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Abstract

In this paper, thermal (8-13 uym) and hyperspectral imaging in visible and near infrared
(VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of
early detection of biotic stresses caused by fungal species belonging to the genus Alternaria
that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and
non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measure-
ments of disease severity for chosen dates after inoculation were compared to temperature
distributions on infected leaves and to averaged reflectance characteristics. Statistical anal-
ysis revealed that leaf temperature distributions on particular days after inoculation and
respective spectral characteristics, especially in the SWIR range (1000-2500 nm), signifi-
cantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as
well as from leaves of non-treated plants. The significant differences in leaf temperature of
the studied Alternaria species were observed in various stages of infection development.
The classification experiments were performed on the hyperspectral data of the leaf sur-
faces to distinguish days after inoculation and Alternaria species. The second-derivative
transformation of the spectral data together with back-propagation neural networks (BNNs)
appeared to be the best combination for classification of days after inoculation (prediction
accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%).

Introduction

In natural, uncontrolled conditions, crops and other plants are exposed to a combination of
various biotic and abiotic stresses that affect host metabolism and lead to large yield losses [1-
4]. Biotic stresses are caused by living organisms, such as fungi, bacteria, viruses, and insects,
which infect plants using various strategies. One of the most popular ways of pathogen inva-
sion of plants is by penetrating stomata. The increase in water permeability of cell membranes
is increased by producing specific compounds, which may affect cuticular and stomatal con-
ductance [5,6]. After infection, plants activate their defence mechanisms and undergo
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alterations of growth and development. The most common plant response to infection is the
accumulation of specific compounds promoting thermal and stomatal change, such as salicylic
acid [5]. Chaerle and Van Der Straeten [7] reported that hydrogen peroxide produced by Pseu-
domonas syringae induced the closure of stomata.

It is expected that climate change also might have a significant influence on plant biodiversi-
ty as well as host-pathogen interactions [8]. Harvell et al. [9] suggested that climate warming
can contribute to increasing pathogen development rate and sporulation, resulting in a greater
number of generations per year. Moreover, milder winters relax restrictions on pathogen life
cycles and modify susceptibility of host plants. Changes in these mechanisms may cause an in-
crease in the number of invasive pathogens and enhance their pathogenicity.

During plant stress, absorption of incident light changes in both the visible and NIR ranges
[10-12]. This is due to the decrease in leaf chlorophyll concentration and changes in other pig-
ments [13-17]. The change of absorption consequently influences the reflectance of stressed
plants, which can be visualised by hyperspectral imaging systems as locally changed spectral
characteristics of leaf surfaces [18-21]. Delalieux et al. [22] used hyperspectral analysis to de-
tect biotic stress in apple trees. These authors demonstrated that cell structural changes in the
leaves, induced by the biotic stress, resulted in visible, chlorotic lesions that mostly impacted
the reflectance values of the wavelengths in the range of 580-660 nm, which corresponds to re-
gions of chlorophyll absorption. It confirms that infected plants have lower chlorophyll con-
centrations compared to those of non-infected plants. The multispectral and hyperspectral
reflectance imaging systems also were used to study powdery mildew in wheat [23], tomato
late blight [24], grey mould on eggplant leaves [25], and sunflower fields infested by Ridolfia
segetum [26].

To evaluate the stage of infection by pathogens and physiological status of fruit tissue, ma-
chine learning methods were used and developed [27-29]. The changes in metabolic processes
influencing stomatal closure mechanisms can be monitored by thermographic systems that
show modifications in leaf temperature distributions [30,31].

Non-destructive methods, such thermography, successfully have been used to detect bacte-
rial, viral, and fungal infections [32-36] and also to assess plant-pathogen interactions by
monitoring patterns of leaf surface temperature [7,37]. Digital infrared thermography was suc-
cessfully applied to find correlations between temperature and transpiration of cucumber
leaves infected with Pseudoperonospora cubensis [36,38] and apple leaves infected by the apple
scab fungus, Venturia inaequalis [39,40]. It was found that pathogen infections induced a de-
crease in leaf temperature 1-3 d before the appearance of visible symptoms. They also indicat-
ed the relationship between the percentage of diseased leaf area and the maximum temperature
difference observed on the leaf by thermography.

One of the major plant pathogens is the fungus from the genus Alternaria. The genus Alter-
naria is ubiquitous and includes both plant-pathogenic and saprophytic species, which may af-
fect crops in the field or cause harvest and postharvest decay of plant products. The taxonomy
of the genus Alternaria recently has undergone great changes (it is not yet well-defined). In
general, certain species of Alternaria infect only a well-defined range of host plants. However,
under certain circumstances, pathogens can mutate and infect new plants. Alternaria dauci,
which causes leaf blight of carrot, also can be pathogenic to rape [41]. Species belonging to
Alternaria are able to produce numerous secondary metabolites, including phytotoxins, which
play an important role in the process of pathogenesis [42]. Phytotoxin production depends on
fungal species and character of individual strains as well as on environmental conditions. Gen-
erally, phytotoxins of Alternaria are strongly pathogenic to some plant species and are weakly
or non-pathogenic to other plants [43].
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Fungi of the genus Alternaria penetrate plant cells via stomata or directly through the cuticle
and epidermis, but the frequency of stomatal penetration exceeds that of epidermal penetration
[44]. The infestation of leaves of oilseed rape causes obstruction and dysfunction of stomata,
which affects the physiological processes in plants. One such process is leaf transpirational
water loss, which is determined by stomatal conductance [45]. When stomata are open, tran-
spiration cools the leaf, but when stomata are closed, transpirational cooling is no longer possi-
ble. To properly use the knowledge of the actual temperature distribution on the leaf surface, it
is important to be able to distinguish between natural variation (spatial and temporal) of the
leaf temperature and its sensitivity to the studied process. Temperature of leaves is affected by a
wide range of plant and environmental features; therefore, studies on the influence of biotic
stresses should consider their dynamic changes. The best way to do this is to apply the leaf en-
ergy balance equation [6]. The studies of leaf radiation temperature in field and laboratory
conditions were greatly facilitated by the use of non-contact infrared thermometers and
thermographic systems.

The goal of this study was to elaborate the method of early detection of biotic stresses caused
by fungi based on agrophysical measurements, such as temperature and reflectance, of plant
tissues in visual and infrared ranges of wavelengths. The evaluation was performed for fungal
species belonging to the genus Alternaria that were host and non-host pathogens to oilseed
rape (B. napus).

Materials and Methods
Material and its preparation for measurements

Oilseed rape plants used in this study were grown at a 20/16°C day/night-temperature regime
with a photoperiod of 14/10 h. Light and air conditioning was automatically controlled. The
study was performed using a Polish variety of oilmid rape called Monolit, which was obtained
using tissue culture techniques, resulting in small genetic diversity and high uniformity of
plants. The seeds were sown in a 1:1 mixture of sterile peat:soil in 7 x 7-cm plastic pots in four
replicates of 14 pots, each containing one plant. Plants were grown for 6 weeks, until the devel-
opment of the third leaf. The inoculation was performed by spraying plants with spore suspen-
sions, which were 1:1 mixtures of two isolates of different origins of each of the following
species: A. alternata, A. brassicae, A. brassicicola, and A. dauci (Table 1). Leaves of control
plants were sprinkled with water. The inoculum was obtained by growing the selected isolates

Table 1. The origins of Alternaria species used in this experiment.

No. Species Isolate symbol Plant Location Region Season and Year
1 A.alternata ATW 47-8-1 Oilseed rape Woydartowo (51 °71°23"N 16 °80’4"E) GPOL Spring 2001

2 AWJ 46-3 Chlebowo (52 °2'23"N 14 °52°3"E) OPOL Autumn 2000

3 A. brassicae ACCA1 Cerekwica (51 °55'35”N, 17 °20'18"E) GPOL Spring 2004

4 Bor6 Borowo (52 °7’19"N 16 °47°10’E) GPOL Autumn 2002

5 A. brassicicola ATW 42-2 Lasin (53 °31’15"N 19 °5'3"E) KUJP Spring 2001

6 ABCOLA Baldy (53 °35'56"N 20 °36'24"E) VMAZ Summer 2010

7 A. dauci ADAUA1 Carrot Baranowo (53 °10’34”N 21 °17°35”E) GPOL Autumn 2005

8 ADAU2 Torun (53 °1’1”N 18 °36°35”E) KUJP Autumn 2010

Explanations: GPOL, Great Poland (central-west Poland); KUJP, Kujavia-Pomerania (central); OPOL, Opole region (southwest); Varmia-Mazuria
(northeast)

doi:10.1371/journal.pone.0122913.1001
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of Alternaria on potato dextrose agar medium obtained by mixing 34 g of potato dextrose
broth (Sigma, UK) and 20 g of technical agar (Sigma, UK) per 1 L of media.

The isolates were grown on 90-mm Petri dishes filled with 20 mL of media for 14 d in dark-
ness at 20°C. Spores were washed off the Petri plates using sterile, distilled water and adjusted
to a concentration of 5 x 10> of conidiospores per 1 mL. In the case of A. brassicae (a producer
of very large spores), the concentration of spores was 5 fold lower (1 x 10 spores per 1 mL of
spore suspension). After the inoculation of plants, the relative air humidity was increased to
85% for 72 h by covering the plants with plastic hoods. The hoods were then removed, and
high humidity (70%) in the glasshouse was maintained. Evaluation of disease severity was per-
formed using a 10-grade scale (0-9), where 0 is a healthy plant and 9 is a plant completely
damaged by the disease. The measurements were collected at 3, 7, 14, and 21 d after plant
inoculation.

Thermal imaging system

The SC620 thermographic camera (FLIR Systems, Inc., USA) was used, which is sensitive in
the mid-wavelength infrared range (MWIR) of 8-13 um. Using an uncoooled microbolometer
with a format of 640 x 480 pixels, recording at 30 Hz in full resolution was possible. The ther-
mal sensitivity expressed as the noise-equivalent temperature difference (NETD) of the system
was 40 mK at an object temperature of 25°C. The spatial resolution of the camera was 0.65
mrad. Connection with a personal computer was possible via a firewire port with a transfer
speed of 14-bit real-time video. A lens with an angular field of view of 24 x 18° was used. An in-
tegrated 3.2-megapixel visual camera for generating visual images was used to merge visual
and thermal images to better identify selected parts of leaves during image analysis. All series
of measurements were performed at 21°C air temperature and relative humidity of 70% in day-
light. The distance between the camera lens and the leaf surface was 0.6 m. During the mea-
surement of individual leaves, the thermal camera was positioned perpendicular to their
surfaces at a distance of 1.5 m. The adopted emissivity coefficient of the leaves was 0.98.

Hyperspectral imaging system

Two linear hyperspectral scanners were used as the hyperspectral system: a VNIR camera with
an ImSpector V10E imaging spectrograph (400-1000 nm) and a SWIR camera with a N25E 2/
3” imaging spectrometer (1000-2500 nm) (SPECIM, Finland). The cameras were mounted 40
cm above a conveyor belt that had the speed regulated for each camera (to perform line scan-
ning of the leaves). The leaves from the pots selected for hyperspectral analysis were cut out di-
rectly before the measurements and put on the conveyor belt surface with their surfaces
perpendicular to the camera axis. The illumination source in the system consisted of 12 20-W
halogen lamps placed in the inside bottom part of a hemispherical diffuser. The diffuser al-
lowed homogeneous illumination of the scanned surface of the rape leaves to be obtained. The
measurements were performed in a dark room to prevent the influence of external illumina-
tion. For each camera, speed of the conveyor belt movement during line scanning was adjusted
individually to suit differences in spatial resolution and integration time of the cameras. The
average speed of the belt conveyor was 0.025 m/s. The resolution of the VNIR camera image
was 1344 (spatial) by 1024 (spectral) pixels by 12 bits, which corresponded to a root mean
square (rms) spot radius of less than 40 um and spectral resolution of 6.8 nm (with 30-um slit
width). A lens with a focal length of 23 mm, F-number of 2.4, and maximum spatial image size
of 14.4 mm was used with the VNIR camera.

The image from the SWIR camera had a resolution of 320 (spatial) by 256 (spectral) pixels
by 14 bits, which corresponded to an rms spot radius of less than 15 um and spectral resolution
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of 10 nm (30 um slit). A lens with a focal length of 30.7 mm, F-number of 2.0, and maximum
spatial image size of 12.8 mm was used with the SWIR camera. The exposure time for the
VNIR camera was about 3.6 ms and for the SWIR camera about 7.2 ms. The lenses of VNIR
and SWIR cameras were equipped with spectral flattening filters (SP-SFVNIR/40 and
SP-SESWIR/40 [SPECIM], respectively).

The hyperspectral images from the two cameras were recorded on a PC using SpectralDAQ
2.1 data acquisition software for SPECIM cameras. The acquisition time of one scan of the fruit
surface for the VNIR and SWIR cameras was 5 s. For each series of measurements, white and
dark calibrations were performed to obtain the reflectance R from the raw data.

Analysing algorithms

Thermographic data analysis. The registered thermal images of oilseed rape were initially
processed with ThermaCam Researcher Professional 2.9 software (FLIR Systems, USA). The
areas of individual leaves were selected with the use of polygon selection tool. Temperatures of
all pixels within each area were subsequently sent to the records of a common database, taking
into account the day after inoculation and type of inoculant/control. Each variant of inoculant
type/control and day after inoculation contained between 80 x 10* and 200 x 10> temperature
values of all pixels from 20 leaves. The basic statistics of the leaf temperature distributions for
each variant of the experiment were calculated with the use of RStudio integrated development
environment for R (version 0.97.551).

Hyperspectral data analysis. Each hyperspectral image included a few (2-6) oilseed rape
leaves recorded at the same time. From the hyperspectral cube of studied leaves, one image was
selected to create the binary masks of all the leaves in the image (in the majority of cases, this
was the 540-nm image). The binary masks of the leaf surfaces were put on the average image of
these wavelengths to eliminate the background. The average reflectivity from all the pixels in
each region of the leaf surface was calculated separately for all the bands. The average spectral
characteristics of leaf areas of all studied plants were gathered in an Excel 2007 (Microsoft Cor-
poration, USA) database, which was then transposed into Attribute-Relation File Format
(ARFF), the native file format in the Waikato Environment for Knowledge Analysis [“Weka”].

The pre-treatment of spectral characteristics was completed with the use of The Unscram-
bler X 10.1 (CAMO Software, Norway). First, the raw spectral data were smoothed with a
Gaussian filter. The second derivative was then calculated, with the Savitzky-Golay method
(fourth-order polynomial and 11 smoothing points) applied. The second derivative is a mea-
sure of the change in the slope of the curve. It is not affected by any linear “tilt” that may exist
in the data and is, therefore, a very effective method for removing both the baseline offset and
slope from a spectrum.

Pre-processing of the hyperspectral data consisted of choosing, from the whole spectral
range registered by the two cameras, the range in which the spectral characteristics of the signal
were sufficiently strong. To avoid the low signal-noise ratio and diminish the problem of high
dimensionality of feature spaces (known as the Hughes phenomenon), only the wavelengths
ranging from 430-2376 nm were used for classification, with approximately 32-nm increments
per pixel. This way, 61 channels represented independent variables in the created models.

The classification experiments were performed on the hyperspectral data of the leaf surfaces
(251 instances were randomly selected for the training/testing set and 28 instances for the vali-
dation set). The experiment of learning and testing was repeated 10 times with random data se-
lection (cross-validation method). For each fold, the proportion between the data used for
learning and data used for testing was 10-90%. It has been confirmed [46] that the stratified
10-fold cross-validation is a standard evaluation technique in situations where only limited
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Table 2. Chosen features of the classifiers used in the study.

Type of
classifier

Bayes

Functions

Trees

Name of
classifier’s
library

Naive Bayes

Simple logistic

LibSVM

LibLINEAR

Multilayer

perceptron

Functional trees

Random forests

J48

doi:10.1371/journal.pone.0122913.1002

Description of algorithm

Acronym Chosen parameters of classifier

Naive Bayes classifier that uses estimator classes. Numeric  NB Use supervised discretisation: true;
estimator precision values are chosen based on analysis of Debug: false;
the training data. Use kernel estimator: false
Builds linear logistic regression models with built-in attribute  SL Heuristic stop: 50; MaxBoostinglterations:
selection. 500; Numboostinglterations: 0
A wrapper class for the libSVM tools. Allows users to SVM SVM Type: nu-SVC; Kernel type: linear;
experiment with one-class SVM, regressing SVM, and nu- Ny: 0.5; Normalise: true;
SVM supported by LibSVM tool. Probability estimates: true
A wrapper class for the liblinear classifier. LINE SVM type: L2 loss support vector
machines; Bias: 1.0;
Normalise: true
Uses back-propagation neural networks to classify BNN AutoBuild: true; Learning rate: 0.3;
instances. Momentum: 0.2; Training time: 500
Hidden layers = (attribs + classes) / 2
Classifier for building ‘functional trees’, which are FT BinSplit: false; Model type: FT;
classification trees that could have logistic regression NumBoostinglterations:15
functions at the inner nodes and/or leaves.
Classifier for constructing a forest of random trees. RF Debug: false;
MaxDepth: 0;
Num of features: 0;
Num of trees: 10;
Seed: 1
Classifier for generating a grafted (pruned or unpruned) J48 Confidence factor: 0.25;
C4.5 decision tree. Debug: false;

The minimum number of instances per
leaf: 2;

Subtree raising: true

data is available, and it is regarded as the most rigorous. The idea of 10-fold cross-validation is
that data are partitioned randomly into 10 complementary subsets. Each subset is held out in
turn and the learning scheme trained on the remaining nine-tenths. Its error rate is then calcu-
lated on the holdout set. The learning procedure is executed a total of 10 times on different
training sets.

All classification algorithms were implemented from the “Weka” [46]. In this study, two cat-
egories of “Weka” classifiers were used: functions and trees. Initially, the majority of available
classifiers in these categories were tested on representative groups of training and testing data.
Eight with the best prediction accuracies were chosen for comparison (these classifiers are pre-
sented in Table 2 together with a general description and the actual parameters determined in
this study).

The Weka knowledge flow interface was used for all the studied classifiers in which two
groups of dependent variables in classification models were used: days after inoculation (3, 7,
14, and 21 d after inoculation) and Alternaria species used for inoculation (A. alternata, A.
brassicae, A. brassicicola, and A. dauci) as well as the control. This graphical interface allows
the design and execution of configurations for streamlined data processing. The supervised
classification models for the eight tested classifiers were created to distinguish between days
after inoculation and between various Alternaria species. The parameters of the classifiers used
to create the models are described in Table 2.
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Fig 1. Disease incidence (a) and severity (b) of oilseed rape (Brassica napus) plants treated with four Alternaria species on various d after
inoculation (dai). Disease incidence was calculated as the percentage of infected plants treated with Alternaria spp. Disease severity was measured
according to a 0-9 scale, where 0 is a healthy plant and 9 is a plant completely damaged by the pathogen. Alternaria host species to oilseed rape: A.
brassicae, A. brassicicola, A. alternata; non-host Alternaria species to oilseed rape: A. dauci.

doi:10.1371/journal.pone.0122913.g001

Results
Disease incidence and severity

The disease incidence greatly differed between Alternaria species and measurements in subse-
quent time points. No disease symptoms were observed on the third day after inoculation re-
gardless of Alternaria species used for artificial infection. At 7 d after inoculation, three species
for which oilseed rape is a host plant (A. brassicae, A. brassicicola, and A. alternata) caused
small disease symptoms on approximately 25% of plants, ranging from 22.6% of plants infected
by A. alternata to 30% of plants with disease symptoms caused by A. brassicae (Fig 1a). At this
time point after inoculation, the mean disease severity on oilseed rape plants was about 0.5,
which indicates small spots on leaves (Fig 1b). In addition, no disease symptoms were observed
on oilseed rape leaves sprayed with the spores of A. dauci, which are pathogenic to carrot but
not oilseed rape. Very small disease symptoms caused by these two species were visible for the
first time 2 weeks post inoculation. At this time, A. brassicae, A. brassicicola, and A. alternata al-
ready showed considerable disease symptoms on 90.3-100% of plants. Three weeks after inocu-
lation, all plants sprayed with the spores of these three species were infected, and the mean
disease symptoms were in a narrow range—from 5.6 (A. alternata) to 5.9 (A. brassicae). Three
weeks after inoculation, oilseed rape plants sprayed with the spores of Alternaria species to
which they were host plants started to wilt and turn yellow. Disease patterns of A. dauci greatly
differed from the other three studied species, although with time the disease symptoms were ap-
pearing on oilseed rape plants to a very small extent (mainly on the 21* day after inoculation).

Statistical analysis of temperature distribution of infected leaves

The temperature distributions of infected and control leaves were analysed by selecting leaf
areas in each thermal image with the use of the polygon area selection tool of the ThermaCAM
Researcher software. Fig 2 shows exemplary images of oilseed rape leaves inoculated with

A. brassicae 3 and 7 d after inoculation. On the third day after inoculation, the average leaf tem-
perature was higher than on the seventh day, and the range of temperatures was much lower.
The histogram obtained for the results of 7 d after inoculation shows an increased range of
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Fig 2. Thermal images of oilseed rape leaves inoculated with Alternaria brassicae after 3 (left) and 7 (right) d after inoculation (dai) with selected
areas representing analysed leaf surfaces (temperature values in the legend in °C). Below, a histogram of temperature distribution of the leaves
for these two days. Areas of the leaves used for histogram construction (two leaves for 3 dai and one leaf for 7 dai) are shown selected with polygon line.

doi:10.1371/journal.pone.0122913.9002

temperatures and a lower temperature median. The infected parts of leaves on day 7 are mani-
fested as irregular areas of temperatures lower than the rest of the leaf.

The general statistics of the temperature distributions within the leaves infected with the
four studied Alfernaria species are presented as box plots (Fig 3). In each plot, the axis of
abscissae represents days after inoculation. Each box plot was created taking into account the
temperature values of all the pixels of 20 representative leaves of each category. Thus, each
box refers to the statistical values of temperature of about 10° points. The medians and means
of all the infected leaves except the inoculation with A. dauci indicated a decrease of tempera-
ture during 3-7 d after inoculation and an increase during 7-21 d after inoculation. Regarding
the spray with conidiospores of A. dauci, increases of mean temperature and median were ob-
served only on 21 d after inoculation. It is also evident that the least variation of temperature
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diamond within the box is the mean value. The whiskers extend 1.5 times the inter-quartile range. The dots on the whiskers are the outliers.

doi:10.1371/journal.pone.0122913.9003

within the studied period was observed for control plants, which were not infected with any
species of Alternaria.

The distributions of leaf temperatures on particular days after inoculation for all the variants
of the experiment were compared with the use of kernel density curves (Fig 4). A kernel density
curve is an estimate of the population distribution based on the sample data. The vertical scale
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doi:10.1371/journal.pone.0122913.g004

is calculated so the sum of the histogram bar areas equals unity. It was found that inoculation
of oilseed rape leaves with all Alternaria species caused changes in temperature distributions
on particular days after inoculation compared to control leaves (Fig 4). In the majority of cases,
the distributions of infected leaves strongly differed from a normal distribution. The density
peaks for the studied days after inoculation indicated high differentiation, especially for

A. alternata, A. brassicae, and A. brassicicola. The density curves of A. dauci were very similar
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Fig 5. Correlation plot for control leaves and various types of inoculation. The plot is a visualisation of the strength of correlations among leaf
temperatures in various types of the experiment. The legend divides correlation coefficients into five ranges.

doi:10.1371/journal.pone.0122913.9005

to the respective control density curves (especially for 7 and 14 d after inoculation). In control
plants, the temperature distributions were very similar throughout the experiment.

To estimate a rank-based measure of association between leaf temperature distributions for
control plants and those infected with various Alternaria species, a correlation plot was created
(Fig 5). In this plot, the correlation coefficients were divided into five ranges. It was demon-
strated that the temperature of control leaves and those infected with A. dauci had low correla-
tions with other variants of the experiments. A considerably high correlation existed between
leaf temperature and other variants (e.g., the temperature of leaves infected with A. alternata
was strongly related to the temperature of leaves infected with A. brassicicola and A. brassicae
species). The infection with A. dauci resulted in leaf temperature distributions that were signifi-
cantly different from those of leaves infected with other Alternaria species.
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Fig 6. False-colour compositions of visible and near infrared (VNIR) (503.5 nm, 660.1 nm, and 970.5 nm) and short wavelength infrared (SWIR)
(1200.3 nm, 1759.2 nm, and 2202.3 nm) hyperspectral bands of an oilseed rape leaf inoculated with Alternaria alternata . The lower plot shows
spectral characteristics within selected regions of the image representing the infected area, uninfected area, and entire leaf with standard deviation (std).

doi:10.1371/journal.pone.0122913.9006

Reflectance spectra

Spectral characteristics of the leaves indicated high differentiation of their reflectance response
in the areas with the symptoms of Alternaria infection and in the uninfected areas. In Fig 6, ex-
emplary false-colour images of oilseed rape leaves 3 d after inoculation in VNIR (left) and
SWIR (right) ranges are presented together with reflectance spectra in the selected areas. These
three regions correspond to: 1, the part of the leaf with visible symptoms of infection; 2, the
part of the leaf without any symptoms of infection (uninfected area); and 3, the area of the en-
tire leaf. Additionally, the standard deviation lines for uninfected and infected regions are in-
cluded. The reflectance in the infected area was higher than in the uninfected area in the entire
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Fig 7. Spectral characteristics of rape leaves infected with four species of Alternaria fungi during four studied periods.

doi:10.1371/journal.pone.0122913.9007

VNIR-SWIR range, and non-overlapping standard deviation lines indicate good separation for
the areas of the leaf with and without symptoms of the infection. In the visible range of the
spectrum, the absolute mean difference values of the reflectance between areas with and with-
out disease symptoms were highest from 545-700-nm wavelengths (which include the chloro-
phyll absorption red-edge sub-region). The best separation between the uninfected and
infected areas is observed in the SWIR range and also in the water-absorption bands (1470
and 1900 nm).

A comparison of the mean reflectance spectra of the oilseed rape leaves on various days
after inoculation (3-21 d) by Alternaria species and controls (uninfected leaves) is presented in
Fig 7. In these plots created separately for all the studied Alternaria species, the mean spectral
characteristic of the control variant taken from four studied days after inoculation is added to-
gether with the shade of the error bar, representing standard deviations. Considerable differ-
ences of the spectral characteristics in the entire studied range (400-2400 nm) were observed
between particular days after inoculation (especially for A. alternata, A. brassicae, and A. bras-
sicicola). In the range of 740-1250 nm there are significant differences in spectral characteris-
tics of the studied variants of the experiments. For A. brassicae, and A. brassicicola the spectral
characteristics obtained for particular days after inoculation are in majority of cases lower than
control. Moreover, in the range of 1400-2400 nm, the leaves inoculated with A. dauci show dif-
ferent spectral profiles than the other variants. This variant of the experiment show very low
variation of reflectance between particular days after inoculation in this spectral range. In case
of other three variants (A. alternata, A. brassicae, and A. brassicicola infected leaves) of the ex-
periment there are noticeable decreases of reflectance after 3rd day after inoculation.

These results confirm different development and symptoms of the inoculation by A. dauci
on rape leaves than those from infection with other studied Alternaria species.

Supervised classification models

The final results of classification models for distinguishing days after inoculation are presented
in Table 3. For the training/test data set, the best prediction accuracies were obtained for the
BNN (90.5% of correctly classified instances), FT (86.7%), and SL (86.3%) ones. The analysis of
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Table 3. Results of classification models for distinguishing day after inoculation.

Classification model for
distinguishing day after
inoculation

NB
sL
SVM
LINE
BNN
FT
RF
Jag

doi:10.1371/journal.pone.0122913.t003

Training/test set Validation set

Correctly classified Kappa Root mean Correctly classified Kappa Root mean
instances (%) statistic squared error instances (%) statistic squared error
80.4 0.75 0.30 79.5 0.72 0.14

86.3 0.79 0.20 83.2 0.76 0.23

83.1 0.76 0.22 79.7 0.72 0.22

80.5 0.73 0.30 82.5 0.76 0.28

90.5 0.86 0.18 93.3 0.89 0.15

86.7 0.83 0.20 82.6 0.76 0.25

82.6 0.77 0.24 75.1 0.67 0.25

85.8 0.81 0.26 78.9 0.72 0.32

the models using the validation set resulted in the best accuracy with the BNN model (93.3% of
correctly classified instances), and it is higher than the other models. The lowest prediction ac-
curacy was obtained for the RF models, with 75.1% of correctly classified instances.

To illustrate how the cases belonging to different classes were classified by the particular
models, confusion matrices were created. An example of a confusion matrix for the BNN is
presented in Fig 8. The rows in the matrix represent the actual outputs, while the columns rep-
resent the targets. The highest number of misclassifications occurred 7 d after inoculation (10
cases), whereas the lowest number of misclassified cases occurred 21 d after inoculation (two
cases). At 7 d after inoculation, the total percentage measure of accuracy of actual recognition
(84.1%) was lower than that of the other classes. The highest percent of correctly classified
cases was observed 21 d after inoculation (96.8%). The lowest misclassification ratio occurred
21 d after inoculation. These results confirm the fact that with the development of leaf infec-
tion, symptoms are better recognised in reflectance spectra.

The general information on prediction accuracy of the eight created models for distinguish-
ing species of Alternaria is presented in Table 4. In this group of models, the best prediction ac-
curacies for the training test/data set and also for the validation set were observed for BNN
models (80.5% of correctly classified instances for training and 82.3 for validation sets). The
other models had considerably lower accuracies (the percentage of correctly classified instances
ranged from 49.8-59.3% for the training/testing set and 53.6-68.5% for the validation set).

The performance of the BNN classification model that exhibited the highest prediction ac-
curacy among the studied models of detecting species of Alternaria is presented in Fig 9. The
lowest number of misclassifications (seven cases) and the highest prediction accuracy (86.3%)
were obtained for A. dauci. The second highest prediction accuracy was obtained for the con-
trol leaves (84.0%), with only eight misclassified cases. The other Alternaria species exhibited
lower prediction accuracies (72-82%).

Discussion

It has been confirmed in this study that thermography and hyperspectral imaging technologies
have large potential for studying infection of oilseed rape plants with Alternaria species. Analy-
sis of radiation temperatures and reflectance spectra of infected leaves revealed considerable
changes in time (3 weeks after inoculation) of these characteristics. For Alternaria species that
are host to oilseed rape, a characteristic decrease in temperature occurred between 3 and 7 d
after inoculation as well as an increase in temperature in further periods of the experiment.
Similar leaf temperature characteristics were obtained for the infection of wheat plants with
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Fig 8. Confusion matrix obtained with 10-fold cross-validation for the back-propagation neural
network model for the studied days after inoculation (dai). The upper number in each entry of the matrix
is the average number of actual recognised classes in testing mode; the bottom one (its percentage) refers to
the total number of cases used in testing (251). The diagonal entries of the matrix represent the mean
quantities of the properly recognised cases (the upper value) and also their ratios with respect to the total
representation of all testing data (the lower values are expressed as a percentage). Each entry outside the
diagonal indicates an error (the number of misclassifications and its relative value). The last column of the
matrix represents the total percentage measure of accuracy of actual recognition for the class indicated by
the classifier. The upper number in this column represents the ratio of the number of the properly recognised
cases to the total number of cases indicated by the particular output. The bottom numbers in the last column
represent false alarm ratios. The last row of the matrix represents the ratios of the number of properly
recognised cases to the total number of true cases (targets). The bottom numbers in this row are the
misclassification ratios (the complement of sensitivity to one).

doi:10.1371/journal.pone.0122913.g008

Table 4. Results of classification models for distinguishing species of Alternaria.

Classification model for Training/test set Validation set

distinguishing species of

Alternaria Correctly classified Kappa Root mean Correctly classified Kappa Root mean
instances (%) statistic squared error instances (%) statistic squared error

NB 49.8 0.38 0.33 53.9 0.44 0.33

SL 54.4 0.46 0.30 53.6 0.43 0.32

SVM 52.6 0.44 0.32 57.6 0.46 0.33

LINE 53.1 0.45 0.37 53.9 0.42 0.36

BNN 80.5 0.69 0.24 82.3 0.75 0.21

FT 59.3 0.50 0.31 58.7 0.47 0.31

RF 55.2 0.46 0.29 68.5 0.65 0.27

J48 53.4 0.44 0.35 54.3 0.43 0.34

doi:10.1371/journal.pone.0122913.1004
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Fig 9. The confusion matrix obtained with 10-fold cross-validation for the back-propagation neural network model for the studied Alternaria
species. The parameters of the matrix are analogous to those in Fig 8.

doi:10.1371/journal.pone.0122913.g009

powdery mildew [47]. The initial leaf surface cooling was caused by growing mycelia, which
have a very low evaporation resistance (increase of transpiration observed). During later infec-
tion stages (7-21 d after inoculation), the affected leaf parts were damaged, the tissue dried,
and the temperature increased.

The results of supervised classification confirm that with the development of leaf infection,
symptoms are better recognised in reflectance spectra. Similar influences of pathogens on leaf
reflectance as a function of developmental stage of disease were obtained for sugar beet leaves
infected by Cercospora leaf spot, powdery mildew, and leaf rust [11]. Both thermographic and
hyperspectral measurements indicated different mechanisms of development and physiological
features of oilseed rape inoculation with A. dauci. The leaf temperature changes on particular
days after inoculation and spectral characteristics, especially in the SWIR range for inoculation
by A. dauci, significantly differed from the other species of Alternaria as well as leaves of non-
treated plants. These results confirm that symptoms of A. dauci infection on leaf surfaces differ
from those of the other Alternaria species infections [41,42].
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The thorough comparison of several pre-processing procedures and classifiers in these exper-
iments, including four species of Alternaria and four periods after inoculation, indicated that
second-derivative transformation of the spectral data, in conjunction with back-propagation
neural networks, is the best combination for classification of days after inoculation and Alter-
naria species. The results indicating that reflectance in the areas infected by Alternaria species
was higher compared to that of uninfected areas for the water absorption bands suggest that de-
velopment of leaf infection and desiccation of the leaf tissue processes are in agreement with ear-
lier studies [48-51].

Conclusions

These results revealed good applicability of thermography and hyperspectral imaging in the
VNIR and SWIR regions for studying the development of Alternaria infection in leaves of oil-
seed rape within a 3-week period after inoculation. Implementation of the elaborated algo-
rithms of the supervised classification of detecting Alternaria species and the time after
inoculation will require additional multisensory studies on interactions between physiological
processes within the affected tissues and their thermal responses (possibly with the use of active
thermography) and reflectance spectral characteristics. The knowledge of understanding the
response of infected leaves in various ranges of the electromagnetic spectrum require inclusion
of the entire range of physiological and genetic data.
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