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Abstract

Background: Sickle cell disease (SCD) is the most common inherited blood disorder affecting millions of people worldwide.
Most patients with SCD experience repeated, unpredictable episodes of severe pain. These pain episodes are the leading cause
of emergency department visits among patients with SCD and may last for several weeks. Arguably, the most challenging aspect
of treating pain episodes in SCD is assessing and interpreting a patient’s pain intensity level.

Objective: This study aims to learn deep feature representations of subjective pain trajectories using objective physiological
signals collected from electronic health records.

Methods: This study used electronic health record data collected from 496 Duke University Medical Center participants over
5 consecutive years. Each record contained measures for 6 vital signs and the patient’s self-reported pain score, with an ordinal
range from 0 (no pain) to 10 (severe and unbearable pain). We also extracted 3 features related to medication: medication type,
medication status (given or applied, or missed or removed or due), and total medication dosage (mg/mL). We used variational
autoencoders for representation learning and designed machine learning classification algorithms to build pain prediction models.
We evaluated our results using an accuracy and confusion matrix and visualized the qualitative data representations.

Results: We designed a classification model using raw data and deep representational learning to predict subjective pain scores
with average accuracies of 82.8%, 70.6%, 49.3%, and 47.4% for 2-point, 4-point, 6-point, and 11-point pain ratings, respectively.
We observed that random forest classification models trained on deep represented features outperformed models trained on
unrepresented data for all pain rating scales. We observed that at varying Likert scales, our models performed better when provided
with medication data along with vital signs data. We visualized the data representations to understand the underlying latent
representations, indicating neighboring representations for similar pain scores with a higher resolution of pain ratings.

Conclusions: Our results demonstrate that medication information (the type of medication, total medication dosage, and whether
the medication was given or missed) can significantly improve subjective pain prediction modeling compared with modeling
with only vital signs. This study shows promise in data-driven estimated pain scores that will help clinicians with additional
information about the patient’s condition, in addition to the patient’s self-reported pain scores.

(JMIR Form Res 2022;6(6):e36998) doi: 10.2196/36998
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Introduction

Background
Sickle cell disease (SCD) is a family of genetic blood disorders
that affects >20 million people worldwide [1], the most prevalent
complication of which is pain. Pain crises in SCD are strongly
linked to increased medical costs, morbidity, and mortality [2].
During childhood, SCD often presents as unpredictable, severe,
acute pain episodes characterized by pain periods ranging from
hours to weeks, which usually occur a few times a year. The
most challenging aspect of treating pain episodes in SCD is the
assessment and interpretation of the patient’s pain intensity
level [3,4]. However, in current clinical practice, patient
self-reporting is the gold standard approach to determining the
absence, presence, and severity of pain [4,5].

Furthermore, because of the subjective nature of pain, it is
challenging for clinicians to precisely ascertain the severity of
the patient’s pain. This assessment is particularly difficult in
patients with chronic pain. Furthermore, effective treatment
strategies for patients with SCD, such as intravenous opioid
therapy, are palliative. Ultimately, as pain is inherently
subjective, medical providers and patients have difficulty in
determining the ideal treatment and management strategies for
pain. As a result, there has been an increasing focus on
developing and implementing pain prediction models from
objective measures over the past several years [3,4,6-8].
However, in addition to the slow development of these models,
the difficulty also lies in understanding the severity of a patient’s
pain level and their response to pain management strategies.

Currently, the standard treatment protocol for painful episodes
associated with SCD includes rest, aggressive hydration,
treatment of any underlying infections or other complications,
and a focus on analgesics such as opioids [9,10]. However, there
is wide variability in the management of painful episodes in
hospitals. Variations in practice reflect different views about
the suitability of opioids, such as concerns of dependence on
opioids. In addition, each patient has historical differences in
responses to opioids; the methods of administration of opioids,
such as continuous infusion and patient-controlled analgesia,
lead to varied responses in patients. Pharmacological
management strategies for acute pain associated with SCD
include opioids, nonopioids, and adjuvant analgesics or
coanalgesics. Medication strategies for chronic pain are diverse
and lead to substantial variability. Hence, it is essential to
consider the inclusion of pain medication when modeling pain
prediction.

The current literature shows an increasing focus on machine
learning (ML) techniques to understand the various complexities
associated with patient health in SCD [11-14]. Lazakidou et al
[15] developed a personal electronic health record (EHR) to
evaluate the deployment of an advanced web-based application
platform that assessed health care professionals and patients to
provide a more efficient and effective solution than that of the
daily clinical routine. In their study, web-based solutions enabled
patients to update and access their medical information. The
system was examined with 3 varied patient groups comprising
150 patients with Parkinson disease, diabetes, and congenital

heart disease engaged in 3 European clinics. The outcomes
indicated that personal EHRs could provide better services in
terms of user-friendliness, data management,
comprehensiveness, and valuable content. Du et al [16]
developed a microfluidic device that could examine the behavior
of blood from patients with SCD. This device could also
measure how long blood cells took to become stiff and get stuck
in the blood vessels. A total of 25 patients with SCD were
involved in their study. By using this device to evaluate blood
samples, the researchers were able to decide how deoxygenation
affected the sickling rates of red blood cells (RBCs), capillary’
stick rates, and how quickly the RBCs reshaped, especially
when oxygen levels were restored. Knowlton et al [17] presented
a sensitive, label-free, and specific testing platform to diagnose
SCD using blood samples based on the density of sickle RBCs
under deoxygenated conditions. Using this platform, they could
differentiate between the levitation patterns of sickle and control
RBCs in association with their degree of confinement.

In the face of the continued opioid crisis, the search for more
objective measures of pain continues to evolve rapidly in
medicine, and studies examining a variety of objective measures
to predict pain have been published in recent years [7,18]. Prior
studies have reported preliminary evidence that fluctuations in
vital signs may be used to assess pain in patients in the intensive
care unit [19] as acute pain leads to changes in vital signs [20].
These physiological measures include blood pressure, respiratory
rate, oxygen saturation, temperature, and pulse rate. Nickerson
et al [21] predicted pain scores—measured between 40 and 120
minutes after administering 10 mg of oxycodone—from pain
score values before drug administration using 200 features for
each patient in the electronic medical records data. Essential
features included age, gender, Charlson comorbidity index,
BMI, ethnicity, and International Classification of Diseases
ninth edition code class. They predicted a postmedication
(oxycodone) pain score with an accuracy of 66% using support
vector regression. They concluded that these results would likely
improve with more temporal data (eg, vital signs), which we
explore in this study by using both vital signs and medication
data to predict the severity of pain with multiple Likert scales,
with the best performance of 82.8% accuracy using only 9
features, as shown in Textbox 1. Although most prior studies
have explored this question in the context of misuse of pain
medications (particularly regarding abuse of opioid
medications), we used the pain medication provided to patients
to predict the severity of pain. The ability to objectively and
accurately predict pain severity and onset could result in more
prompt and effective treatment of pain crises, leading to
improved outcomes and encouraging more diligent use of
medications [22]. Although there are complications associated
with using medication data for prediction at the same time as
pain measurements, we investigated their application here to
provide a baseline for this comparison and open the door for
future research involving dynamic pain and medication
measurements. Our principal hypothesis was that pain
medications help with better pain-related function and pain
intensity management.

Several previous studies from our research group used EHR
data to predict pain. Yang et al [4] initially demonstrated the
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feasibility of ML techniques on a limited data set of 5363
records from 40 patients during inpatient hospital visits to
predict subjective pain scores from 6 objective vital signs with
support vector machines (SVMs), achieving an accuracy of
58.2%. Alambo et al [8] examined 424 clinical notes from the
same cohort of 40 patients to predict the prevalence of pain and
whether pain increased, decreased, or remained constant. Padhee
et al [6], using 6 objective vital signs and the nature of hospital
visit information from 59,728 records of a different cohort of
47 patients over 5 consecutive years, demonstrated that with
more data for each patient, the accuracy for pain prediction
improved (accuracy of 65.3%). In this study, we demonstrated
that with more data from a larger cohort of patients and
medication information, the accuracy improved by 17.5%
compared with Padhee et al [6] and by 24.6% compared with
Yang et al [4].

Deep neural networks have been shown to contribute promising
capabilities in learning complex patterns in data and have
achieved remarkable success in several domains such as
computer vision, natural language processing, and speech
recognition. Recently, many efforts have been made to improve

the performance of ML tasks in the field of biomedical and
health informatics. Deep learning has previously been
successfully used on EHRs to achieve both specific and general
goals [23]; for instance, both Deep Patient [24] and Doctor AI
[25] used unsupervised deep learning before supervised learning.
As in many other applications, the challenge of missing data is
common in ML studies applied to EHR data, which often contain
entries with missing elements. These challenges arise as the
data are manually collected from patients and may vary
depending on circumstances. In this study, we address this
challenge using variational autoencoders (VAEs) [26,27] to
reconstruct missing data. VAEs are unsupervised deep feature
methods that provide data reconstruction by probabilistically
filling in the data between the encoding and decoding steps. As
the encoder neural network typically expects a fixed-length
vector as input, the question arises regarding what we can do
with the missing values in the VAE encoder input. We followed
the heuristic of replacing missing elements with fixed values
[28,29]. Although VAEs have been previously applied to EHR
data [30], we show here that they improve pain prediction
capabilities from physiological signs with and without
medication information.

Textbox 1. Data modalities and variables considered in this study.

Vital signs

• Peripheral capillary oxygen saturation

• Systolic blood pressure

• Diastolic blood pressure

• Heart rate

• Respiratory rate

• Temperature

Medication

• Medication type (5 classes)

• Hydromorphone

• Acetaminophen

• Ketorolac

• Oxycodone

• Fentanyl

• Medication status (2 classes)

• Given or applied

• Missed or removed or due

• Total medication dosage (mg/mL)

Pain

• Self-reported pain score on a scale of 0-10 (0=no pain to 10=severe and unbearable pain)

Objective
This study aimed to use vital signs and medication information
collected from the EHR data of patients with SCD to predict
patient-reported pain scores using ML techniques. In this paper,

we propose to represent multiple data modalities in EHRs in
high-level abstraction, vital signs, and medication information
using deep autoencoder networks such as VAEs to predict pain
intensity on varying Likert scales. Our specific contributions
are as follows:
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1. To the best of our knowledge, we analyzed the most
extensive EHR data of 126,519 records from 496 patients
with SCD collected over 5 consecutive years and
demonstrated that a larger patient cohort data improves
model performance in pain prediction. We reduced the data
to 33,000 records by removing data with multiple
medication fields missing and then used them for our model
evaluation.

2. We showed that pain medication information with vital
signs data can improve pain prediction at varying pain rating
scales (ie, different granularities).

3. We demonstrated that deep representational learning can
not only improve pain prediction results but also provide a
better understanding of the role of medication and
physiology on the patient’s pain response with a patient
profiles study.

Methods

Data
In this study, we analyzed inpatient and outpatient EHR data
collected from 496 participants at Duke University Hospital
over 5 consecutive years. Each record contained measures of 6
vital signs, as shown in Textbox 1. In addition to the vital signs,
each record also included the patient’s self-reported pain score,
with an ordinal range from 0 (no pain) to 10 (severe and
unbearable pain). The pain score was recorded by the medical
staff during outpatient visits when the patients reported no pain
(pain score 0) and during their monitoring of inpatient visits.
The vital signs were recorded by the medical staff every 4 hours
for inpatient stays, and the medication data were recorded as
given to the patients. We extracted 3 medicinal features from
the data upon consultation with our coauthor physician, as
shown in Textbox 1. We calculated the total medication dosage
as the sum of all medication dosages recorded for a patient at
a given time t using the following equation:

Here, Medication Dosagei(t) indicates the dosage of ith
medication type recorded at time t for the patient.

We removed the data points in this study for which the
Medication Administration Record was on hold.

Background
In this study, we used VAEs to impute missing values within
the data based on other samples. Autoencoders are a class of
unsupervised deep learning techniques in which neural networks
are leveraged for the task of representation learning. We
designed a neural network architecture to impose a bottleneck
in the network, thereby forcing a compressed knowledge
representation of the original input data modalities. If the input
features were such that they were independent of one another,
this compression and subsequent reconstruction would be an
arduous task. However, if some association exists in the data
(eg, correlations between input data modalities), this structure
can be learned and consequently leveraged when forcing the
input through the network’s bottleneck. VAEs are probabilistic
generative models that have the same architecture as vanilla
autoencoders but consider specific assumptions about the
distribution of middle or latent layer variables. They learn the
true distribution of input features from latent variable
distributions using a Bayesian approach and present a theoretical
framework for reconstruction and regularization [31].

A VAE learns the distribution of data with an encoder network
by fitting it to a Gaussian distribution and generates data with
a decoder by sampling from the learned distribution. We used

autoencoders to reconstruct the input data (x) in the output 
layer by an encoding and decoding process. As shown in Figure
1, the encoder network converts the input data (x) into a latent
representation (z). The hidden state comprises 2 additional
layers: E(z) and V(z), where the latent variable z follows a
Gaussian distribution with mean E(z) and variance V(z). We
sample z from the distribution parameterized by the encoder;
the decoder network then remodels the input from the latent

representations by using z to generate . The fundamental
property of autoencoders is that they minimize this
reconstruction error using a loss function comprising a
reconstruction term (lreconstruction), which is the mean squared
error between the output and the input, and a regularization term
(Kullback-Leibler divergence loss [lKL]), as shown in the
following equation:

Figure 1. An illustration of the variational autoencoder architecture for one input data modality.
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The term is on the final layer and the regularization term
enforces a specific Gaussian structure on the latent layer through
a penalty term lKL(z, N (0, Id)). β in the loss function is a
hyperparameter that dictates how to weigh the reconstruction
and penalty terms.

Variation in VAE means that the encoder network estimates
the μ (mean) and σ (SD) parameters (latent variables) of the
Gaussian distribution. However, real-world applications,
including health care, almost always have missing values. In
correspondence with the missing values in the raw temporal
data, we substituted the corresponding categories with a unique
integer to properly encode the status of the missing information.
The encoder comprises a long short-term memory cell. It
receives input sequences resulting from the concatenation of
the raw physiological data and the extracted categorical

medicinal features. As in every encoder in a VAE architecture,
it produces an output that is used to approximate the mean and
variance of the latent distribution. The decoder samples from
the latent distribution form the output sequences. This approach
helps us develop an unsupervised framework that can fill the
missing pieces appearing in real-world EHR data volume
streams, not only in patients with SCD but also in other health
care applications.

Proposed Framework

Overview
Figure 2 provides an overview of the proposed approach in 3
consecutive steps. In step A, we preprocessed the raw data to
overcome data challenges such as missing values. Next, in step
B, we applied unsupervised deep representation learning to
generate higher-level abstraction of the input data modalities.
Finally, in step C, we investigated supervised algorithms for
predictive modeling and performed the evaluation.

Figure 2. Deep representation learning for pain prediction (A: data analysis, B: deep representation learning, and C: predictive modeling).

Step A: Data Analysis
In this study, we used records from EHR data collected at Duke
University Hospital and identified them using study labels to
label patients without identification. The timestamp for each
data entry was deidentified, preserving temporality. The data
set had missing values for ≥1 vital sign, medication, and pain
score. The data set contained 126,519 records from 496 patients
collected over 5 consecutive years. However, we included
33,000 records in this study owing to >4 missing features in the
remaining records. Of the 33,000 records, 18,291 (55.43%)
included at least 1 of the 5 administered medication types
(Textbox 1). The demographic information of the patients was
not available. Data for each patient varied; although 70 patients
had a one-time visit to the hospital, 240 patients visited for at
least >100 days. Most patient records were for a patient staying
for 1705 days with a high mean pain score of 8 who received
pain medication 219 times (an average of 338 mg of total pain
medication dosage). We did not consider the effect of any other
medical condition on the patients in this study.

Step B: Deep Representation Learning
In the second step, we represented all input data modalities in
high-level abstraction using multiple deep autoencoder networks,
including VAEs. We evaluated the performance of each network
while considering the tuning of hyperparameters such as the
learning rate, batch size, number of epochs, and number of
hidden layers and hidden units for training to avoid overfitting.

Step C: Predictive Modeling
In this step, we applied supervised learning techniques to the
represented data set using linear and nonlinear approaches such
as random forest (RF) [32], Lasso regression [33], and SVM
[34]. Our experiments comprised three main phases: (1) training
the VAE, where the training samples were used to train the VAE
and the reconstruction loss for each training data sample was
stored according to the target pain score; (2) generating new
pain scores, where the VAE decoder generated new pain score
samples based on specified classes and each newly generated
data sample was merged into the original training data set under
the condition that the class reconstruction loss was satisfied;
and (3) predicting pain scores, where the VAE decoder was
used to initialize the weight of the hidden layers, the merged
training data set was used to train the classifier, and the trained
classifier was used to predict pain scores on the testing data set.

Experimental Study
In our experimental study, we implemented our methodology
on a deidentified EHR data set. This study design helped us
discover our method’s performance in predictive modeling for
patients with SCD. Across several attributes comprising patient
clinical records and individual health status, 9 attributes,
including vital signs and medication information, were
considered for the data analysis of 496 patients. As mentioned
previously, the goal was to predict pain scores based on
high-dimensional features.
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We implemented the VAE using the PyTorch and Keras libraries
with a TensorFlow backend in Python. The VAE architecture
has 5 hidden layers (2 hidden layers of encoders and decoders
and 1 middle layer). We applied hyperparameter tuning for
major hyperparameters such as the learning rate, activation
functions, and batch size to select the best hyperparameters. We
used a hidden dropout component with a dropout rate of 0.2
and a sigmoid activation function for the final layers. The
models were trained for 100 epochs using an Adam optimizer
with a learning rate of 0.001 (with exponential decay rates of
first- and second-moment estimates β1=.9 and β2=.999) and a
batch size of 64. Once the latent features were extracted, they
were fed into a supervised learning model for pain score
prediction. For the supervised learning step, we considered 3
well-known supervised classifiers: RF (with 50 trees and half
of the features considered at every split), Lasso regression, and
SVM (with radial basis function kernel C 1.5 and gamma set
to 1/Nf, where Nf denotes the number of features). We used the
grid search method to determine the optimal hyperparameters
for supervised classifiers. We used the average accuracy as our
evaluation measure for performance evaluation in the testing
process. Finally, we visually inspected the learned
representations of the entire data set and compared them with
the represented data. We used t-distributed stochastic
neighboring embedding (t-SNE) [35] for this task.

Ethics Approval
The study protocol was approved by the institutional review
board of Duke University Medical Center in May 2018 with
IRB number Pro00068979. Identifiable personal information
was not collected; all data were kept confidential and safe
according to the internal data security policy, and they were
only accessible to authorized researchers.

Results

Vital Signs
We evaluated our approach using VAE data (represented data)
and original data (unrepresented data) on supervised classifiers
for pain prediction tasks and compared their performance based
on the results obtained from the testing process with 5-folds
cross-validation (for each fold, we considered 80% of the data
for training, 10% for the validation set, and 10% for the test
set). This comparison is presented in Table 1. We would like
to note here that missing values for pain scores were not
imputed. In our data set, we had 11 unique self-reported pain
scores where patients described their experienced pain intensity
on a scale of 0 to 10. It is challenging for one person to
distinguish between such broad and granular pain intensity
levels and be consistent in the reporting of every pain episode.
Hence, in addition to the 11 pain scores, we evaluated our pain
prediction models by transforming our data set into a 6-point
rating scale, a 4-point rating scale, and a binary rating scale
according to the following transformation rules:

1. The 6 pain scores: none=0, very mild=1 to 2, mild=3 to 4,
moderate=5 to 6, severe=7 to 8, and very severe=9 to 10

2. The 4 pain scores: none=0, mild=1 to 3, moderate=4 to 6,
and severe=7 to 10

3. The 2 pain scores: no or mild pain=0 to 5 and severe pain=6
to 10

As shown in Table 1, an RF-supervised classifier trained on
data represented using VAE performed best in each pain rating
scale, achieving the highest accuracy of 60.3% in predicting 2
pain scores (no or mild pain and severe pain). According to
these results, our approach with representation learning reduces
the prediction error and achieves better accuracy than using the
original features.

Table 1. Pain prediction results in varying pain scales on vital signs data (accuracy) arranged from higher resolution to lower resolution.

2 pain scores4 pain scores6 pain scores11 pain scoresApproach

LassoSVMRFLassoSVMRFLassoSVMRFLassoSVMbRFa

0.4860.5130.5350.3920.4260.4320.3370.3520.3630.2160.2420.301Original data

0.5490.5610.6030.4390.4520.4720.3480.3710.3910.3070.3210.343VAEc data

aRF: random forest.
bSVM: support vector machine.
cVAE: variational autoencoder.

Vital Signs and Medicinal Data
We also analyzed the performance of pain score prediction using
only vital signs compared with including medication
information. We show in Table 2 that our approach with the RF
classifier achieves better accuracy with medication and vital
signs information than with only vital signs information in
predicting the respective pain scores. This indicates that when
provided with additional medication information, our approach
can learn better representations of patient profiles from vital
signs to predict their pain levels. The higher accuracy associated
with the narrow scales is attributed to the narrow space to

misclassify many records by our models, thereby improving
the chances of correctly predicting the pain score.

We also show in Table 3 the area under the curve (AUC) for
the receiver operating characteristic for the best-performing,
clinically relevant (as suggested by our coauthor clinical partner)
models (models a, b, d, and e from Table 2). Overall, the AUC
for both the 2 pain score and 4 pain score rating scales suggested
no discrimination. This indicates that our models can predict
pain in patients based on their vital signs and medication
information at various intensity levels. For the 2 pain score
rating scales, an AUC of 0.92 suggests a 92% chance that our
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model correctly distinguishes a pain score in the no or mild pain
range (0-5 pain score) from the severe pain range (6-10 pain
score) based on the patient’s vital signs and medication
information instead of a random assignment probability of 50%.

Empirically, our results demonstrate that (1) medical feature
representation can improve prediction performance, and (2)
medication information can lead to significant improvement in
pain level prediction.

Table 2. Pain prediction results in varying pain scales on vital signs data (accuracy) as compared with additional medication data arranged from higher
resolution to lower resolution.

2 pain scores4 pain scores6 pain scores11 pain scoresApproach

Vitals+medicinalVitalsVitals+medicinalVitalsVitals+medicinalVitalsVitals+medicinalVitals

0.787b0.5350.689a0.4320.4630.3630.4420.301Original data

0.828e0.6030.706d0.4720.4930.3910.4760.343VAEc data

aModel with original representations using both vital and medication data for the 4 pain score rating scale.
bModel with original representations using both vital and medication data for the 2 pain score rating scale.
cVAE: variational autoencoder.
dModel with deep representations using both vital and medication data for the 4 pain score rating scale.
eBest-performing model with deep representations using both vital and medication data for the 2 pain score rating scale.

Table 3. Area under the curve for the receiver operating characteristic for the best-performing models (models a, b, d, and e).

2 pain scores4 pain scoresApproach

Severe pain: 6-10No or mild pain: 0-5Severe: 7-10Moderate: 4-6Mild: 1-3None: 0

0.890.910.830.880.850.82Original data

0.890.920.830.890.860.82VAEa data

aVAE: variational autoencoder.

Discussion

Principal Findings

Overview
Our study demonstrates that although there are complications
associated with using medication data for prediction at the same
time as pain measurements, ML models can be used for dynamic
pain and medication measurements. Our findings indicate the
importance of medication information (achieving an accuracy
of 82.3%) and demonstrate that a larger cohort of patient data
with deep representational learning improves model performance

(by 17.5% as compared with Padhee et al [6] and by 24.6% as
compared with Yang et al [4]). Furthermore, from our
unsupervised analysis, we distinguished unique patient profiles
(Table 4) that can help isolate different patient profiles to further
understand the role of physiology and medication in pain
response. In addition, there are 2 main types of opioids:
short-acting analgesics and sustained-release analgesics, and
the dosing pattern differs depending on the properties of these
drugs. Our initial results show that considering medication type
(Textbox 1), status, and dosage can improve pain assessment
models, providing evidence for future studies to further analyze
the variability in dosing patterns.
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Table 4. Sample of patient profiles from the learned variational autoencoder representations clustered together using t-distributed stochastic neighboring
embedding projections, as shown in Figure 3.

Correlation between medication
dosage and vital signs

Vital signsCorrelation between medica-
tion and pain score

Patient num-
ber

RegionMedication administered

0.65Temperature0.2311aOxycodone

0.65Temperature0.1111Hydromorphone

0.65Temperature0.1711Acetaminophen

0.47Systolic blood pressure0.5521Ketorolac

0.47Systolic blood pressure0.2421Hydromorphone

0.099Systolic blood pressure0.3532bHydromorphone

0.099Systolic blood pressure–0.2032Acetaminophen

0.04Pulse0.4132Ketorolac

0.27Systolic blood pressure0.5943bOxycodone

0.27Systolic blood pressure0.0843Hydromorphone

0.13Peripheral capillary oxygen
saturation level

—d54cFentanyl

0.47Temperature—64Acetaminophen

0.38Pulse—64Acetaminophen

0.28Peripheral capillary oxygen
saturation level

—64Acetaminophen

aHigh pain.
bModerate pain.
cNo or low pain.
dMedication not available.

Figure 3. Visualization of the learned data representations using t-SNE: t-distributed stochastic neighboring embedding projections. VAE: variational
autoencoder.

Deep Representation Learning
In this study, we applied a deep feature representation to predict
the pain scores of patients with SCD based on their vital signs
and medication information. These results emphasize that
representation learning can play an effective role in the
performance of clinical prediction. As shown in Table 1, our
models trained on deep represented features can identify pain
scores for 6.8% more patients at an abstract pain intensity level

of no or mild pain or severe pain. They also display significant
improvement by detecting pain intensity for 4.2% more patients
at a highly granular pain score intensity (ie, on 11 pain ratings)
than models trained on unrepresented raw vital signs data. We
observed a similar performance of deep represented features
compared with raw data features when medicinal data were
included in the modeling, which may indicate that the
medication information can allow the use of simpler features
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by providing more pain-related information than the more
convoluted deep represented features. However, our models
trained on VAE-represented features generated using both vitals
and medicinal data could identify pain scores for 3.4%, 3%,
1.7%, and 4.1% more patients from higher to lower resolutions
of pain intensity than models trained on raw data. To investigate
further, we show the confusion matrices of the best-performing
models trained on vitals and medicinal data in Figures 4-7. As
shown in Figures 4 and 5, it is interesting to note that with deep
feature representations, our model can accurately identify not
just 87 more cases of no or mild pain but 55 more cases of
severe pain while reducing misclassification. This is important
to consider in a clinical setting while deciding on the diligent
use of medications in a larger patient cohort.

Similarly, Figures 6 and 7 show that with more granular 4-point
pain intensity levels (pain scores: none=0, mild=1-3,

moderate=4-6, and severe=7-10), our model trained on deep
represented features can identify more instances for each
category accurately than the original data representations while
reducing the misclassification. The model can identify more
instances of moderate pain than none, mild, or severe pain. It
is noteworthy that the misclassification for each pain category
reduced with the stretch between the pain severity levels. For
example, as shown in Figure 7, our best model for 4 pain scores
(Table 2) incorrectly predicted 21 instances of severe pain data
as no pain, 35 instances as mild pain, and 132 instances as
moderate pain, highlighting that the error primarily lies in the
prediction of moderate pain as no pain. Similarly, it predicted
16 instances of low pain as severe pain, 39 as moderate pain,
and 141 as mild pain. Misclassification reduces with the
granularity of pain intensity, reflecting the subjective nature of
pain.

Figure 4. Confusion matrix for the best-performing model with original data representations for 2 pain score levels (pain scores: no or mild=0-5 and
severe=6-10; Table 2, model b).
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Figure 5. Confusion matrix for the best-performing model with variational autoencoder data representations for 2 pain score levels (pain scores: no or
mild=0-5 and severe=6-10; Table 2, model e).

Figure 6. Confusion matrix for the best-performing model with original data representations for 4 pain score levels (pain scores: none=0, mild=1-3,
moderate=4-6, and severe=7-10; Table 2, model a).
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Figure 7. Confusion matrix for the best-performing model with variational autoencoder data representations for 4 pain score levels (pain scores: none=0,
mild=1-3, moderate=4-6, and severe=7-10; Table 2, model d).

Role of Medicinal Data
Although prior studies have shown the efficacy of data mining
techniques in implementing medical decision-making with
treatment outcome prediction [36,37], to the best of our
knowledge, this is the first study to analyze the role of
medication in pain level prediction for patients with SCD. Our
results show that for abstract pain levels, representational
learning–based approaches can predict whether a patient is
experiencing pain for 22.5% more patients when provided with
their medication information (Table 2). This means that when
our model is provided with not only vital signs information but
also medication type, total medication dosage, and whether the
medication was given or missed, it can better predict whether
more patients are experiencing pain than when provided with
only vital signs. This finding is substantiated by the current
medical literature on pain management [38], where clinical
research focuses on determining the optimal medication dosage
for individual patients. By building a model that incorporates
medication information and physiological data, we are one step
closer to future pain forecasting that can use current
physiological information and pain medication to predict pain
at a future time point for assessing the next medication dosage
and time.

Furthermore, for a higher resolution of pain levels (ie, 11 levels),
our deep representational learning–based approaches could
predict subjective pain scores for 13.3% more patients when
provided with medication information. In addition, our model
can predict such highly subjective pain scores for 38.5% more
patients than the random assignment of 9.09% (ie, 1/11 pain
scores) when provided with both vital signs and medication
information of the patients.

Visualization
We visually inspected the learned representations of the entire
data set obtained from VAE representations. Using t-SNE plots,
as shown in Figure 3, we compared the disentanglement levels
of the represented and raw data. The t-SNE projections clearly
show that the VAE can produce sparser and more disentangled
representations than the raw data. Although the t-SNE
projections of the raw data also indicate data separability, the
deep representations can identify variations in mean pain scores
(low, moderate, and high). This may explain the competitive
performance of the benchmark classifiers in the previous section
and the advantage of integrating vital signs and medication data.
Although some embeddings were clearly clustered closer to the
same pain range, we also observed some overlaps. Specifically,
we observed better alignment among the low pain and high pain
profiles than among the moderate pain profiles. This may be
because of the variation and frequency of the data recordings
made for the patients. These preliminary visualization results
indicate that our VAE method may require additional data to
generate representations that obtain a more granular separation
between patients’ pain scores.

Patient Profiles
To understand the alignment of the representations learned by
our best-performing VAE model, we illustrated 6 sample patient
profiles clustered into the 3 pain range categories (no or
low=0-3, moderate=4-6, and high=7-10) by the t-SNE
projections of the embeddings (as shown in Figure 3). As shown
in Table 4, we present 2 patient profiles from each of the 3
categories of pain scores with regard to the medication
administered and the vital signs. It should be noted that we
specifically chose regions where the pain profiles belonged to
1 of the 3 pain levels. Although we chose 2 patient profiles from
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better-aligned regions 1 and 4, we compared 2 patient profiles
from a more spread-out moderate pain intensity (regions 2 and
3). Patient numbers are anonymized patient identifiers used in
this study.

We observed a positive correlation between the medications
administered and pain scores in all 4 patients with high and
moderate pain levels. This reflects that the patients reporting
higher pain scores were administered an increased medication
dosage (as shown in Figure 8 for patients 1 and 3), and our
model learned that relationship. For both patients (patients 1
and 2) with high pain, we observed a positive correlation
between hydromorphone dosage and pain score, as well as a
high correlation between total medication dosage and vital signs,
which may be reflective of more pain medications being given
when a patient has high pain. This indicates that our model
learned the interplay among medications, vital signs, and pain
intensity. It will be interesting to analyze these correlations
before and after medication in the future.

For both patients (patients 3 and 4) with moderate pain, in
addition to a positive correlation between hydromorphone and
pain score, we observed a positive correlation between
medication and blood pressure. This indicates that our model

learned a possible association of administering hydromorphone
for moderate pain intensity levels, during which the patients
have elevated blood pressure. However, patient 4 had a higher
positive correlation between medication dosage and vital signs
than patient 3. This may be a possible reason that they were not
close in the embedding space and belonged to distant regions,
as shown in Figure 3.

Although we did not observe any significant correlation between
medication and pain scores for both patients (patients 5 and 6)
with no or low pain, we observed a positive correlation between
medication and vital signs. This may again be suggestive of
elevated vital signs that occur with pain, leading to medication
administration. Although both patients might have reported
varying pain scores between 0 and 3, it is highly challenging to
differentiate between pain scores of 1 and 2 or 2 and 3. Hence,
it might be the case that with medication, their vitals improved
(as indicated by the positive correlation), making them feel
better. This sample patient profile study indicated that deep
feature representations can be used to learn complex
relationships between various factors influencing pain
management. With more data for each patient, this study can
be extended to the design of personalized pain management
tools to assist clinicians.

Figure 8. Distribution of medication dosage with pain score for sample patients with high and moderate mean pain intensity.

Study Strengths
The design of an objective pain prediction model could
potentially assist medical providers in pain management. The
lack of objective pain markers has limited the optimal pain
assessment strategies for patients with regular pain episodes.
As discussed earlier, objective vital signs data can improve pain
assessment using ML algorithms. In this study, we developed
ML models that can classify pain scores of patients at varying
scales and may soon be used to predict pain intensity in
individuals with pain based on objective and physiological data

and the type, dosage, and status of medication. In the future, a
tool designed using our model could be used reasonably quickly
to generate pain intensity predictions for unseen new patient
data in both inpatient and outpatient hospital visits. This research
provides an essential step toward assisting medical practitioners
with additional objective pain measures while deciding on a
pain management strategy.

Limitations
There were a few limitations to our study. We did not consider
our hypothesis that each patient had pain management strategies
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through individualized pain protocols, which varied among
patients and led to specific pain medications being administered
at varying intervals. In addition, because of variations in patient
pain record intervals, we did not evaluate before and after
administration of pain medication in pain prediction. Both opioid
and nonopioid medications, when administered, are known to
affect vital sign parameters independently and to varying
degrees. For example, opioids can slow a patient’s breathing
and lower blood pressure. Furthermore, the status of medicine
prescription and total medication dosage are subjective variables
that may vary between centers and physicians. Our analysis
using these variables has not been validated using data from
multiple centers.

Furthermore, pain medications may affect patients to different
degrees based on the dosing, type of medication, and previous
patient history of receiving pain medications. Owing to the
variation in data per patient, we could not evaluate such
individualized factors. In the future, it will be helpful to analyze
the role of individual medication protocols in individualized
pain prediction and pre- and postadministration changes.

Conclusions
In this study, we propose an effective pain prediction model
based on objective vital signs and pain medication use. Our
experiments demonstrated that information about pain
medication (type, dosage, and status) can improve pain intensity
prediction at both abstract and granular levels. Our analysis
indicates the role of medication information in pain assessment
and demonstrates that a larger cohort of patient data with deep
representational learning improves model performance and can
help isolate different patient profiles for further understanding
of the role of physiology and medication on pain response. In
the future, this study can be extended to further investigate the
effect of variation in medication protocols, such as changes in
vital signs before and after medication and the time elapsed
between medication doses. This would be an essential part of
a real-time pain forecasting system and can be extended as a
trial that evaluates the timing of the administration of additional
doses of opioids based on physiological and objective data alone.
Our initial results indicate promise in pursuing each of these
efforts, and our study is a valuable addition to ongoing studies
investigating how objective vital signs and medication data can
be used to help providers to better understand and design pain
management strategies.
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