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Abstract: Polymer nanocomposites have attracted broad attention in the area of dielectric and energy
storage. However, the electrical and chemical performance mismatch between inorganic nanoparticles
and polymer leads to interfacial incompatibility. In this study, phosphonic acid molecules with
different functional ligands were introduced to the surface of BaTiO3 (BT) nanoparticles to tune their
surface properties and tailor the host–guest interaction between BT and poly(vinylideneflyoride-
co-hexafluroro propylene) (P(VDF-HFP)). The dielectric properties and electrical energy storage
capability of the nanocomposites were recorded by broadband dielectric spectroscopy and electric
displacement measurements, respectively. The influence of the ligand length and polarity on the
dielectric properties and electrical energy storage of the nanocomposites was documented. The
nanocomposite with 5 vol% 2,3,4,5,6-pentafluorobenzyl phosphonic acid (PFBPA)-modified BT had
the highest energy density of 12.8 J cm−3 at 400 MV m−1, i.e., a 187% enhancement in the electrical
energy storage capability over the pure P(VDF-HFP). This enhancement can be attributed to the strong
electron-withdrawing effect of the pentafluorobenzyl group of PFBPA, which changed the electronic
nature of the polymer–particle interface. On the other hand, PFBPA improves the compatibility
of the host–guest interface in the nanocomposites and decreases the electrical mismatch of the
interface. These results provide new insights into the design and preparation of high-performance
dielectric nanocomposites.

Keywords: phosphate-modified BaTiO3; nanocomposites; dielectric properties; breakdown strength;
energy storage capability

1. Introduction

Polymer dielectrics are widely applied in high energy storage devices and organic field-
effect transistors due to their advantages of low cost and easy processing [1–4]. However,
most commercial polymers, with a rather low dielectric constant and energy storage
density, cannot meet the requirements of modern energy storage devices [5–7]. Generally,
the energy density (U) of linear dielectrics can be expressed as U = 1/2kk0Eb

2, where k is
the dielectric constant, Eb is the maximum electric field that the dielectric can withstand
without breakdown, and k0 is the vacuum permittivity [8,9]. Obviously, the dielectric
constant and electric breakdown strength are two important parameters of the energy
storage of dielectric materials.

Ceramic materials such as BaTiO3 (BT) have a high k value but generally suffer from a
low breakdown strength and poor processability. Polymers usually have a high breakdown
strength and easy processing but a low k value. A simple method was proposed to embed
ceramic fillers as reinforcement materials into polymer matrices, utilizing the advantages
of both the ceramics and the polymers [1,10–13]. However, there are still some challenges
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to overcome in achieving a high electrical energy density in polymer nanocomposites.
For example, most nanoparticles have a high surface energy, which does not match the
polymer matrix [14,15]. The presence of nanoparticle aggregation causes electric field
distortion, resulting in a low breakdown strength of the nanocomposite films. In addition,
the electrical migrate pathway provided by the nanoparticles in the composite results in an
increase in the conduction loss. Recent studies have shown that there are three strategies
for the preparation of nanocomposites with a high k value and high breakdown strength:
(1) the construction of core-shell polymer@nanoparticle composite materials by in situ
polymerization of monomers on nanoparticle surfaces [11,16], for example, wrapping the
oxide film on the surface of Al particles, which can prevent electronic conduction between
the fillers [14]; (2) building sandwich-structured composite materials [17,18], such as a
boron nitride interlayer in a polymer film, which can inhibit electrical branches [8]; and (3)
surface modification of ceramic nanoparticles for nanocomposites [19]. Among them, the
surface modification technology provides a simple method for tuning the surface energy of
nanoparticles. For example, it was reported that H2O2-modified BT nanoparticle surfaces
were used to prepare PVDF-based composites. Because of the hydrogen bond interaction
between the F atom and the hydroxyl group, the movement of the PVDF chain is restricted;
thus, the nanocomposites have a low dielectric loss and a relatively stable high k value with
increasing frequency and temperature [20]. The modification of the BT nanoparticle surfaces
with molecules containing F generates a thin passivation layer with a high interfacial charge
to slow down electrons moving towards them, thus enhancing the breakdown strength [21].
However, if the modification is incomplete, the residual surfactant may cause a high
leakage current and increase the dielectric loss [6,7,22]. It was found that the formation of
chemical bonds between the phosphonic acid molecules and BT nanoparticle surface can
greatly reduce the surface energy of BT and improve the dispersion of BT in a polymer
matrix [23]. Several types of phosphonic acid molecules were utilized as modifiers while
only the modifier containing PO(OH)2 groups showed a high and robust interaction with
BT nanoparticles, yielding coverage of the particles. Experimentally, phosphonic-acid-
modified BT nanoparticles resulted in high k enhancement of the polymer (k ~ 37 at a
BT nanoparticle loading of 50 vol%). Unfortunately, the electrical energy storage density
was not efficiently increased because of the low dielectric strength [22–25]. In addition,
the influence of the ligand length and polarity of the phosphonic acid molecules on the
dielectric properties and electrical energy storage of nanocomposites was not documented
in detail.

In this work, the influence of the ligand length and polarity of the phosphonic acid
molecules on the dielectric and electrical energy storage properties of the poly(vinylidenefly
oride-co-hexafluroro propylene) (P(VDF-HFP)) nanocomposites was investigated. BT
nanoparticles were first modified with two types of phosphonic acid molecules with differ-
ent functional ligands, including non-polar alkyl and polar aryl groups. Then, the resulting
nanocomposites were prepared and characterized by broadband dielectric spectroscopy and
electric displacement measurements. The results show that the nanocomposites comprising
2,3,4,5,6-pentafluorobenzyl phosphonic-acid-modified BT and P(VDF-HFP) possessed the
highest dielectric constant, lowest dielectric loss, and highest discharged energy density.
This strategy provides new insight into the fabrication of high-performance dielectric
polymer nanocomposites via engineering of the surface of BT nanoparticles.

2. Results
2.1. Characterization of the Modified BT

Phosphonic acids containing six different functional groups were reacted with BT,
which is expected to form a single layer of coverage on the surface of the BT nanoparticles
(Figure 1). The TGA measurements (Figure S2) presented strong evidence for the successful
preparation of modified BT. A significant weight loss of the modified BT (3.6–4.3% when
heated above 550 ◦C) was observed in comparison with the pristine BT (1.1%). The calcu-
lated density of the phosphonic acid coverage was 4–17/nm2 provided that the density
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of BT was 6.08 g cm−3 and the BT nanoparticles were regarded as an ideal sphere with
a diameter of 100 nm, which is greater than the theoretical monolayer value (a factor of
1.2–1.6/nm2) [26]. This is because most of the BT nanoparticles have a diameter of less than
100 nm.
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trostatic potential maps of phosphonic acid modifiers obtained from DFT modeling. The red color
indicates negative charge, whereas the blue color indicates positive charge. (a) Binding mechanism
between phosphonic acid and BT. (b) Electrostatic potential maps of phosphonic acids.

A typical SEM image shown in Figure S3 presents the morphology of the modified BT.
In the figure, benefiting from the shielding shell, it is difficult to observe large aggregations
of BT nanoparticles in a wide vision and the pristine BT nanoparticles mainly retain a
nanoscale size. To investigate the effect of surface modification on the dielectric properties
of BT, the nanoparticles were pressed into a compacted disk using KBr, which is widely
used to prepare dick samples for IR spectroscopy measurements. Figure S4a–d shows
the frequency dependence of the dielectric properties of unmodified BT and modified
BT from 0.1 Hz to 1 MHz at room temperature. One can observe that compared with
the unmodified BT, the modified BT has a much lower dielectric constant and dielectric
loss tangent. On the other hand, both the dielectric constant and dielectric loss tangent
of the modified BT show a weak dependence on the frequency. The decrease in both the
dielectric constant and dielectric loss tangent should originate from the introduction of the
phosphonic acid monolayer, which not only removed the absorbed impurities (e.g., water,
ions) but also changed the surface chemistry, namely, from hydroxyl-group-terminated
surface to a phosphonic-acid-coated surface. In this case, the leakage currents and interfacial
polarization can be significantly suppressed, resulting in the corresponding weak frequency
dependence and lower values of both the dielectric constant and dielectric loss. All these
characteristics suggest the successful preparation of modified BT.

2.2. Dielectric Properties of Nanocomposite Films

Electrical mismatch between polymer matrices and inorganic nanofillers can lead to
severe electric field distortion and a significant decrease in the breakdown strength [27].
In this work, BT nanoparticles covered by phosphonic acid were facile prepared, and the
aforementioned test results show that the dielectric constant and dielectric loss of the BT
nanoparticles were simultaneously decreased. In this case, the electrical mismatch between
P(VDF-HFP) and modified BT should be suppressed, which may lead to improved dielec-
tric properties of the nanocomposite materials. Figure 2 shows the frequency dependence
of the dielectric constant and dielectric loss of the nanocomposite films with different
volume fractions of modified BT. As expected, the introduction of the BT nanoparticles
results in dielectric enhancement of P(VDF-HFP) because of the high dielectric constant
of BT. The dielectric constant of pristine P(VDF-HFP) is about 9.5 at 1 kHz [8] while
PFBPA@BT/P(VDF-HFP) shows a high dielectric constant of 24 at 20 vol% nanoparti-
cle loading.



Molecules 2022, 27, 7225 4 of 13

Molecules 2022, 27, x FOR PEER REVIEW 4 of 14 
 

 

while PFBPA@BT/P(VDF-HFP) shows a high dielectric constant of 24 at 20 vol% nanopar-
ticle loading. 

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60
 

D
ie

le
ct

ric
 C

on
st

an
t

Frequency/Hz

 5 vol %-HPA@BT
 5 vol %-NOPA@BT
 5 vol %-ODPA@BT

(a)

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60

D
ie

le
ct

ric
 C

on
st

an
t

(b)
 

Frequency/Hz

 5 vol %-BPA@BT
 5 vol %-FPMPA@BT
 5 vol %-PFBPA@BT

 

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60
 

D
ie

le
ct

ric
 C

on
st

an
t

Frequency/Hz

 10 vol %-HPA@BT
 10 vol %-NOPA@BT
 10 vol %-ODPA@BT

(c)

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60
 

Frequency/Hz

 10 vol %-BPA@BT
 10 vol %-FPMPA@BT
 10 vol %-PFBPA@BT

D
ie

le
ct

ric
 C

on
st

an
t

(d)

 

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60
 

D
ie

le
ct

ric
 C

on
st

an
t

Frequency/Hz

 15 vol %-HPA@BT
 15 vol %-NOPA@BT
 15 vol %-ODPA@BT

(e)

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60
 

Frequency/Hz

 15 vol %-BPA@BT
 15 vol %-FPMPA@BT
 15 vol %-PFBPA@BT

D
ie

le
ct

ric
 C

on
st

an
t

(f)

 

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60
 

D
ie

le
ct

ric
 C

on
sa

ta
nt

Frequency/Hz

 20 vol %-HPA@BT
 20 vol %-NOPA@BT
 20 vol %-ODPA@BT

(g)

100 101 102 103 104 105 106 107
0

10

20

30

40

50

60

Frequency/Hz

 20 vol %-BPA@BT
 20 vol %-FPMPA@BT
 20 vol %-PFBPA@BT

D
ie

le
ct

ric
 C

on
st

an
t

(h)

 
Figure 2. Frequency dependence of the dielectric constant of the P(VDF-HFP) nanocomposite films 
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Figure 2. Frequency dependence of the dielectric constant of the P(VDF-HFP) nanocomposite films
with different volume fractions of modified BT (a–h).

In order to understand the influence of surface modification on the dielectric con-
stant of P(VDF-HFP) nanocomposites in detail, the dielectric constant at 1000 Hz and the
dielectric strength (dispersion) (∆k = kl − kh, where kl and kh are the low- (0.1 Hz) and high-
frequency (1 × 107 Hz) limits of the real dielectric constant, respectively) are summarized
in Figure S3. One can observe that, for both types of modifiers, the dielectric constant of
the nanocomposites exhibits the same tendency at each nanoparticle loading. In the case of
alkyl phosphonic acids, the dielectric constant of the nanocomposites increases with the
length of the terminal alkyl chains of the phosphonic acids. For the phenyl phosphonic
acids, the dielectric constant of the nanocomposites increases with the length of the terminal
alkyl chains of the phosphonic acids. However, there is no apparent difference between
the effects of the two types of modifiers on the dielectric constant of the nanocomposites at
a relatively low loading (i.e., ≤15 vol%). At a high loading of 20 vol%, the fluorobenzyl
phosphonic acids result in a much higher dielectric constant in comparison with the others.

In the frequency range of 0.1 to 107 Hz and at room temperature, the dielectric dis-
persion of the dielectric polymer nanocomposites should mainly originate from interfacial
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and dipolar polarization while electrical conduction may contribute to it. Here, as shown
in Figure S3b, PFBPA@BT/P(VDF-HFP) always shows the highest dielectric dispersion
among the nanocomposites at each loading. However, at nanoparticle loadings lower than
10 vol%, all nanocomposites show low and comparable dielectric dispersion apart from
PFBPA@BT/P(VDF-HFP). Starting from 20 vol%, the phenyl-phosphonic-acid-modified BT
shows higher dielectric dispersion of the nanocomposites in comparison with the alkyl-
phosphonic-acid-modified BT, although the longer alkyl chains of phosphonic acids tend
to dielectric dispersion of the nanocomposites when the BT loading increases.

In the case of dielectric loss, as shown in Figure 3, the main difference appears at
low frequencies. At room temperature, the dielectric relaxation (loss) of hot-pressed
PVDF in high (about 106 to 107 Hz) and low frequencies (about 10 Hz) mainly originates
from the glass transition (β-relaxation, i.e., rearrangement of the segmental dipole of
amorphous regions) and αc-relaxation (i.e., molecular motions within the crystalline phase),
respectively [1,11].
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Figure 3 suggests that the nanocomposites show a high dielectric loss both in low-
frequency and high-frequency regions. For the P(VDF-HFP)-based nanocomposites, the
low-frequency and high-frequency dielectric losses are generated from the electrical con-
duction process, interfacial polarization, and amorphous segmental motion, respectively.
In the low-frequency region (0.1–100 Hz), as the modified BT increases from 5% to 15 vol%,
the dielectric loss of the nanocomposite films first decreases and then increases with the
modified BT increase to 20 vol% [24]. This is because in the low-frequency region, electrical
conduction and interfacial polarization play a dominant role in dielectric loss and the excess
of BT increases the leakage current, leading to a high dielectric loss. In the high-frequency
region (above 105 Hz), the dielectric losses of these nanocomposite films are slightly re-
duced or remain at the same level as the volume fractions of modified BT increase, and the
organic phosphonic acid monolayer shield shell of the BT nanoparticles shows a strong
interaction with the P(VDF-HFP) matrix, which limits the mobility of the macromolecular
chains, leading to a low dielectric loss.

The temperature-dependent dielectric spectra of the proposed nanocomposite films
were further investigated from 0 to 140 ◦C as shown in Figure 4. It can be observed that as
the temperature increases, the dielectric constant of the nanocomposite films increases. This
phenomenon can be attributed to the increasing movement of chain segments of P(VDF-
HFP), which results in a higher dielectric constant. However, the relationship between the
dielectric loss and temperature is more complicated. For instance, all the dielectric loss
curves in Figure 4 show a loss peak between −40 and −20 ◦C, which is closely related
to Tg of P(VDF-HFP) [28,29]. Another striking feature of these nanocomposite films is
the temperature sensitivity of the dielectric properties. It is noted that the nanocomposite
films with phenyl-containing BT have a higher temperature sensitivity than those with
alkyl-containing BT. On the one hand, the dielectric loss of the former remarkably increases
at 50 ◦C while the latter is around 100 ◦C. On the other hand, the dielectric constants of
BPA@BT/P(VDF-HFP), FPMPA@BT/P(VDF-HFP), and PFBPA@BT/P(VDF-HFP) increase
by 219%, 206%, and 335% as the temperature increases from −50 to 140 ◦C, respectively;
while, the dielectric constants of HPA@BT/P(VDF-HFP), NOPA@BT/P(VDF-HFP), and
ODPA@BT/P(VDF-HFP) only increases by 180%, 210%, and 166%, respectively. This phe-
nomenon can be explained by the existence of the electron-withdrawing F atom changing
the polarity of the nanoparticle surface, enhancing the interfacial polarization and resulting
in a high dielectric constant. However, the dielectric constant of the nanocomposite films
is opposite to that of the modified BT, indicating that the BT particles containing the long
alkyl chain or fluorinated aromatic rings have a better incorporation with P(VDF-HFP) [27].
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Figure 4. Temperature-dependent dielectric spectra of representative 10 vol% loading nanocomposite
films (a,b).

To further understand the effect of the molecular interaction between the fillers and
the polymer matrix at the interface, the temperature- and frequency-dependent imaginary
parts of the electrical modulus (M′′) are provided in Figure 5a. Two peaks can clearly
be observed, which are assigned to the relaxation of chain segments in the amorphous
phase (in the low-temperature and high-frequency regions) and interfacial polarization (in
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the high-temperature and low-frequency range), respectively. Obviously, under the same
filler loading, the interfacial polarization peak of FPMPA@BT/P(VDF-HFP) is weaker than
that of the other five nanocomposites, demonstrating that the strong molecular interaction
significantly improves the compatibility of the two components and effectively suppresses
the high polarization hysteresis loss caused by interface polarization. The activation energy
(Ea) in the interfacial area can be calculated by the following Arrhenius plot [4,18]:

ln fmax = ln f0 −
Ea

KT
(1)

where f max denotes the peak frequency of M′′ under a certain temperature (T), f 0 is the
pre-exponential factor, and K is the Boltzmann constant. As shown in Figure 5b, Ea of
FPMPA@BT/P(VDF-HFP) is the highest among the six nanocomposites, indicating that
the molecular interaction can increase the energy of the space charge migration from the
interface to other regions, thereby enhancing the dielectric strength.
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2.3. Breakdown Electric Field

Figure 6 shows the Weibull plots for the breakdown strength of the six types of
nanocomposite films, which all exhibit a decreased breakdown strength with the increase
in the BT loading. This is consistent with the theoretical calculation [29]. The decreased
breakdown strength is mainly attributed to the large electrical mismatch between BT and
P(VDF-HFP), which results in large electric field distortion in the filler/matrix interface.
It was also found that in the nanocomposites, the breakdown strength is closely associ-
ated with the surface chemistry of the BT nanoparticles. At a given BT loading level, the
nanocomposite films with aryl-group-functionalized BT nanoparticles have a much higher
breakdown strength in comparison with those with alkyl-group-functionalized nanoparti-
cles. In the case of alkyl group functionalization, the longer alkyl chain results in a higher
breakdown strength of the nanocomposites. For the aryl group functionalization, the fluori-
nated aromatic rings tend to result in a higher breakdown strength in the nanocomposites.
In addition, the breakdown strength of PFBPA@BT/P(VDF-HFP) is higher in comparison
with FPBPA@BT/P(VDF-HFP). For all the nanocomposites, PFBPA@BT/P(VDF-HFP) has
the highest breakdown strength at a given BT loading level.
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Figure 6. Weibull plots for the breakdown strength of the P(VDF-HFP) nanocomposites with different
volume fractions of functionalized BT nanoparticles (a–f).

β represents the scatter of the breakdown strength data and can be calculated from
the slope of the linear fitting curves. In the case of alkyl group functionalization, the β

values of the nanocomposites are mainly in the range of 10 to 20, and there is no correlation
between the BT loading/surface chemistry and the β values. For the aryl group functional-
ization, the β values of nonfluorinated aryl (i.e., BPA) functionalized BT nanocomposites
are also low and there is no correlation between the BPA@BT loading and the β values.
However, in the case of the fluorinated aryl-functionalized BT, the nanocomposites exhibit
much higher β values and β increases with the BT loading level. Among the nanocompos-
ites, PFBPA@BT/P(VDF-HFP) shows the highest β value of 174.7 at 20 vol% BT loading,
suggesting a highly homogeneous microstructure of the nanocomposites.

2.4. Electrical Energy Storage

In addition to the energy density, the charge-discharge efficiency (η) is another im-
portant parameter for dielectric materials, which is calculated by the following equation:
U =

∫
EdD [30], where E and D are the electric field and electric displacement, respectively.

The total energy density and discharged energy density of nanocomposite films were calcu-
lated by the D–E loop curves. Figure 7 displays the total energy density and discharged
energy density of HPA@BT/P(VDF-HFP), NOPA@BT/P(VDF-HFP), ODPA@BT/P(VDF-
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HFP), BPA@BT/P(VDF-HFP), FPMPA@BT/P(VDF-HFP), and PFBPA@BT/P(VDF-HFP)
with different volume fractions of modified BT, respectively. It can be seen that as the
content of modified BT increases from 5 to 20 vol%, the stored energy density of the six
samples does not exhibit much improvement because of the inferior breakdown strength,
which may be attributed to the electrical conduction nature of BT [31–33]. For instance,
Us and Ur of 5 vol%-HPA@BT/P(VDF-HFP) are 4.4 and 2.5 J cm−3 and the calculated η

is 57%. When the volume fraction of the modified BT increases to 20 vol%, Us and Ur
decrease to 3.8 and 2.0 J cm−3. Notably, under the four different contents of modified BT,
nanocomposite PFBPA@BT/P(VDF-HFP) exhibits a higher Us and Ur than the other five
nanocomposites. For example, under 5 vol%, PFBPA@BT/P(VDF-HFP) exhibits Us of about
12.8 J cm−3 and Ur of 7.7 J cm−3, which might be ascribed to the suppressed dielectric loss
and superior breakdown strength as discussed before. With an increase in the content of
PFBPA@BT, Us of the nanocomposite shows a slight vibration but Ur a gradually decreases
4.3 J cm−3 when the volume fraction reaches 20%. This is mainly ascribed to the decrease
in η from 60% to 33%. These results suggest that nanocomposites with a high content of
BT are not suitable for high-performance dielectric materials. In addition, PFBPA is more
effective in improving the energy storage performance of nanocomposites than the other
five phosphonic acids.
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Figure 7. Total energy density and discharged energy density of nanocomposite films with different
volume fractions of modified BTs: (a) 5 vol%, (b) 10 vol%, (c) 15 vol% and (d) 20 vol%.

3. Materials and Methods
3.1. Materials

Commercial tetragonal-phase BT particles with an average diameter of 100 nm were
purchased from Shandong Sinocera Functional Material Company, China. Benzylphospho-
nic acid (BPA), [(4-fluorophenyl)methyl]-phosphonic acid (FPMPA), 2,3,4,5,6-pentafluoro
benzyl phosphonic acid (PFBPA), n-octylphosphonic acid (NOPA), hexylphosphonic acid
(HPA), and octadecylphosphonic acid (ODPA) were purchased from Sigma-Aldrich. P(VDF-
HFP) was supplied by SOLVAY. DMF was purchased from Sinopharm Chemical Reagent.
Ethanol was bought from Tansoole (China) and used as received.

3.2. Methods

Thermogravimetric analysis (TGA) was carried out by a NETZSCH TG209 F3 (Germany)
instrument with a heating rate of 20 ◦C min−1 from 30 to 800 ◦C under nitrogen flow. The
morphology of the modified BT was characterized by a Nova NanoSEM scanning electron
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microscope (SEM, PEI Company, Boulder, CO, USA). Firstly, the modified BT samples
were dispersed in ethanol by ultrasonication. Then, the mixtures were cast onto silicon
plates and dried in an oven at 40 ◦C for 8 h. Finally, all the samples were recorded by SEM
before being sputter-coated with a gold layer to avoid the accumulation of charges. The
dielectric properties of the modified BT and nanocomposite films were measured using a
Novocontrol Alpha-N high-resolution dielectric analyzer (GmbH Concept 40) from 10−1

to 106 Hz at various temperatures (−50 to 140 ◦C). Gold electrodes were evaporated on
the front and rear surfaces of the samples. The breakdown strength of the nanocomposite
films was recorded by a DC voltage strength tester (Shanghai Lanpotronics Co., Shanghai,
China) under a rate of 200 V s−1. Every sample was tested with 12 different plots for the
Weibull statistical distribution analysis. The Weibull statistical distribution in the case of
the ramp voltage test can be written as following equation:

P(E) = 1− exp

[
−( E

E0
)

β
]

where E is the experimental breakdown strength; P is the cumulative probability of electri-
cal failure; β is the shape parameter, which is related to the scatter of the data; and E0 is the
characteristic breakdown strength, which represents the breakdown strength at the cumu-
lative failure probability of 63.2%, which is often used to compare the breakdown strength
of various samples. Commonly, this parameter is used to compare differences in the break-
down strength among specimens. A simpler approximation for the most likely probability
of failure is recommended by the IEEE 930-2004 standard as the following equation:

Pi =
i− 0.44
n + 0.25

× 100%

where i is the i-th result when the values of E are sorted in ascending order and n is the
corresponding number of samples; in our study, n = 12.

The electrical energy storage capability of the nanocomposite films was evaluated by
electric displacement–electric field (D–E) loops, which were recorded using a Precision Pre-
mier II ferroelectric polarization tester (Radiant, Inc.) at room temperature. The thickness
of the nanocomposite films was around 15 µm. The energy densities (Ue) were extracted
from the D–E loops based on the following equation:

Uθ =
∫

EdD

where E and D are the electric field and electric displacement, respectively.
Based on the results of the D–E loops, the charge-discharge efficiency (η) was calculated

by the following equation:

η =
Ur

Us
= 1− Ul

Us

where Us is the stored energy density, Ur is the released energy density, and Ul is the loss
energy density, respectively.

4. Conclusions

We have prepared a series of phosphonic-acid-modified BT nanoparticles, which were
used to prepare P(VDF-HFP)-based nanocomposite films. The surface properties of the BT
nanoparticles and the interfacial adhesion between the nanoparticles and polymer matrix
were improved by tuning the surface energy of the BT nanoparticles via different phospho-
nic acid pendants. It was found that the polarity ligands of the phosphonic acids played
a more significant role in enhancing the dielectric properties and energy storage capacity.
The dielectric constant of P(VDF-HFP) was significantly enhanced after the introduction
of modified BT nanoparticles. Specifically, 20 vol%-PFBPA@BT/P(VDF-HFP) showed
the highest dielectric constant of about 24, which is about 3 times higher than pristine
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P(VDF-HFP). Meanwhile, the nanocomposite with PFBPA exhibited a superior energy
storage performance compared to the other five nanocomposites. For instance, 5 vol%-
PFBPA@BT/P(VDF-HFP) exhibited Ue of 7.7 J cm−3 while Ue of the other five nanocompos-
ites was lower than 5 J cm−3. These results indicate that among the six phosphonic acids,
PFBPA is more suitable for the modification of BT to fabricate high-performance energy
storage nanocomposites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217225/s1, Figure S1: The FT-IR spectra of HPA-
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