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Layered feedback is an optimization strategy in feedback control designs
widely used in engineering. Control theory suggests that layering multiple
feedbacks could overcome the robustness-speed performance trade-off limit.

In natural biological networks, genes are often regulated in layers to adapt to
environmental perturbations. It is hypothesized layering architecture could
also overcome the robustness-speed performance trade-off in genetic net-
works. In this work, we validate this hypothesis with a synthetic biomolecular
network in living E. coli cells. We start with system dynamics analysis using
models of various complexities to guide the design of a layered control
architecture in living cells. Experimentally, we interrogate system dynamics
under three groups of perturbations. We consistently observe that the layered
control improves system performance in the robustness-speed domain. This
work confirms that layered control could be adopted in synthetic biomole-
cular networks for performance optimization. It also provides insights into
understanding genetic feedback control architectures in nature.

Two of the major goals of synthetic biology are to engineer biological
systems to perform desired tasks and to understand biomolecular
networks by building them. These two goals are both very ambitious;
fortunately, their advancements are strongly coupled. By building and
studying synthetic systems, we gain insights into the natural networks;
with a deeper understanding of how natural genetic networks allow life
to persevere through constant adversity, we develop stronger theo-
retical principles to guide synthetic network design. Like many other
systems humans have engineered, feedback controls are essential
components of a reliable synthetic biological system. Over the past
two decades, the synthetic biology toolbox of characterized genetic
components, modules, and motifs has been expanding exponentially'.
As the complexity of synthetic circuits grows, its interplay with control
theory becomes more prominent. A significant amount of work has
already shown that applying feedback controls improves the relia-
bility, efficiency, and performances of synthetic biological systems”®,
Feedback control provides correcting actions based on the difference
between desired and actual performance®', therefore it buffers sys-
tems from external disturbances and variations of components within

the system. However, feedback can also destabilize the system when
improperly designed'. Feedback design is especially challenging in
biological systems due to its complexity — all molecular species are
part of an extensive endogenous network that consists of numerous
feedback mechanisms.

In nature, biology has developed remarkably sophisticated stra-
tegies to apply feedback controls to biomolecular and physiological
networks. Interestingly, layering and redundancy appears to be a
common style in these feedback architectures. For instance, bacteria
cells layer a positive control to move towards nutrients and a negative
control to move away from toxins through chemotaxis signaling''%.
During a heat shock, the endogenous control in bacteria maintains the
amount of heat shock proteins with a multi-layer control strategy via
translation, chaperone interaction, and protein degradation®. At the
physiological level, the human body maintains a relatively constant
glucose level in the bloodstream through insulin, the production of
which s regulated through the interplay of the pancreas with the brain,
liver, gut, as well as adipose and muscle tissues'. It has also been
discovered that the sleep and arousal states of animals are controlled
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with a layered architecture®. Control theorists found that layering is a
powerful optimization method for feedback control design'. This is
because the performance of feedback controls is often bound by hard
limits. A system that is optimized for one type of disturbance is typi-
cally fragile to other types of disturbance'®”. These constraints could
be manifested as the robustness-efficiency trade-off', the speed-
accuracy trade-off®?, and the speed-robustness trade-off?’. Previous
theoretical work also suggests that in both natural and engineered
systems, if multiple control modules of various performance profiles
are layered together, this hard limit could be overcome*?,

In this work, we set to investigate the robustness-speed perfor-
mance trade-off of biomolecular feedback control and the effects of
layered architecture. Here we define speed by the inverse of settling
time and robustness by the inverse of peak disturbance of a system
when subjected to an impulse or step perturbation. To simplify the
problem, we forward engineer layered feedback control in living E. coli
to study the dynamical performance of this architecture in a biomo-
lecular context. We first start with a node-based design of two layers of
feedback (Fig. 1b) and a minimal model of three species (Egs. (1)-(3)).
By performing system analysis on the linearized state space model, we
observe the robustness-speed trade-off on the two single-layer
designs, where one appears to be robust but slow while the other is
fast but fragile. Meanwhile, we see a clear integration of these two
traits in the layered feedback system. Subsequently, we expand this
design into a generic biomolecular model that describes the coarse-
grained dynamics of a biomolecular feedback system. With simulation,
we also observe that for all four sets of the proposed designs, the two
single-layer feedbacks are bound by the robustness-speed trade-off
limit, while the layered feedback design overcomes it. Based on the
simulated result, we choose the best performing layered feedback
design and construct it in E. coli. Finally, we present six sets of dyna-
mical perturbation experiments, with chemical, temperature, and
nutrient disturbances, each on two directions. We show the layered
control design improves system performances by integrating the
response profiles of the single-layer controllers. This result applies
layered feedback control in a biomolecular network and validates a key
hypothesis of layered control theory. In addition to providing a vali-
dated optimization strategy to genetic network engineering, we hope
the insights it provides will improve our understanding of natural
dynamical systems in biology.

Results

Robustness-speed trade-off analysis with a node-based design
First, to simplify the problem, we proposed a layered negative feed-
back control architecture with a node-based design for system analy-
sis. As shown in Fig. 1a, we defined two nodes, A and B, where B is the
observable output of the system that is activated by A. Species R is a
byproduct of species B that negatively regulates the expression of B
and itself through two possible routes: cis feedback (R represses B) and
trans feedback (R represses A). The activation and repression here are
estimated with first-order Hill functions:
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For the open l0oop, f.is=firans=1; for the cis only feedback, f;, = K—:ﬁ "

fuans=1; for the trans only feedback, f,,qs= %, fus=1; for the
layered feedback, f ;s =f crans = 7. iz Both A and B were assumed to be

protein species, while R could be either protein or regulatory RNA. In
the ODEs, 4, Bz and fg denote the expression rate of A, R, and B,
respectively. Here, we set 8, =1, Sz = Br = 5. The constant K, defines the
activation coefficient of A, and K defines the repression coefficient of
R. Both species A and B degrade at the same rate d, while R degrades at
rate dr. We defined that if R is a protein species, then dg=d, if R is an
RNA species, then dr =10 - d for faster degradation. To ensure that the
protein and the RNA regulator have compatible regulating effective-
ness, we constrained the product of K- dg to be constant (i.e. for an
RNA regulator Kr=10,dr=0.3, and for a protein regulator Kz =100,
dr=0.03). Here we defined the output as species B. The input was
defined as y, a unitless scalar that impacts the expression rate of all
three species (B4, Br, and Sp). Input y is also the disturbance source of
interest and was initially set to 1. Our analysis in the rest of this work
focuses on four designs: open loop, the cis feedback, the trans feed-
back, and the layered feedback.

In Fig. 1c, we obtained the system’s Bode plot gain curve to
describe the design’s system dynamics. A Bode plot is a common tool
used in control theory to visualize a linear system’s dynamics in respect
to the input’s frequency™. Since all four systems are nonlinear, we
linearized them at their equilibrium points before converting them to
the frequency domain (see Methods). In this plot, the x-axis represents
the input frequency in rad/min, and the y-axis represents the output/
input magnitude, which has a unit of nM. When the input frequency is
low, this could be understood as a long-lasting impulse perturbation to
the universal species production scalar y. When the input frequency is
high, the input signal oscillates rapidly, and the output response to the
disturbances diminishes. In this figure, we observed that all three types
of feedback attenuate disturbances at low input frequency. In which,
the cis feedback (red) has a stronger attenuation effect than the trans
feedback (yellow), and the layered feedback shows the strongest
attenuation effect (purple). As the input frequency increases, the trans
feedback loses its disturbance attenuation property compared to the
open loop. However, the cis feedback control remains more robust
than the open loop in the entire frequency span. We also observed that
there is only a slight advantage for a protein regulator (dashed lines)
relative to an RNA regulator (solid lines) at intermediate input fre-
quencies. Additionally, the output magnitudes of the two proposed
architectures (R as an RNA regulator and R as a protein regulator) when
responding to low frequency disturbances are indistinguishable.

To investigate the impact of species R on the system dynamics, we
analyzed the peak disturbance and settling time of each system under
both step and impulse perturbations, with a 10 x 10 parameter space
that defines the property of regulator R. In Fig. 1d, e, we showed the
step response analysis of the four systems. A large K (y-axis) models a
weak regulator, and a large di (x-axis) models a fast-degrading reg-
ulator. RNA species usually degrade faster than protein species. We
found that over a wide parameter space, the cis feedback attenuates
disturbances at low frequency better than the trans feedback, while the
layered feedback shows the most attenuation. In each feedback
design, regulators with strong repressive strength and a slow degra-
dation rate achieve the most disturbance attenuation (Fig. 1d upper
panel). In the lower panel of Fig. 1d, we plotted the settling time of each
construct in the same two-dimensional parameter space Ky (y-axis) and
dr (x-axis). The system performance in this parameter scan is also
demonstrated in the robustness and speed dimensions, as shown in
Fig. le. The combination of Fig. 1d, e showed that, under a step per-
turbation, the cis feedback shows a strong attenuation of disturbance
yet takes longer to settle to equilibrium; the trans feedback settles
faster but attenuates the disturbances less effectively. To study the
systems’ performance with a high-frequency perturbation, we also
analyzed the impulse response of these four designs in the same
parameter space, as shown in Supplementary Fig. 3 and Fig. 1f. The
analysis showed a similar pattern in the speed-robustness dimension,
with the trans feedback demonstrating no attenuation effect, which is
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Fig. 1| Performance analysis of the layered feedback controller using a line-
arized state space model. a Schematics of the node-based system. Here A and B
are two molecular species, where A activates the expression of B and R. Functioning
as a regulator, R regulates species B directly through the cis feedback on B and
indirectly through the trans feedback on A. When both types of feedback exist in
the same system, the configuration is termed layered feedback. b An illustration of
the robustness-speed trade-off limit of feedback control. With a given set of
parameters that define R, if one type of feedback is fast and fragile and another type
of feedback is robust and slow, then layering these two feedbacks together could
overcome the robustness-speed trade-off limit bound by either of these two
feedbacks alone. ¢ Response magnitude with production disturbance at different
frequencies. This plot shows the magnitude response of species B (y-axis) when all

Settling Time (Min)

three species’ production rates are subjected to a perturbation (on y) at different
frequencies (x-axis). d Peak Disturbance and settling time on a step response in a
two-dimensional parameter space defined by K and dg. The top panel shows the
output peak disturbance when all three species’ production rates are subjected to a
step perturbation on y. The bottom panel shows the time it takes for the systems to
settle to a new equilibrium after the perturbation. The y-axis (Kz) represents the
repression constant of regulator R; a large Kr models a regulator with weak
repression strength. The x-axis (dr) represents the degradation rate of regulator R.
e The four designs' step response performance evaluated in robustness and speed
in a 10 x 10 parameter space. f The four designs' impulse response performance
evaluated in robustness and speed in a 10 x 10 parameter space. Its corresponding
heat maps are included in Supplementary Fig.3.

consistent with what we learned from Fig. 1c. These results indicate
that the two single-layer feedback controls are bound by a speed-
robustness trade-off limit with a given regulator property, and layering
could overcome that limit. Specifically, the trans feedback is faster but
less robust; the cis feedback is slower but more robust. The layered

feedback, on the other hand, appears to overcome this trade-off and
achieve a better performance in the speed-robustness dimension in
the same parameter space. Unsurprisingly, the performance of single-
layer designs can be improved by reducing both parameters K and dp,
which renders the desired regulator both strongly repressive and slow-
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Fig. 2 | Robustness-speed trade-off analysis on generic biomolecular config-
urations. a The four possible biomolecular configurations and their simulated
performance evaluated in robustness and speed with regulator parameter tuning.
The four architectures are converted from the node-based design in Fig. 1a, with the
regulator species being either SRNA or protein. In all cases, gene regulations hap-
pen at the transcriptional level. Each dot in the robustness-speed plots was com-
puted by analyzing the simulated system dynamics with a 2-hour transcriptional
perturbation at equilibrium. b The robustness-speed performance analysis of nine
configurations. The x-axis represents the speed metric measured in settling time;
the y-axis represents the robustness metric measured in absolute disturbance peak.
The plot is generated from simulated dynamics by a 25% randomization on all
model parameters. The simulated dynamics are shown in Supplementary Fig.4.

degrading. However, most transcriptional regulators found in nature
are bound by the trade-off between binding affinity Kz and degrada-
tion rate dy. For instance, an antisense RNA can regulate transcription
through RNA-RNA binding, which is highly repressive since this

Table 1| Generic Biomolecular Model Species

Species  Description

Mindg the mRNA of signaling protein P,q

Ping the signaling protein translated peptides

Cind the signaling complex, with folded signaling protein bound with
inducer molecules
the regulator sRNA repressor

P the regulator protein repressor

Mg the GOl mRNA transcript

G the translated GOI peptides

G, the mature GOI (observable)

regulation is often irreversible, but these RNA regulators are fast-
degrading”?*. On the other hand, protein regulators degrade much
slower, but their binding to DNA is often reversible. Hence, this trade-
off raises a new design question: how do we choose the regulator R?

Robustness-speed trade-off analysis with generic biomolecular
configurations
To actuate the node-based design in the biomolecular context, we
proposed four possible designs (Fig. 2a) with the regulator species
being either R (regulatory small RNA, or sRNA) or P (regulatory pro-
tein). As shown in Fig. 2a, the system is induced with small molecule x,
which activates the transcription of protein P;,q. Protein P;,q sequen-
tially activates the gene of interest (GOI) cassette, which contains gene
GOlI, R, and/or P. The four illustrations in Fig. 2a represent the four
designs of layered feedback: (1) SRNA mediated cis feedback layered
with protein mediated trans feedback, (2) SRNA mediated cis feedback
layered with sSRNA mediated trans feedback, (3) protein mediated cis
feedback layered with SRNA mediated trans feedback, and (4) protein
mediated cis feedback layered with protein mediated trans feedback.
Next, we interrogated the performance of these four designs in
simulation with low frequency pulse disturbances. The dynamics of
these systems are described with the reduced differential equations in
Eqgs. (4)-(11). The detailed species and parameters involved in this
model are listed in Tables 1 and 2, respectively. The parameters were
estimated based on previous parameterization work® or calculated
with values obtained from BioNumbers® (see Sl). It is worth noting that
we purposefully chose the degradation rates (d,, d) and repression
coefficients for regulatory RNA R and regulatory protein P (Kg, K,,) to
simulate the same effective repressive strength for fair comparison.
The regulatory RNA was simulated to have strong binding affinity
(small Kg) but is quickly degraded (large d,); the regulatory protein was
simulated to have weak binding affinity (large K,) but is slowly
degraded (small d).
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Table 2 | Generic Biomolecular Model Parameters

Parameters Description Unit Estimates
Ba max transcription rate of the inducible fM/min 2
promoter Py
Ky activation coefficient of the chemical nM 1.4e4
inducer x
Kr repression coefficient of the sRNA fM 20
repressor
Ko repression coefficient of the protein fM 200
repressor
dm degradation/dilution rate of mRNA 1/min 0.1
kip translation rate of the inducing protein P;,q  1/min 0.1
d degradation/dilution rate of proteins, 1/min 0.03
dominated by dilution
Ky the maturation rate of the activating 1/min 0.1
complex
Bs max transcription rate of the C;,yinducible fM/min 20
promoter
King activation coefficient of C;ng nM 200
d, degradation/dilution rate of SRNA 1/min 0.3
a maturation rate of GOI 1/min 0.2
X the chemical inducer that activates P, nM 2.0e6
keg translation rate of GOI 1/min 0.1
fex scaling factor of universal transcription NA 1
fu scaling factor of universal translation NA 1
ke translation rate of the regulator protein 1/min 0.04
d5r degradation/dilution rate of regulator pro-  1/min 0.03
teins, dominated by dilution
dp
E:ftl'ktr'MG_dpr'P (9)
dG
E=ft,~ktg~MG—a~G—d-G (10)
dG,,
n _g.6-d.G a1
dt m

If transcription is regulated by a protein species, the Hill function
iswrittenas f;;, = Kfﬁ 5 If transcription is regulated by a SRNA species,
the Hill function is written as f;;,;, = Kf’jR. For the open loop, fus=
Serans=1. For the trans only feedback, fus=1and f,qns =f i, if medi-
ated by a protein species; f;4ns =f i, » if mediated by a SRNA species.
For the cis feedback, fyrans=1 and f i =f iy, , if mediated by a protein
species; f ;s =f i, if mediated by a sSRNA species. For the layered
feedbacks, the four possible combinations are: (1) R cis R trans,
fcis :inllR(ftrans :inllR; (2)RcisP transrfcis :inllR(f[rans :inllP; 3P
cis R trans, f cis =f Hill, | trans =f Hillg? 4) P cis P
transrfcis :inIIP (ftrans :inI[P'

We simulated the system dynamics of all four sets of designs (each
with open, cis, trans, and layered feedback) and scaled individual tra-
jectories by their equilibrium values to allow fair comparison. We gave
the universal transcriptional rate scalar f,, a 25% impulse drop for
120 min at equilibrium. Then we analyzed the simulated dynamical
profile to determine the system’s robustness and speed by identifying
its absolute disturbance peak and settling time. In Fig. 2a, we scanned
the parameter space for both the RNA and protein regulators. The
model used for simulation is listed in Egs. 4 to 11. The parameter search
covers a 5 x 5 space on the binding affinity and degradation rate of the
regulators while all other parameters are held constant, as shown in

Table 2. Specifically, we search R with K¢ ranging from 20 fM to 100 fM
and d, ranging from 0.06/min to 0.3/min; then we searched P with K},
ranged from 40 fM to 200 fM and dp,, ranging from 0.03/min to 0.15/
min. We observed a similar pattern as the parameter scan with the
linearized state space model, as shown in Fig. 1. In comparison, the
trans feedback is faster but more fragile, the cis feedback is slower but
more robust. Additionally, tuning the regulators does improve the
performance of the two single-layer designs, but layering appears to
reach further into the optimal performance space of robustness
and speed.

Finally, for each of the nine configurations, we used six sets of
parameters to simulate six dynamical profiles in response to perturba-
tions. These parameter sets were randomized within a 25% perturbation
on the full parameter set listed in Table 2 to emulate biological uncer-
tainties. The settling times and the absolute disturbance peak of each
simulation were recorded in the robustness-speed performance plot in
Fig. 2b. Here, we also observed a similar performance pattern as the
results shown in Figs. 1 and 2a. To move forward, we chose the design
with sRNA-mediated cis feedback and protein-mediated trans feedback
to proceed to the experimental portion of the work. Because in addition
to demonstrating superior robustness-speed performance, it also
diversifies the architecture with both protein and RNA regulators.

Experimental implementation of a layered feedback control in

living E. coli cells

We designed four genetic constructs to test and experimentally ana-
lyze the layered feedback design we proposed based on the simulated
results in Fig. 2b. We aimed to compare the dynamical performances of
the open loop, the cis feedback, the trans feedback, and the layered
feedback. With the effect of genetic context in mind?, we designed the
four constructs with the same configuration. As shown in Fig. 3a, the
system is composed of two cassettes expressed on two plasmids. The
combinatorial promoter Pguy;qc0”° drives the expression of CinR on a
medium copy p15A backbone; promoter P, drives another cassette
containing sRNA repressor pair (AS and Att)**, sfYFP, and Lacl
expressed on a high copy ColE1 backbone. The system is activated by
the induction of a combinatorial promoter Pgrpuyrqco With an AHL
inducer Rhl. The promoter then allows the expression of protein CinR,
which subsequently binds to an AHL inducer Cin in growth medium to
activate promoter P.;,. The promoter P, controls the transcript that
contains sRNA regulating pair AS and Att, the observable system out-
put sfYFP, and the protein regulator Lacl. In this configuration, SRNA
repressor AS regulates the expression of sfYFP via the cis feedback, and
Lacl represses Prpyiaco to regulate the expression of CinR through the
trans feedback. To avoid genetic context change and metabolic load
variation, we created mutated regulator pieces to disable feedbacks
without changing the genetic context. Specifically, we paired AS with
its orthogonal attenuator Att(M)* to disable the cis feedback, and we
built Lacl(M) off Lacl with the LacO binding site sequence removed to
disable the trans feedback. The construction of these four genetic
networks is a non-trivial task. It involves one combinatorial regulation,
one activation cascade, and two nested autoregulatory motifs. Exten-
sive part-characterization and expression optimization is required to
confirm the networks” proper dynamical properties.

To characterize all the parts and confirm their functionalities, we
started with the promoter Pgpyqc0- Because Lacl was designed as a
regulatory part of the construct, we chose strain JS006*° for its ALacl
genotype and integrated a constitutively expressed RhIR into its gen-
ome. We characterized the promoter Pgpy;qc0 in this RhIR containing
JS006 strain with 200 puM Rhl induction (Fig. 3b). The test confirmed
that the combinatorial promoter has sufficient fold induction with
about 5% leaky expression. Then, we tested the sSRNA mediated cis
feedback with AS-Att pair and AS-Att(M) pair. We confirmed that the
AS-Att(M) pair functions as an appropriate control for the cis feedback,
as the dynamics of the two constructs are consistent with previous

Nature Communications | (2022)13:5393



Article

https://doi.org/10.1038/s41467-022-33058-6

@}
2 9 °©° @
o0 /-)
PrnisLaco i [
ar S styFP{ECI)
open loop
@}
9 . ®
o0 /-)
Panisiaco _ P, [
[IINY) At‘l(M)IlASIlI] Lacl

I Trans |

trans feedback only

g sfYFP
genome -
cis
Povco i sIYFP

integrated

open  Po, ST siyFP:

P [
o ST SFP):

SN
PrnisLaco /—) P =

cis feedback only

‘At o/AS| o BT 0 Gy

(@]
5, %@
Paniaco /_)PC,,? I
i S UCalaa1wE
T Trans Tﬂ'

layered feedback

d P
Lacl Prvio P2
act oI Ati(M) DAS] Lacl |1
P P [V
Lacl (M) P o PATE(V) o AS) o eI o
Pos Ctrl P

b c
hi/L:

n=3 = =t

n=3 2.5k
1 - [ (O No Induction 10k - ]
g 10k (¥ aa @ +Rnl . 3 == Crl F 2.0k
A : z z E
5 : : : 5 5 3
EE s g 156
A & 5k s
o . ... a =] .
8 5k 8 g 1.0k
E — - B
1 e T 500
il 0 E
o

P, Rhi/LacO

P con P, Rhl

e
Peon ﬁ Pein ﬁ
Pos Ctrl mn Att(M) 0 AS BERGEZ 1 Lacl(M)
Pro P
RBS Screen " N on [V
o CinR ) SO stYFPIEEI00)

n=3

(O No Induction
| @ +Cinonly

@© +Rhlonly
@ +Cin+Rhl

FL/OD (arb. units)

Clone C9

Pos CTRL Clone D8

Fig. 3 | Experimental construction of the layered feedback control in E. coli.
a The four genetic constructs designed for experimental construction of the open
loop, the cis feedback, the trans feedback, and the layered feedback. b Part-
characterization of the combinatorial promoter Pgpy;qc0 ON its activation function.
The signal output of Prpyraco upon Rhl induction, compared with the constitutive
promoter P.,, and the Rhl-inducible promoter Pgp;, performing in an RhIR inte-
grated JSO06 strain. ¢ Part-characterization of sSRNA regulator AS with its paired
attenuator Att and its orthogonal attenuator Att(M). d Part-characterization of the
combinatorial promoter Prpy14c0 ON its repression function, tested with its

Time (Min)

Lacl Lacl(M) Pos-CTRL

f
P P [P
PosCtrl ™ BT | Att(M) U AS D[EREE) 00 Laci(M)

RBS Screen Pen

, P, \
oot (o7 I () o S o S g oo (G
n=4
100k - . e L
E ] e trans
z — :
e
_e' 4
S50k .-
Q i
Q
s |
w B
Ofb—
0 100 200 300 400 500 600 700

Time (Min)

repressor Lacl and a mutated repressor Lacl(M). Lacl(M) was built off Lacl, with the
LacO binding site deleted. e RBS screening results for the expression of CinR to
enable activation cascade. The RBS in Clone D8 was chosen to proceed with the
following stages of construction. f RBS screening result for the expression of Lacl to
facilitate the trans feedback. The plot shows that the selected clone confirmed the
functionality of the negative feedback without over-repression. All data are pre-
sented as mean value +/- standard deviation of n samples, n = number of biological
replicates.

findings” (Fig. 3c). Next, we examined the repressive regulatory
function of combinatorial promoter Pgpy;qc0 With Lacl and Lacl(M)
(Fig. 3d). The result confirmed that Pguy;4c0 can be fully repressed by
Lacl with full Rhl induction. In the meantime, we determined that
Lacl(M) is an appropriate control for the trans feedback.

At last, we performed two sets of ribosome binding site (RBS)
screening assays to achieve the ideal protein expression strength that
actuates the desired circuit functionalities. First, we searched for an

RBS to express CinR so that it facilitates the activation cascade in our
circuit design context. The cascade was designed to be turned on by
the inducible expression of CinR through promoter Pgpyqco. Subse-
quently, CinR binds to inducer Cin in the growth medium, and then the
CinR-Cin complex activates the promoter P, Because Prpyiaco
exhibited some leaky expression, the RBS for CinR required optimi-
zation. If the RBS is too weak, the downstream cascade could be under-
activated; if the RBS is too strong, the leaky expression of Prpyiaco
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Fig. 4 | Dynamics of the four testing constructs - the open loop, the cis feed-
back, the trans feedback, and the layered feedback, as shown in Fig. 3a.

a Simulated dynamics of the four constructs with the reduced model in Eqgs. (4)-(11)
in a 7-hour window. b Experimentally observed dynamics of the four constructsina
7-hour window. ¢ Experimentally observed dynamics of the four constructs in a 16-
hour window. d Simulated dynamics of the four constructs with a growth-
dependent model in Supplementary Section 1 in a 16-hour window. e-h Dynamic
analysis of the test and intact groups in the AHL-Rhl and AHL-Cin wash perturbation
experiment. Grey regions indicate the duration of disturbances. e Dynamical profile
of the intact group. f Dynamical profile of the test group. g Disturbance profile,
calculated by subtracting the dynamics of the test group from the dynamics of the
intact group. h Scaled disturbance profile. The dynamical deviation of the test
group from the intact group is scaled by each construct's pre-disturbance output
value. All data are presented as mean value +/- standard deviation of n samples,
n=number of biological replicates.

could cause the cascade to be over-activated without Rhl induction
(Supplementary Fig. 1a). Here, we screened for an RBS so that the
system is off (shows minimal sfYFP signal) with no inducer, only the Rhl
inducer, or only the Cin inducer. Then the system turns on with both
Rhl and Cin inducers. As shown in Fig. 3e, Clone D8 presented the
desired induction profile. The resulting RBS was selected to proceed
with the circuit construction. Finally, we screened the RBS for Lacl so
that it facilitates the trans feedback. As we see in Fig. 3d, Lacl has a
strong repressive effect on Pryyqco With full Rhl induction (Supple-
mentary Fig. 1a). Therefore, a relatively weak RBS is required for the
trans feedback to function (Supplementary Fig. 1b). Figure 3f shows
the desired dynamical profile of a clone resulting from the screen,
where Lacl is expressed enough to present a repressed trajectory yet is
not over-expressed to shut off the sfYFP expression entirely.

Robustness and speed under transcriptional perturbations
evaluated in living E. coli cells

After building the four testing constructs in Fig. 3a, we sought to
confirm whether our constructs were properly built by comparing
measured dynamical profiles with simulated dynamics. Based on the
simulated dynamical profile we generated with the reduced model
(Fig. 4a, Eqgs. 4-11), we expected the trans, the cis, and the layered
feedback constructs to have lower equilibrium output signals and
faster responses after the induction of Rhl and Cin at ¢= 0. We indeed
observed this profile experimentally in the first 7 hours of our dyna-
mical experiment (Fig. 4b). However, as the experiment continued to
16 h, we observed that the reduced model no longer qualitatively
describes the observed dynamics (Fig. 4c). Notably, the experimental
dynamics no longer reach equilibrium. Is this discrepancy due to errors
in circuit construction or in dynamical models?

We know that the reduced model was built with numerous
assumptions that do not hold as a bacterial culture grows towards
stationary phase. One of many affected parameters is protein dilution
d, which is dominated by cell division. The reduced model assumes a
constant cell division rate, therefore a constant d. However, we
observed that the culture grew beyond the exponential phase and
started to slow down as the population reached the stationary phase
(Supplementary Fig. 2). As cell division slows down, protein dilution
slows down, but the active protein degradation due to nutrient star-
vation speeds up*. At the same time, protein and mRNA production
also slow down as they are tied to the nutrient availability in the growth
medium®?*, We then expanded our model with functions that
approximate the connection between gene expression, cell growth,
and nutrient availability (see Supplementary Section 1). The dynamical
profile we obtained (Fig. 4d) roughly resembles the observation in
Fig. 4c, which confirmed the functionality of our constructs beyond
the exponential phase. Although much more work is needed to create
an accurate multiscale model with identified parameters, this pre-
liminary model provides insights for understanding the gene expres-
sion dynamics across multiple growth phases.

Since the system dynamics in living cells do not reach equilibrium,
we cannot use the same method in Fig. 2 to interrogate system
dynamics. To overcome this problem, we designed each perturbation
experiment with a test group and an intact group. Figure 4e, f show the
two groups from one of the six sets of perturbation experiments. This
experiment was designed to emulate the simulated results in Figs. 1
and 2, where the impulse perturbation is only applied on the tran-
scriptional rate of the synthetic system. Specifically, both groups were
induced with 100 pL of Rhl and 10 pL of Cinat ¢= 0 and let grow for 7 h.
At hour 7, both groups were washed with phosphate buffered saline
(PBS), and the growth medium was replaced. The intact group shown
in Fig. 4e was resuspended in fresh medium with 100 pL of Rhl and
10 pL of Cin; the test group was resuspended in fresh medium with no
inducer. The perturbation window was 120 min (greyed section in
Fig. 4e-h), then both groups were washed and resuspended back to
the recycled pre-disturbance media. We measured the disturbance of
constructs by the deviation of the test group dynamics from the intact
group dynamics (Fig. 4g). Since the four constructs did not have the
same signal output level, we scaled the disturbance profile in Fig. 4g by
each construct’s pre-disturbance output value to obtain a fair com-
parison (Fig. 4h). This method allowed us to access the dynamical
profiles of synthetic biological networks under perturbations without a
system equilibrium. It is also easily applicable to future studies of
system dynamics in biology.

In Fig. 5, we showed the performance analysis of the four archi-
tectures with the open loop, the trans feedback, the cis feedback, and
the layered feedback control from the scaled disturbance profile in
Fig. 4h. The experiment was performed with 20 replicates for the open-
loop construct and 24 replicates for each of the three feedback-
controlled constructs. The cells that demonstrated atypical growth
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Fig. 5 | Performance analysis of the four constructs with the open loop, the
trans, the cis, and the layered feedback controls in living E. coli cells with an
impulse transcriptional perturbation caused by inducer wash. a Dynamical
profile of four network architectures with n data traces, where n = number of bio-
logical replicates. In an individual heat map, each row represents the disturbance
dynamics of each liquid culture well. Each column represents the measurements at
a given time point. The color intensity indicates the absolute magnitude of output
caused by the input disturbance. b The metrics used to extrapolate speed and
robustness from experimental data. ¢ Speed comparison of the four network
designs measured in settling time. d Robustness comparison of the four network
designs measured in percentage disturbance peak. Data in ¢, d are presented with
standard box plots overlaying all individual data points. Box plots show centre line
as median, box limits as upper and lower quartiles, whiskers as minimum to

maximum values. The asterisks denote statistical significance between the two
groups, determined by paired one-tail Student's -tests. Additional statistical
information is listed in Supplementary Table 8. e The robustness-speed perfor-
mance of the four constructs under inducer chemical wash perturbation is pre-
sented in trade-off plots. Each dot renders the robustness-speed performance of
individual cell culture; each shaded area represents the robustness-speed perfor-
mance within one standard deviation. The distance of each point to the origin
quantifies the robustness-speed performance of an individual test culture. The D-
values denote the average performance of its corresponding group. The value
Piayerea-trans denotes the p-value between the layered control and the trans control,
and Pygyereq-cis denotes the p-value between the layered control and the cis control.
p-values are determined by the paired one-tail Student’ t-test with n samples. n=
number of biologically independent replicates.

dynamics would be excluded in data analysis (see Supplementary Fig.
5). First, we generated heat maps to illustrate the dynamical profiles of
individual replicates to showcase the system performance in the con-
text of biological uncertainty. In Fig. 5a, each heat map represents the
output disturbance profile of all remaining replicates after data exclu-
sion. They reveal the patterns of systems’ output disturbance after the
chemical perturbation was introduced at steady-state and then
removed after two hours. In these four heat maps, we see that the trans
feedback is both more robust (dimmer at the peak) and faster (dims
down faster) compared to the cis feedback. The layered feedback also
appears to be the most robust and speedy. Then, we analyzed each
replicate’s trajectory to quantify this result, as shown in Fig. 5b. We used
the scaled peak disturbance value as the metric for robustness and the
system’s settling time as the metric for speed. The blue circles represent
the scaled disturbance profile of a single colony taken from Fig. 4h. The
solid line is a smoothed curve estimated from the experimental data
using the MATLAB rlowess function. The blue time zone is the settling
time zone calculated from the beginning of the perturbation to the time
it takes for the profile to recover into the error band. The error band in
this experiment is defined to be 0.25. As marked in the plot, the peak
disturbance is the furthest point away from the x-axis. Then we showed
the comparison of these two metrics across the four construct designs
(Fig. 5¢, d). The result was consistent with the visual representation in
Fig. 5a, where the trans feedback is both more robust and rapid com-
pared to the cis feedback. The layered feedback shows the most optimal

performance in robustness and speed compared to the open-loop and
the single-layer constructs. The differences were statistically significant.
Finally, we mapped these two metrics into the trade-off plot as shown in
Figs. 1a and 2c. The trade-off plot portrays the robustness and speed of
individual cell cultures in this experiment. The distance of each point
from the origin quantifies the dynamical performance of each replicate
measured in robustness and speed. The figure showed that the average
robustness-speed performance of the layered feedback construct
(purple shaded area) was superior to the average performances of the
trans feedback (orange shaded area) and the cis feedback (red shaded
area); the differences were statistically significant (p-values were shown
in Fig. Se). Interestingly, we noticed that the cis feedback did not appear
to improve the system performance from the open loop. However,
despite its lacking of effectiveness as a single-layer controller, layering it
with the trans feedback still granted the system further improvement.

Interrogating controller performance under complex
perturbations

In electrical engineering and control theory, a system’s response to
disturbances is usually evaluated with a single perturbed input. How-
ever, in biological systems, perturbations are often applied at the
environmental level, which could have much broader, yet poorly
understood impacts on the system dynamics. For instance, the tem-
perature and nutrient availability fluctuations in natural environments
cause physiological stress responses in cells to ensure adaptation and
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survival. As a consequence, the dynamics of synthetic systems enco-
ded in the cells would be severely impacted as they are integrated as
part of the inner cellular network. Additionally, our generic models are
usually over-simplified for simplicity. They often omit many physio-
logical constraints in the inner cellular environment. One example is
the translational capacity, which is modeled as a constant rate dis-
regarding the limitation of translation resources. As one of the most
costly processes in cells, translation is limited by resource availability.
It is documented by previous work that this resource limitation causes
retroactivity in synthetic circuits®. In this section, we performed five
additional experiments to interrogate feedback controls’ effects and
limitations under poorly understood perturbations (Fig. 6).

In our generic biomolecular design (Fig. 2) and the first set of
perturbation experiments (Fig. 4 and 5, perturbations were introduced
as a universal low-frequency transcriptional impulse drop. Here, we
applied the same transcriptional perturbation by manipulating the
concentration of Cin and Rhl in the positive direction (Fig. 6a). We
observed that, in this perturbation experiment the open-loop
appeared to have the best performance, which was not predicted by
the generic model in Egs. (4)-(11) (Fig. 6a, S6). We hypothesize that this
is because the disturbance on the open loop is naturally attenuated by
translational resource capping. We used a simple model in Supple-
mentary Section 1.3 and Supplementary Fig. 6 to show that if the
translation rate slows down as the system accumulates too much
mRNA, the open loop shows a natural attenuation during a transcrip-
tional spike. This is because the open loop has more mRNA at equili-
brium than the constructs with feedback controls. The increasing
transcriptional rate would produce even more mRNA, but it would also
further slow down the translational rate to negate this effect. Never-
theless, the remaining controlled constructs showed that the layered
feedback control inherited performance characteristics from the two
single-layer constructs. More importantly, the layered control
appeared to outperform the single-layer feedback with statistical
significance.

Then, in the temperature perturbations that emulate one of the
most common environmental disturbances in biological systems
(Fig. 6b, ¢, and Supplementary Fig. 7), we perturbed the system by
dropping the incubation temperature from 37 °C to 30 °C (Fig. 6b) and
spiked it with a temperature increase from 37 °C to 42 °C (Fig. 6c). It
was unexpected that the response profiles of the trans feedback and
the cis feedback in these two experiments demonstrated opposite
traits. Notably, when the temperature dropped, the trans feedback
dynamics shifted down, and the cis feedback dynamics shifted up
(Fig. 6b), with the cis feedback out-performing the trans feedback.
When the temperature spiked, the trans feedback dynamics shifted up
and the cis feedback dynamics shifted down (Fig. 6¢), with the trans
feedback out-performing the cis feedback. It is unclear what para-
meters are perturbed with temperature fluctuations because the per-
turbation is effectively applied to living cells’ physiological states.
However, since all constructs were engineered to ensure consistent
context, this pattern is most likely caused by the property changes of
the regulator sRNA and regulator protein. We deduced that, since the
open loop in both cases shows disturbance in the negative direction,
there is most likely a transcriptional downshift when the temperature
shifts away from the optimal 37 °C. In addition, the pattern suggests
that the sRNA repression is more severely weakened at 30 °C, and the
protein repression is more severely weakened at 42 °C. In Fig. 6¢c with a
temperature up-shift from 37 °C to 42 °C, the trans feedback dynamics
upshift could be explained by a faster denaturation of proteins at 42 °C
and a weakened protein-DNA binding affinity. Yet, at 30 °C (Fig. 6b),
there is no reason for sRNA to be degraded faster at a lower tem-
perature. Hence, we hypothesized that the weakening in SRNA could
be due to a less efficient maturation step. Previous work found that
there might be a folding delay for PT181 sRNA to mature to its func-
tional form®. We suspect that a lower temperature could cause sSRNA

to misfold at a higher rate due to increased tolerance to mispairing
when temperature decreases. This misfolding could also cause a
higher failure rate to terminate transcription at the antisense-
attenuator binding site, hence weakening the RNA-RNA binding-
induced transcriptional repression. We used a simple model in Sup-
plementary Section 1.2 and Supplementary Fig. 7 to describe this
hypothesis. The simulated dynamics qualitatively agreed with the
experimental observation. It is worth noting that, with both upshift
and downshift temperature perturbation experiments, the layered
feedback appears to mitigate the opposite effects of the two single
layers. Although in the temperature spike experiment, the trans
feedback design outperforms the layered feedback with its fast settling
time, the layered feedback still outperforms the cis feedback design
(Fig. 6¢c and Supplementary Fig. 7). Overall, this set of experiments
suggests that layering feedback controls with both SRNA and protein
regulators is an effective performance optimization strategy for syn-
thetic biomolecular networks in environments subjected to tempera-
ture fluctuations.

One other type of common environmental perturbation is the
fluctuation of the nutritional resource. In Fig. 6d, e, we tested the
system’s dynamics when subjected to a glucose perturbation in both
directions. Specifically, in Fig. 6d, we temporarily increased the glu-
cose concentration from 0.1% to 1% for two hours. In Fig. 6e, we tem-
porarily decreased the glucose concentration from 1% to 0% for the
same duration. Interestingly, while we were expecting a signal drop
with temporary glucose starvation, we observed that all four con-
structs showed a slight dip and then an upshift in the output signal that
was amplified over time, even after being restored to the 1% glucose
media. We deduced that, since neither open loop dynamics in Fig. 6d
and e trend towards recovery, this impulse perturbation appears to
cause an upward step disturbance in the translational rate of all pro-
teins in the system, as the translational processes heavily consume the
carbon source. This could explain the observation in Fig. 6d with a
temporary increase in glucose availability, which could increase the
amino acid abundance in the cells. However, the drastic dynamical up-
shift observed in Fig. 6e also suggests the same upward step dis-
turbance in the translational rate. The bacterial stringent response is
known to react to nutrient downshift to down-regulate both tran-
scription and translation®. Therefore, it is unclear why glucose star-
vation would cause a drastic long-lasting dynamical upshift.
Nevertheless, we used a simple model (Supplementary Section 1.3 and
Supplementary Fig. 8) to describe our hypothesis. The resulting
simulated dynamics showed that the model is plausible, given the
observation. Since most of the trajectories were not trending towards
recovery after 26 h of growth, we did not compute the settling time for
this experiment. On the other hand, the computed robustness metric
indicated that the trans feedback and the layered feedback constructs
were the most robust against this perturbation. Therefore, it is unclear
why the temporary nutrient down-shift would cause such a drastic
dynamical up-shift.

Discussions

This work explored the feasibility of layered feedback as a control
optimization strategy in biomolecular networks both in silico and in
living cells. We first showed that the layered architecture overcomes
the robustness-speed trade-off in a wide parameter space with a node-
based linearized state space model. Then, we expanded the design to a
generic biomolecular model to simulate system dynamics with per-
turbations. With the guidance of theory and simulation, we forward
engineered a layered feedback controlled synthetic network in living
E. coli cells. We successfully constructed this network with a combi-
natorial regulation, an activating cascade, and two nested auto-
regulatory motifs to achieve its desired dynamical functions. Finally,
we performed six dynamical experiments with chemical, temperature,
and nutrient perturbations to access the disturbance profiles of these
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Fig. 6 | Interrogating controller performance under complex perturbations.
The first column presents the scaled disturbance profile, which is the dynamical
deviation of the test group from the intact group, scaled by each construct's pre-
disturbance output value. Data in this column are presented as mean value +/-
standard deviation of n samples, n = number of biological replicates. The second
and third columns present the robustness and the speed of the four network
designs. Data from these two columns are presented with standard box plots
overlaying all individual data points. Box plots show centre line as median, box
limits as upper and lower quartiles, whiskers as minimum to maximum values. The
asterisks denote statistical significance between the two groups, determined by
paired one-tail Student's t-tests, additional statistical information is listed in Sup-
plementary Table 8. If a trajectory does not recover back to the error band at the
end of the measurement, a high-order polynomial function was then used to fit the
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data and predict its settling time. The asterisks denote statistical significance
between the two groups. a System dynamics under chemical perturbation (spike),
where the inducers AHL-Cin increased from 3 puM to 10 uM, and the AHL-Rhl
increased from 20 pM to 100 pM at 310 min. Subsequently, the cultures were
restored to the pre-disturbance media after 2.5 h. b System dynamics under tem-
perature perturbation (dip). The temperature drops from 37 °C to 30 °C at 380 min
and restores to 37 °C at 510 min. ¢ System dynamics under temperature pertur-
bation (spike). The temperature increases from 37 °C to 42 °C at 380 min and
restores to 37 °C at 510 min. d System dynamics under nutrient perturbation
(spike). The glucose concentration spikes from 0.1% to 1% at 370 min and restores
to 0.1% at 500 min. e System dynamics under nutrient perturbation (dip). The
glucose concentration drops from 1% to 0% at 370 min and restores to 1% at

500 min.

synthetic networks. We found that, as predicted by the model, the
layered feedback control outperforms the single-layer feedbacks in
robustness and speed when under chemical perturbations. In the
temperature perturbation experiments, the layered feedback

neutralizes the opposite responses of single-layer constructs to stabi-
lize the systems. In the nutrient perturbation experiments, although
not all systems recovered, we observed the optimization effect of the
layered control in disturbance attenuation. These results not only
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provide validated guidance for controller design for synthetic biolo-
gical networks, they also offer insights for understanding nature’s
dynamical control strategies.

Through the measurement and analysis of all six sets of experi-
ments, many aspects of the dynamics posed interesting questions
regarding natural biological networks. These observations suggested
that pieces in our synthetic circuits were coupled through unknown
mechanisms that await discoveries, which provided new directions for
future works. Nevertheless, without knowing all the mechanistic
details, we were able to use effective models to guide the design and
construction of a layered feedback controller in synthetic biological
networks. The experimentally observed dynamics also confirmed the
model’s prediction on the layered architecture’s performance opti-
mization effects.

The experimentally observed gene expression dynamics across
different growth phases also revealed the dynamical entanglement
across the populational and the molecular scales. We found that the
common assumptions on constant cell division and unlimited
resources are responsible for the major discrepancies between simu-
lated and observed system dynamics. For system modeling, the quality
of a model is bound by the accuracy and identifiability trade-off.
Reduced models have fewer species and parameters so that they are
more identifiable but less accurate and relevant due to over-
simplification. On the other hand, chemical reaction network models
are more accurate with fewer assumptions, but they are usually sub-
stantial in size and difficult to system identify. For future studies, we
plan to layer the two types of models to overcome this trade-off. Also,
we will expand the utilization of experimental data for system identi-
fication. We hope to utilize current collected dynamical data from this
work to improve the accuracy and utility of biomolecular models and
discover unknown mechanistic details in biomolecular networks.

Methods

Bode plot and settling time computation using a linearized state
space model

The general form of a state-space model in continuous time is written
as'’

x=Ax+Bu

y=Cx+Du

In our system shown in Fig. 1 and Egs. (1)-(3), the A matrix is called the
dynamic matrix, which is the Jacobian matrix of the system evaluated
at steady state. The B matrix is the control matrix, in our system, it is a
3 x 1 matrix computed by dx/y since parameter y is the only input of
interest in our analysis. The C matrix is the sensor matrix. Since we
define that only species B in Eq. (3) is observable, D =[O0, O, 1]. Finally,
we set the direct term D to O. The settling time and peak were com-
puted with the MATLAB_R2019a function stepinfo for a step response
and with function impulse for an impulse response; the Bode plot and
the response magnitude of a low frequency disturbance was computed
with the MATLAB_R2019a function bode.

Model simulations

Equations and the parameters of the models used in Figs. 1 and 2 are
presented in the main test. The 3rd model that generated Fig. 4d is in
the Supplementary Information. All models were simulated by solving
corresponding ODEs using the MATLAB_R2019a function odel5s over a
set of discrete time steps using estimated parameters based on bio-
logical relevance (see Supplementary Information).

Plasmid construction and purification

All plasmids used in this study were created using Golden Gate*
assembly, Gibson assembly, or 3G assembly**, with NEB®Turbo Com-
petent E. coli as the cloning strain. Plasmids were purified using a
Qiagen QlAprep Spin Miniprep Kit (Qiagen 27104). Linear fragments
were gel extracted and purified using MinElute Gel Extraction Kit
(Qiagen 28606).

Strains, growth media and in-cell part characterization
experiments

All experiments were performed in E. coli strain JSO06 MG1655
AaraCALaclKan®)* with either constitutively expressed RhIR or con-
stitutively expressed CinR and RhIR? integrated into the chromosome
with pOSIP integration plasmid into O-site containing Kanamycin
resistance gene®. Plasmids with different constructs were transformed
into the modified JSO06 competent cells. Depending on the antibiotic
resistance, cells were plated on LB + Agar plates containing 100 pg/ml
carbenicillin or/and chloramphenicol, and incubated overnight at
37°C. At least three colonies of each experimental condition were
inoculated into 200 pL of LB containing carbenicillin in a 2 mL 96-well
block, and grown overnight at 37 °C at 1000 rpm in a benchtop shaker.
Four microliters of the overnight culture were added to 196 pL of
M9 supplemented M9 media (1X M9 minimal salts, 0.5 pg/mL thiamine
hydrochloride, 1.0% glucose, 0.1% casamino acids, 0.2 mM magnesium
sulfate, 0.1mM calcium chloride) containing carbenicillin and/or
chloramphenicol and grown for 4 h at 37 °C at 1000 rpm.

For single time-point measurements (Fig. 3b, d, e), the sub-culture
was then diluted 20 times with M9 media containing its appropriate
antibiotics and AHL inducers, then grown in a 96 well plate for 6 h
before the measurement of fluorescence (504 nm excitation, 540 nm
emission) and optical density (OD, 600 nm). The two AHL inducers
used in this work are N-(3-Oxotetradecanoyl)-L-homoserine lactone
(Cin, Sigma 09264) and 3-Hydroxy-C4-HSL, N-(3-Hydroxybutanoyl)-L-
homoserine lactone (Rhl, Sigma 74359). Experiment in Fig. 3b was
grown with chloramphenicol, containing OpM or 200 pM of Rhl
inducer; Experiment in Fig. 3d was grown with carbenicillin and
chloramphenicol, containing O uM or 200 uM of Rhl inducer; Experi-
ment in Fig. 3e was grown with carbenicillin and chloramphenicol with
four inducer conditions: 0 pM Cin and O uM Rhl, 10 uM Cin and O pM
Rhl, O uM Cin and 200 pM Rhl, and 10 pM Cin and 200 pM Rhl.

For time-course characterization measurements (Fig. 3c, f), the
sub-culture was then diluted 20X to 200 pL with M9 media containing
its appropriate antibiotics and inducers then grown on a 96 well plate
in a BioTek Synergy HI1 plate reader. The experiment in Fig. 3¢ was
grown in M9 media with carbenicillin and 10 uM Cin for 5 h. Experi-
ment in Fig. 3f was grown in M9 media with carbenicillin, 10 pM Cin
and 200 pM Rhl for 12 h. The plate reader incubates the runs at 37 °C
with maximum linear shaking. It measures fluorescence (504 nm
excitation, 540 nm emission) and optical density (OD 600 nm)
every 10 min.

For RBS screening experiments that resulted in the appropriate
constructs shown in Fig. 3d, e, the plasmids were assembled with an
ARL (Anderson RBS library) using 3G assembly®. Colonies were picked
and grown in 200 pL LB with carbenicillin and chloramphenicol over-
night at 37 °C at 1000 rpm on a benchtop shaker. Four microliters of
the overnight culture were added to 196 L of supplemented M9
media to grow to the exponential phase before the experiment. For the
RBS screen experiment on CinR expression (Fig. 3e), each culture
resulted from a single colony was diluted 20X and grown in M9 media,
induced with either Rhl only, or Cin and Rhl. The colonies that
appeared to be "off” with Rhl and "on” with Cin and Rhl were selected.
For the RBS screen experiment on Lacl expression (Fig. 3f), each cul-
ture resulted from a single colony was diluted 20X and grown in M9
media, induced with Rhl and Cin. Along with the screened colonies,
biological triplicates of positive control with Lacl(M) was measured to
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provide screening reference (Fig. 3f). The colonies with signals that are
apparent but lower than the positive control references were selected.
All selected colonies for RBS screening were sequenced, the resulting
RBS sequences were cloned into the constructs for verification with at
least three biologically independent replicates.

Dynamical perturbation experiments

All perturbation experiments were performed in JSO06 E. coli with
genome integrated RhIR. A blank ColEl high copy plasmid is trans-
formed with the Pgpyqco controlled cassette on a p15A backbone to
serve as the negative control. Four colonies of negative control and 20
or 24 colonies of each of the four testing constructs showed in Fig. 4a
were picked. Cultures were grown in 200 pL LB with carbenicillin and
chloramphenicol overnight at 37 °C at 1000 rpm on a benchtop sha-
ker. Four microliters of the overnight culture were added to 196 pL of
M9 media and grown for four fours to prepare the sub-culture. The
experiments started with a 20X dilution of the sub-culture into M9
media with carbenicillin and chloramphenicol, induced with Cin and
Rhl. The plate reader incubates the runs at 37 °C with maximum linear
shaking. It measures fluorescence (504 nm excitation, 540 nm emis-
sion) and optical density (OD, 600 nm) every 10 min. The first stage of
the run lasts 5.5-7 h. After disturbances were introduced, both intact
and perturbed cultures were grown in the plate reader for 2-3 h, and
the fluorescent and OD dynamics were collected. Then, the dis-
turbance of both groups were removed. Subsequently, the run con-
tinued in the plate reader for another 16-18 h. The detailed protocols
of each perturbation are listed in Supplementary Table 7.

Statistics & reproducibility

Data analysis was performed with Microsoft Excel and MATLA-
B_R2019a function t test. No statistical method was used to pre-
determine sample size. All single colonies were picked randomly from
agar plates where the cells where transformed with purified circular
DNA using antibiotics as selection markers. No manual group alloca-
tion methods were used. Each plate resulted from a single transfor-
mation and all colonies were assumed to be biological replicates. No
data were excluded from the analyses in experiments presented in
Fig. 3. Data exclusion was utilized in experiments presented in
Figs. 4-6 only based on growth profiles, as described in Results and
Supplementary Fig. 5.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data for all main text and supplementary figures are available in
the Source Data and Source Code folder at https://doi.org/10.6084/
m9.figshare.20525034. Source data are provided with this paper.

Code availability
Source code for all main text and supplementary figures are available
in the Source Data and Source Code folder at https://doi.org/10.6084/
m9.figshare.20525034.
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