 influences apoptosis in prostate cancer cells through modulation of toll-like receptor
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pathways [69]. Conversely, the lncRNA ATB promotes apoptosis in non-small cell lung cancer (NSCLC)
via the regulatory axis of miR-200a and β-catenin [70]. Loss of the lncRNA MEG3 in prostate cancer
cells leads to decreased apoptosis rates through disinhibition of QKI-5 expression via miR-9-5p [71].
LncKLHDC7B has found to be associated with resistance to cell death and poorer prognosis in
TNBC [72]. Furthermore, CCAT1, which is associated with cancer progression in CRC and bladder
cancer, also regulates apoptosis in U87 glioma cells through sponging of miR-181b [73].

4.9. Altered Metabolism

Aberrant metabolism in cancer cells has long been an attractive therapeutic target. Cancer
cells frequently undergo the Warburg effect which describes increased energy production through
aerobic glycolysis [74]. LINC00504 has been found to promote aerobic glycolysis in ovarian cancer
cells through the titration of miR-1244 [75]. The proto-oncogene MALAT1 has been shown in
hepatocellular carcinoma to simultaneously increase glycolysis and decrease gluconeogenesis through
mTOR-mediated regulation of TCF7L2 expression [76]. The lncRNA EPB41L4A-AS1 serves as a
repressor of the Warburg effect in multiple cancers through interaction and co-localization with HDAC2
and NPM1 [77]. In glioma, the lncRNA SNHG14 is downregulated and destabilized owing to a loss in
Lin28A, leading to an increase in IRF6-mediated aerobic glycolysis [78]. This suggests that stabilizing
SNHG14 could target aberrant metabolism in glioma cells. In contrast, the lncRNA ANXA2P2 is
overexpressed in glioma leading to elevated levels of GLUT1, H2K, PFK, and LDHA resulting in
increased aerobic glycolysis, suggesting targeting of this lncRNA transcript could be an effective
therapeutic strategy [79].

4.10. Stemness/Multipotency

Cancer stem cells (CSCs) are believed to be responsible for tumorigenesis and therapy resistance.
CSCs have the capacity for self-renewal, multipotency, and survival. The replication and differentiation
of CSCs create a hierarchical cell model within tumors, contributing to their malignancy and resilience.
Niches within the tumor microenvironment (TME) are thought to support CSCs, but it has been
discovered that lncRNAs contribute to the maintenance of stemness and of cellular fate programs.
A usual suspect, MALAT1 has been shown to promote stemness in gastric cancer cells by enhancing
SOX2 mRNA stability [80]. In a potential feed-forward mechanism, it has been found that the
stemness-related transcription factor, Oct4 promotes the expression of MALAT1 and NEAT1 [81].
NEAT1 also confers stem-like phenotypes in TNBC, NSCLC, and GBM cells [82–84]. The YAP
transcription factor is a potent oncogene related to several oncogenic programs including stemness [85].
The lncRNA B4GALT1-AS1 serves to recruit YAP to the nucleus thus enhancing its transcriptional
activity and enhancing stemness in colon cancer cells [86]. In glioma, the lncRNA SNHG20 has been
shown to promote stemness through activation of the PI3K/Akt/mTOR signaling pathway [87].

4.11. DNA Damage Response

The capacity of cancer cells to overexpress DNA repair machinery is an essential component of
their resistance to conventional therapies including ionizing radiation or alkylating chemotherapy.
Some lncRNAs regulate DNA damage response (DDR) transcriptional programs. NEAT1 induces
expression of multiple DDR pathways including homologous recombination (HR) in multiple myeloma
(MM) [88]. NEAT1 also serves as a key structural component in paraspeckle formation which may
in turn play a role in DDR regulation and activity [89]. The lncRNA in NHEJ pathway 1 (LINP1)
has been found to promote PARP-dependent DNA repair in TNBC as a structural component of the
IGFBP-3/NONO/SFPQ complex [90]. Alternative NHEJ in MM may also be mediated by MALAT1
through its interaction with PARP1 and LIG3 [91]. MALAT1 has also been shown to be highly
upregulated in TMZ-resistant GBM cells and that the knockdown of MALAT1 transcripts rescues TMZ
sensitivity by way of increasing miR-101 [92].
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4.12. Recruitment of Stromal Cells

Tumors, especially highly infiltrative tumors like gliomas, often encompass normal, non-malignant
cells in their mass. Cancer cells are often able to co-opt normal cells to support their TME and facilitate
growth/spread. Immune cells, particularly TAMs, can not only contribute to immune evasion, but also to
growth. HISLA is released in extracellular vesicles from TAMs resulting in enhanced aerobic glycolysis
and apoptotic resistance in nearby breast cancer cells [30]. Carcinoma-associated fibroblasts (CAFs) in
CRC transfer lncRNA H19 via exosomes resulting in enhanced stemness and chemoresistance [93].
A novel lncRNA lnc-CAF, so named because of its overexpression in CAFs, promotes cancer cell growth
in oral squamous cell carcinoma (OSCC) through its interaction with interleukin-33 [94]. Hyaluronan
is a key ECM component in the CNS and thus very important in glioma progression. An enzyme key
to TME maintenance is Hyaluronan synthase 2 (HAS2). The antisense lncRNA HAS2-AS1 has been
shown in some cancers to stabilize or enhance HAS2 expression while being repressive in others [95].
CREB1 induces HAS2-AS1 expression in OSCC leading to enhanced proliferation and invasion through
the miR-466/RUNX2 axis [96]. A novel lncRNA activated by TGF-β (lncRNA-ATB) is released in
exosomes by normal astrocytes and promotes glioma cell invasion [97].

5. LncRNAs in Glioma and GBM

The roles of lncRNAs in glioma etiology is an emerging field. Many of the hallmark characteristics
of glioma tumors have been found to be regulated by lncRNAs. The lncRNA regulatory story
in glioma starts with tumor initiation and progression. A set of p53-regulated lncRNAs initially
identified in colon cancer, were found to be expressed inversely with glioma tumor grade with lowest
expression in GBM samples [98]. These lncRNAs regulate SOX factor expression in an inverse manner
leading to higher SOX expression in GBM tumors with low p53-regulated lncRNA expression. Cancer
susceptibility candidate 7 (CASC7) is another lncRNA which appears to inhibit glioma formation and
progression by decreasing Wnt/β-catenin signaling activity [99]. On the other hand, CASC9, miR-519d,
and STAT3 form a positive feedback loop promoting glioma formation and tumorigenesis [100].
The lncRNA AGAP2-AS1 promotes glioma initiation by sponging microRNAs resulting in activation
of the Wnt/β-catenin signaling pathway [101]. The oncogenic lncRNA NEAT1 also regulates tumor
initiation and progression via Wnt/β-catenin regulation in an EGFR-dependent manner through its
interaction with polycomb repressive complex subunit EZH2 [102]. The PI3K/Akt signaling axis is
another important pathway in glioma formation. LINC01426 promotes this signaling and thus glioma
initiation [103]. Meanwhile the lncRNA PART1 acts as a tumor suppressor by sponging miR-190a-3p
leading to downregulation of PTEN/Akt signaling [104].

The roles of lncRNAs and their mechanisms of action are diverse. Many lncRNAs act on pathways
in GBM via regulation of miRNAs either to promote or suppress glioma progression. LINC01446
promotes disease progression via the miR-489-3p/TPT1 axis [105]. Similarly, the lncRNA MNX1-AS1
promotes GBM progression through the inhibition of miR-4443 [106]. The lncRNA DCST1-AS1
decreases mir-29b levels through methylation leading to the promotion of proliferation [107]. A novel
lncRNA transcript AC016405.3 acts as a tumor suppressor by acting as a molecular sponge for
miR-19a-5p leading to TET2 modulation [108]. Other lncRNAs affect glioma programs through
DNA methylation or chromatin modifications. The lncRNA HOTAIRM1 acts as a scaffold facilitating
long-range chromatin interactions with HOXA gene clusters, increasing their transcription resulting
in more malignant tumors [109]. Additionally, HOTAIRM1 has been shown to titrate EZH2 and
DNMTs blocking repression of the HOXA gene clusters among others [110]. An antisense lncRNA
HOXB13-AS1 regulates HOX gene transcription by guiding EZH2 to specifically repress translation of
HOXB13 [111]. LINC00467 represses the tumor suppressor p53 in glioma formation through its direct
interactions with DNMT1 [112].

One of the primary obstacles in the treatment of glioma are the extent of intra and intertumoral
heterogeneity. LncRNA expression has been found to be dynamic across multiple single cells in
GBM tumors and cell lines [113,114]. There are three canonical molecular subtypes of GBM cells:
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classical/proliferative, proneural, and mesenchymal. Generally mesenchymal cells are considered
the most malignant and therapy resistant. There is also the concept of stem-like gliomas stem cells
(GSCs) which are considered responsible for therapeutic failure and tumor recurrence. Much of the
heterogeneity of glioma tumors is dependent upon TME niches. The lncRNA HIFiA-AS2 has been
found to maintain mesenchymal GSCs in hypoxic niches within the tumor [115]. As mentioned
previously, HOTAIRM1 also contributes to the maintenance of GSCs through the regulation of HOX
gene expression.

Gliomas and GBM are highly infiltrative of normal stroma and are considered a whole organ disease.
The invasive and migratory potential of glioma cells contributes to the difficulties in treating this disease
and the eventual recurrence of these tumors. Glioma invasion is promoted in a HIF1α-dependent
manner through the expression of lncRNAs H19 and AWPPH [63,116]. Migration is also promoted
by LINC01494 which titrate miR-122-5p leading to increase expression of CCNG1 [117]. NEAT1
expression increases invasive potential of glioma cells through modulation of SOX2 via miR-132 [118].
The lncRNA ATB promotes glioma cell invasion through NF-κB and MAPK signaling pathways [119].
GAS5 on the other hand is a lncRNA which acts to suppress invasion and tumor growth in glioma
cells by targeting GSTM3 expression [120].

Another hallmark of glioma and GBM is acquired resistance to standard therapies. The canonical
mechanism of TMZ resistance in GBM is the expression and activity of DNA repair enzyme
O6-methylguanine-DNA methyltransferase (MGMT). Lnc-TALC promotes MGMT expression by
positively regulating the c-Met pathway [121]. Treatment using alkylating chemotherapy or radiation
therapy induces the expression of lncRNAs such as MALAT1 induction in an NF-kB and p53
codependent manner following TMZ treatment [122]. Furthermore, the lncRNA ADAMTs9-AS2
promotes TMZ resistance through changes in ubiquitination mediated by FUS/MDM2 [123].
The lncRNA TP73-AS1 has been found to promote TMZ resistance in GSCs through its regulation of a
GSC/therapy resistance marker ALDH1A1 [124]. NCK1-AS1 also increases TMZ resistance through
the disinhibition of TRIM24 in its function as a competing endogenous RNA [125]. Radiation therapy
is the most common and widely tolerated therapeutic approach in treating glioma. Several lncRNAs
have been associated with response to DNA damage following radiotherapy. Using a cohort from
the TCGA, 37 lncRNAs were found to be associated with radiosensitivity in LGG mostly related to
PI3K-Akt, MAPK signaling, and DDR [126]. The lncRNAs HMMR-AS1 and TALNEC2 have been
found to confer radiation resistance which can be rescued by silencing these transcripts [127,128].
TALNEC2 also appears to regulate growth and stemness in glioma stem cells [128]. The antisense
transcript of hypoxia-inducible factor-1α (AHIF) has been found to confer radioresistance in GBM cells
and can transfer this resistance to neighboring cells through exosome transmission [129]. Knocking
down the lncRNA PCAT1 has been found to increase glioma cell sensitivity to radiation, possibly
through regulation of transcriptional modifying gene HMGB1 [130].

6. LncRNAs as Biomarkers

Much research goes into the discovery and classification of ever elusive disease biomarkers.
Biomarkers come in three not always exclusive flavors: diagnostic, prognostic, and theragnostic.
Diagnostic biomarkers are useful in distinguishing between normal tissue and cancer. Prognostic
indicators exhibit a correlation of expression with prognosis/disease progression independent of
therapy. Theragnostic biomarkers have detectable changes in expression which are predictive of
therapeutic response. Cancer-related lncRNAs are sometimes detectable in serum and have also been
found in circulating exosomes [131]. Serum levels of MEG3, classically a tumor repressor, can be
of diagnostic value in CRC [132]. Cancer susceptibility candidate 9 (CASC9) has been found to be
upregulated in hepatocellular carcinoma compared to normal healthy controls and levels of expression
in HCC may also be predictive of metastasis and prognosis [133]. A number of lncRNAs are induced
by radiation therapy [134,135]. LINP1 is induced following radiation in cervical cancer cells to facilitate
DNA repair [136]. Many studies have honed in on the systematic identification of lncRNA-based
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biomarkers in glioma. Differences in serum levels of HOTAIR validated by qRT-PCR between GBM
and control patients may represent diagnostic and prognostic biomarkers for GBM [137]. MALAT1
could be a prognostic and/or theragnostic indicator in glioma as its expression is associated with
increased chemoresistance to TMZ [138]. A recent review of LGG samples from The Cancer Genome
Atlas (TCGA) revealed 16 immune-related lncRNAs strongly correlated with patient prognosis [139].
Also from TCGA, there is a six lncRNA signature related to immunity which is a positive prognostic
indicator in GBM [140]. The lncRNA RPSAP52 is expressed in GSCs and expression can be used to
predict postoperative survival in GBM patients [141].

7. LncRNAs as Therapeutic Targets

The multitude of functions of lncRNAs makes these transcripts attractive potential therapeutic
targets as they are often low in abundance yet have broad and significant phenotypic effects. Table 1
shows a list of lncRNAs implicated in GBM along with their roles and potential therapeutic strategies.
LncRNA activities are sometimes even conserved across multiple forms of cancer making them potential
pan-cancer therapeutic targets. The lncRNA PVT1 is upregulated in a number of cancers including
NSCLC, HCC, breast cancer, and glioma [142]. This makes PVT1 and other commonly conserved
lncRNAs such as MALAT1, H19, and NEAT1 attractive general therapeutic targets. Sometimes
lncRNAs are lost in disease states such as the tumor suppressors MEG3 and GAS5. This could be
exploited by drugs that can stabilize or restore the function of tumor suppressor lncRNAs. The lncRNA
MATN1-AS1 is consistently down-regulated in GBM and this suppression is associated with poorer
prognosis, enhanced proliferation, and increased invasion potential [143]. Upregulation of MATN1-AS1
mitigates this malignant phenotype through inhibition of RELA via E2F6 leading to suppression
of MAPK signaling [143]. The clearest path to targeting overexpressed lncRNA is through direct
RNA-interference (RNAi). This type of therapy can be accomplished by introducing siRNA, miRNA,
shRNA, or even lncRNAs through inducible vectors or nanoparticle delivery systems. A nanoparticle
containing siRNAs against MALAT1 was effective at sensitizing GBM cells to TMZ [144]. MALAT1
and its interacting partner AR-v7 have both been targeted successfully in preclinical trials of therapy
resistant prostate cancer [145]. Another approach is to target pathways related to lncRNA expression
using small molecule inhibitors. Targeting LINK-A transcripts or downstream GPCR signaling with
agonists leads to a sensitization of TNBC tumors to immune checkpoint inhibitors [27]. There are even
some phytochemicals which are known to modulate common lncRNAs [146]. Melatonin, a simple,
BBB penetrant compound has been shown in HCC cells to induce the expression of RAD51-AS1 which
blocks the transcription of RAD51, a gene key in HR, leading to increased sensitivity to DSBs from
chemo or radiotherapy [147]. The lncRNA HOTAIR is functionally related to many cancer hallmarks
including in glioma as previously stated. HOTAIR influences oncogenic programs largely through
chromatin remodeling. A novel compound AC1Q3QWB has been discovered which disrupts the
HOTAIR-mediated recruitment of polycomb repressive complex 2 leading to sensitization of tumors to
other chemotherapeutic agents [148].

Table 1. lncRNAs in glioblastoma (GBM).

lncRNA Role Level of Evidence Therapeutic Strategy Reference

CASC7 Tumor suppression GBM primary tissue and cell lines
in vitro Rescue, stabilize, or OE [99]

CASC9 Tumorigenesis GBM cell lines in vitro and in vivo Degrade, KD, or saturate with
miRNA mimetic [100]

AGAP2-AS1 Proliferation
and survival

GBM primary tissue, cell lines
in vitro, and correlated with OS in

TCGA patients

Degrade, KD, saturate with miRNA
mimetic, or target downstream

Wnt signaling
[101]
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Table 1. Cont.

lncRNA Role Level of Evidence Therapeutic Strategy Reference

NEAT1 Proliferation
and invasion

GBM primary tissues, cell lines
in vitro and in IC xenograft

Degrade, KD, saturate with
miRNA-mimetic, or target SOX2,

EGFR, or EZH2
[102,118]

LINC01426
Proliferation,

invasion,
and survival

TCGA clinical associations, GBM
primary tissues, and cell lines in vitro

Degrade, KD, or target
PI3K/Akt signaling [103]

PART1
Tumor suppression

and growth
inhibition

GBM tissues, cell lines in vitro, and
TCGA clinical associations

Rescue, stabilize, OE, or target
PI3K/Akt signaling [104]

LINC01446 Tumorigenesis and
progression

Clinical associations, GBM cell lines
in vitro and in xenograft

Degrade, KD, OE miR-489-3p, or
target TPT1 [105]

MNX1-AS1
Proliferation,

migration,
and invasion

GBM tissues and cell lines in vitro Degrade, KD, or OE miR-4443 [106]

DCST1-AS1 Proliferation Clinical associations, GBM primary
tissues and primary culture

Degrade, KD, OE miR-29b, saturate
with miR-mimetic [107]

AC016405.3
Suppression of

Proliferation and
Invasion

Clinical associations, GBM primary
tissues and cell lines in vitro

Rescue, stabilize, OE, sponging/KD
miR-19a-5p, or OE of TET2 [108]

HOTAIRM1
Proliferation,

invasion,
and survival

TCGA clinical associations, GBM
tissues, cell lines in vitro and in vivo

Degrade, KD, OE of G9a and EZH2,
or KD of HOXA1 [109,110]

HOXB13-AS1 Proliferation/cell
cycle progression

GBM tissues, cell lines in vitro and
in vivo

Degrade, KD, KD of DNMT3B,
OE of HOXB13 [111]

LINC00467 Proliferation
and invasion GBM cell lines (U87, LN229) in vitro Degrade, KD, target DNMT1, rescue

p53 activity/expression [112]

HIFiA-AS2 GSC maintenance GBM cell lines in vitro and in vivo Degrade, KD, target IGF2BP2, DHX9,
or HMGA1 [115]

H19
Proliferation,
invasion, and
angiogenesis

GBM cell lines (HEB, U87, A172,
U373) in vitro

Degrade, KD, OE miR-138, target
HIF-1α and VEGF [63]

LINC01494 Proliferation
and invasion

Clinical associations, GBM tissues,
and cell lines in vitro

Degrade, KD, OE miR-122-5p,
target CCNG1 [117]

ATB Invasion GBM cell lines (LN-18, U251) in vitro

Degrade, KD, target TGF-β, NF-κB
(pyrrolidinedi-thiocarbamate

ammonium), and
P38/MAPK (SB203580

[119]

GAS5
Inhibition of
proliferation,

invasion, survival

GBM cell lines (HEB, U251, U87)
in vitro Rescue, stabilize, OE, target GSTM3 [120]

Lnc-TALC
Promotes TMZ
resistance and

tumor recurrence

TMZ-selected GBM cell lines (LN229,
U251, 551W, HG7) in vitro

Degrade, KD, OE miR-20b-3p, target
c-Met, AKT/FOXO3, and MGMT [121]

MALAT1 TMZ resistance
and invasion

Clinical associations, GBM patient
tissue and serum, GBM cell lines
(U87) in vitro and in IC xenograft

Degrade, KD, ASC-J9®, target NF-κB,
or restore p53 activity/expression

[122,138,144,
145]

ADAMTs9-AS2 TMZ resistance Clinical associations, GBM cell lines
(T98G-R, U118-R) in vitro

Degrade, KD, targeting
FUS/MDM2 axis [123]

TP73-AS1
TMZ resistance
and metabolism

in GSCs

TCGA clinical associations, GSC lines
(G26, G7) in vitro Degrade, KD, targeting ALDH1A1 [124]

NCK1-AS1 TMZ resistance GBM patient primary tissue, GBM cell
lines (U251, A172) in vitro

Degrade, KD, OE of miR-137,
targeting TRIM24 [125]

HMMR-AS1

Tumorigenesis,
proliferation,

invasion,
radiation resistance

GBM cell lines (U87, U251,
A172, U118)

in vitro

Degrade, KD, target/disrupt HMMR
interaction, target ATM, RAD51, BMI1 [127]

TALNEC2 Tumorigenesis and
radiation resistance

TCGA clinical associations, GBM
primary tissue, GBM cell lines (A172,

U251, U87, T98G and LNZ308)
in vitro

Degrade, KD, target E2F1 [128]
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Table 1. Cont.

lncRNA Role Level of Evidence Therapeutic Strategy Reference

AHIF Invasion, survival,
radiation resistance

GBM cell lines (U87, U251,
A172, T98G)

in vitro
Degrade, KD [129]

PCAT1 Stemness, survival,
DNA repair GBM cell lines in vitro Degrade, KD, upregulate miR-129-5p,

target HMGB1 [130]

HOTAIR

Proliferation,
invasion, therapy

resistance,
chromatin

remodeling

Clinical associations, GBM patient
tissue/serum, cell lines in vitro and in

IC xenografts

Degrade, KD, AC1Q3QWB and
DZNep combinational therapy,

target EZH2
[137,148]

RPSAP52 Stemness and poor
patient prognosis

GBM primary tissue, clinical
associations, GBM cell lines (U-373

MG) in vitro
Degrade, KD, target TGF-β1 [141]

MATN1-AS1

Tumor suppressor,
suppresses

proliferation
and invasion

GBM primary tissue and cell lines
in vitro and in vivo

Rescue, stabilize, OE, target RELA,
ERK1/2, Bcl-2, survivin, or MMP-9 [143]

OE–over express, KD–knock-down, OS–overall survival, TCGA–The Cancer Genome Atlas, IC–intracranial,
GSC–glioma stem-like cells.

8. Conclusions

LncRNAs are versatile and prolific transcripts in normal biological activity as well as in aberrant
disease states. They can exist in many forms with a wide variety of functional capacities. Expression is
regulated in a cell-specific manner, as well as spatially and temporally. Despite their low abundance
levels, lncRNAs can have major impacts on cellular programs and phenotypes. LncRNAs exhibit roles
in all of the canonical hallmarks of cancer with potentials for conserved, pan-cancer activities that may
be targetable. These transcripts are particularly expressed in the CNS environment and naturally play
a multitude of roles in the most common primary brain malignancy, GBM. GBM remains an intractable,
incurable disease for which standard therapies have little effect. These molecules could represent a
novel class of biomarkers in GBM or even attractive therapeutic targets. A number of lncRNAs are
associated with tumorigeneses, stemness, invasion, and therapy resistance in glioma. We have just
begun to scratch the surface of the wide variety of roles of lncRNAs in glioma pathology, particularly in
therapy resistance. Further exploration of lncRNAs in glioma may revolutionize our understanding of
the disease and may result in novel therapeutic advances in what has up until now been a losing battle.
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